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Knowledge mapping of credit risk research:
scientometrics analysis using CiteSpace

Wei Zhou , Qingjuan Chen and Sun Meng

School of Finance, Yunnan University of Finance and Economics, Kunming, PR China

ABSTRACT
To understand the development track of credit risk research
clearly and discover the hidden internal connections between lit-
eratures, this article utilises the scientific information measure-
ment software – CiteSpace – to conduct a scientometric analysis
(citation analysis, co-citation analysis and co-occurrence analysis)
of 2,384 articles on credit risk from Web of Science (W.o.S.) during
1998 and 2017. According to the research results, some useful
conclusions can be drawn as follows: (1) Credit risk research has
become interdisciplinary and subject involved are ‘Business
Finance’, ‘Economics’, ‘Operations Research Management Science’,
‘Mathematics Interdisciplinary Applications’; (2) The U.S., Europe,
and Asia make the majority of contributions and there are numer-
ous collaborations among countries; (3) The key researchers with
influence and authority in this field mainly are Merton Robert Cox
and Jarrow Robert Alan; (4) ‘Rollover risk’, ‘Arbitrage-free pricing’,
‘Default cycle’, ‘Credit risk evaluation’ and ‘Correlated default’ are
the major research area; (5) ‘Crisis’, ‘Contagion’, ‘Monetary policy’,
‘Counterparty risk’ and ‘Systemic risk’ have become major
research hotspot currently. Finally, we hope this scientometric
analysis can provides some inspiration for credit risk researchers.
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1. Introduction

Credit has the dual function of stabilising market order and increasing capital utilisation
rate in market economic activities. Good credit is the basic condition for the market to
develop steadily, but there will inevitably be credit risk in the transaction process, espe-
cially in the era of cloud payment and virtual payment. Credit risk, also known as coun-
terparty risk or performance risk, refers to the risk that the counterparty does not
perform on the debt due, which is not only in the loan, but also in the business of
guarantee, acceptance and securities investment. The small credit risk affects the oper-
ation and efficiency of the market, and the big one will trigger a credit crisis, affecting
social and economic development. Credit risk can be said to be one of the most chal-
lenging problems the market faces, and relevant research literature is growing rapidly.
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Some scholars have made progress in the field of credit risk research by analysing it
from various angles. First, some researchers focused on the measurement and evaluation
of credit risk. For example, Baesens et al. (2003) proposed neural network rule extraction
and decision tables to establish an advanced and user-friendly decision-support systems
for credit risk evaluation and management, while Wo�zniak, Gra~na, and Corchado (2014)
suggested that institutional investors are supposed to assess credit risk by using a combin-
ation of quantitative information such as option models and qualitative assessments.
Further, Dahiya, Handa, and Singh (2017) presented a feature selection-based hybrid-bag-
ging algorithm (F.S.-H.B.) for improved credit risk evaluation. Second, risk contagion is
also one of the research objects of many scholars, including Hatchett, Li, and Wang
(2009) presented a simple, solvable model to investigate effects of credit contagion on the
default probability of individual firms; Chen, He, and Li (2016) introduced an evolving
network model of credit risk contagion and discussed the impact of average fitness of
credit risk contagion, the risk aversion sentiments, and the ability to resist risk of credit
risk holders on financial market credit risk contagion. Third, some researchers tend to
combine credit risk research with specific reality. For instance, Grobys and Haga (2015)
proposed a market-wide credit risk factor for the U.S. stock market and investigated its
properties that are dependent on economic conditions; Salim, Arjomandi, and Dakpo
(2016) used a by-production approach that integrates credit risk to monitor bank effi-
ciency; Cerrato et al. (2017) demonstrated that the market factors are key inputs for the
effective management of the systemic credit risk in the banking sector. Apart from this,
Garc�ıa-C�espedes and Moreno (2017) proposed a simple multi-period credit risk model
and used Taylor expansion approximations to estimate the multi-period loss distribution.
Most scholars are professional, but different personal background and subjective prefer-
ence leads to the lack of quantitative analysis of the literature metrology in this area.

In other words, although there are many publications related to credit risk, few
people can understand the overall structure of the credit risk knowledge landscape
accurately. Therefore, it is necessary to study credit risk with the help of a quantita-
tive analysis tool CiteSpace. CiteSpace is a Java-based information measurement soft-
ware which designed to clarify the knowledge evolution structure and to detect
emerging trends and transient patterns in the scientific literature. It has been widely
used to identify hot topics in the field of science and technology (Small, Boyack, &
Klavans, 2014), present analyses in recommendation systems (Kim & Chen, 2015),
introduce the development of aggregation operator (Yu, 2015), obtain visualisation in
the international energy policy research (Wang, Nathwani, & Wu, 2016), review cloud
computing algorithms (Ruan, Chan, Zhu, Wang, & Yang, 2016), research non-point
source pollution (Xiang, Wang, & Liu, 2017), make a review of urban planning
research for climate change (Jiang, Hou, Shi, & Gui, 2017), show the knowledge map-
ping on hospitality research (Li, Ma, & Qu, 2017), and reveal the citation landscape
of some specific journals (Yu, Xu, Kao, & Lin, 2018).

Currently, CiteSpace is popular in academia, but it is not known that CiteSpace is
used to analyse the relevant literature on the credit risk research domain. In order to
provide a systematic and objective description for credit risk knowledge development,
this study uses CiteSpace software to conduct a quantitative analysis of 2,386 articles
from Web of Science (W.o.S.) in 1998–2017. Through research, we hope to achieve
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the following: (1) to understand the cooperation relationship of authors, institutions
and countries in the field of credit risk research; (2) to identify the most cited and
most noteworthy references, authors, and journals; and (3) to clarify the structure of
knowledge development and emerging trends in the field of discipline.

The remainder of this article is as follows: Section 2 describes data collection
and current status (number of publications, subject categories and research direc-
tions) in the credit risk research domain. Then a comprehensive analysis of the
research results, which includes citation analysis (authors, institutions, and coun-
tries), co-citation analysis (documents, authors and journals), and co-occurrence
analysis (keywords), is provided in Sections 3, 4, and 5 respectively. Finally,
Section 6 summarises the key conclusions and proposes future expectations.

2. The current status of credit risk research

The objective of this study is to carry out a scientometrics analysis of credit risk
research. The relevant literature data is obtained through the literature retrieval
method (including title, abstract, subject words, keywords and references, etc.), and
will be the database for knowledge mapping. It is of great significance to choose a
reputable and comprehensive bibliographic database to provide a wide range of high-
quality articles as a reliable source. The data selected in this study is from Science
Citation Index Expanded (S.C.I.-E.) and Social Sciences Citation Index (S.S.C.I.) in
the W.o.S. core collection. This database is relatively comprehensive and the exported
data can be identified by CiteSpace directly. Because the CiteSpace software data for-
mat requirements are based on W.o.S. text data and it is updated as the data format
in the I.S.I. database changes. CiteSpace software can import data from WoS database
and PubMed database for visual analysis directly. Meantime, it also provides nine
kinds of data converters, namely W.o.S., C.N.K.I., C.S.S.C.I., arXiv, Derwent, N.S.F.,
S.C.O.P.U.S., S.D.S.S., Project D.X., to convert data from other databases.
Furthermore, determining an appropriate keyword to select articles from the biblio-
graphic database is essential. This process should focus on the representativeness and
validity of keywords.

The timespan of credit risk research is from 1998 to 2017. The main reason for
choosing this period is that 20 years of literature data is representative and there will
be no situation that affects the efficiency of the software due to too much data. In
addition, since 2018 year is not over yet, in order to maintain data integrity, the dead-
line is 2017. The specific details are summarised as follows:

Topics ¼ credit risk

Timespan ¼ From 1998 to 2017

Databases ¼ SCI�E and SSCI

By filtering out some record types, such as program files and editing materials,
and limiting only in reviews or articles to eliminate the ‘noise’ of databases, a total of
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2,386 related articles were published with credit risk terms in the titles, index terms,
or abstracts, from 1998 to 2017. The number of publications per year is shown in
Figure 1. The overall trend increase can be observed. The number of publications on
credit risk research increases from 12 in 1998 to 224 in 2017, which indicates that the
research on credit risk has gradually attracted the attention of scholars. According to
the trend of the column chart, we can divide it into three periods:

1. 1998–2003 (start-up period): At this stage, the number of articles published each
year is less than 50, and the growth is relatively slow. It is the starting point for
attention being paid to credit risk.

2. 2004–2007 (initial development period): In 2004, the number of articles increased
suddenly, and in the following four years, it remained steady, with slight fluctua-
tions around 70 articles.

3. 2008–2017 (rapid development period): Similar to 2004, the number of published
articles on credit risk increased rapidly in 2008 to above 100, and remained stable
for a period of time until it increased sharply again in 2014, reaching 275, but it
began to show a slight downward trend in 2017.

There are eight different file types that make up all the documents of credit risk
research, such as, Articles, Proceedings papers, Editorial materials, Reviews, Meeting
abstracts, Book chapters, Book reviews, and Corrections. The detailed document type
is shown in Figure 2.

Research on credit risk has become multidisciplinary according to the categories
distribution. Table 1 presents a broad summary of the top 10 categories in the credit
risk research area. It can be seen clearly that ‘Business Finance’ is the most popular
category with 1,167 publications, accounting for 48.910% of the total publications.
‘Economics’ is the second most popular category after ‘Business Finance’, with 1,124
publications, accounting for 47.108% of the total publications. Followed by
‘Operations Research Management Science’ (280), ‘Mathematics Interdisciplinary

Figure 1. The number of published articles per year in credit risk research (1998–2017).
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Applications’ (233), ‘Management’ (214), ‘Social Sciences Mathematical Methods’
(204), ‘Statistics Probability’ (197), ‘Computer Science Artificial Intelligence’ (152),
and the number of publications on ‘Business’ and ‘Mathematics Applied’ are below
100. Compared with Table 2, we found that some categories correspond to the
research direction.

Table 2 shows the top 10 research directions in credit risk research. Among them,
‘Business Economics’ is the main research direction currently, at 75.943%. In addition,
other research directions with a total of more than 10% are ‘Mathematics’ and ‘Operations
Research Management Science’, while research directions such as ‘Government Law’,
‘Physics’ and ‘Science Technology other Topics’ have fewer publications.

The article is the most direct embodiment of the subject research direction. The
top 20 most used articles on W.o.S. in credit risk research (1998–2017) are listed in
Table 3 and the number of uses is counted, starting from 2013. These articles have
been published in recent years, and six articles are from Expert Systems with
Applications. Furthermore, the research directions of Economics, Operational
Research, and Information Science and so on, are involved in these articles, which
correspond to Tables 1 and 2.

Scientometrics analysis (citation analysis, co-citation analysis and co-occurrence
analysis) can demonstrate the macroscopic structure of scientific knowledge visually.

Figure 2. The documents types in credit risk research (1998–2017).

Table 1. The top 10 subject categories of W.o.S. in credit risk research (1998–2017).
Subject categories of W.o.S. Number The percentage of total Histogram

Business Finance 1,167 48.910%
Economics 1,124 47.108%
Operations Research Management Science 280 11.735%
Mathematics Interdisciplinary Applications 233 9.765%
Management 214 8.969%
Social Sciences Mathematical Methods 204 8.550%
Statistics Probability 197 8.256%
Computer Science Artificial Intelligence 152 6.370%
Business 90 3.772%
Mathematics Applied 89 3.730%
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The relationship between research frontiers and basic knowledge can be ascertained
through analysing a series of visual maps (collaboration network, co-citation network
and co-occurrence network) drawn by CiteSpace software. It should be noted that the
input data needs to be processed by the ‘remove duplicates’ function of CiteSpace
software before running. Finally, a total of 2,384 data is retained. In order to illustrate
this process logically, a work-flow diagram has been provided in Figure 3.

3. Citation analysis in credit risk research

To solve more complex scientific problems and stimulate innovative thinking, the
cooperation between countries, institutions and scholars in various research fields is
required. This study has drawn collaboration maps (author collaboration network,
institution collaboration network, country collaboration network and geographical
collaboration network) based on the collected literature data which will help to dis-
cover those scientific researchers, institutions and countries that deserve attention
and their social relations.

3.1. Author collaboration network analysis in credit risk research

The author collaboration network can examine the cooperative strength and mutual
relationship between different authors, as shown in Figure 4. There are 256 nodes
and 160 links, each node means an author, the size of the node represents the num-
ber of times the author is cited, and the width of the line indicates the number of
collaborative articles. The overall density of the network is only 0.0049, which signi-
fies that this network diagram is not compact enough. Table 4 summarises the top 20
authors based on cooperative frequency. The frequency of Jeanblanc M in the first
place is 11, the first time to appear in a cooperative relationship in 2004, followed by
Lucas A, with the frequency of 10 and first appearance being 2005. Their collabor-
ation history can be clearly seen in Figure 5. The cooperative frequency of other
scholars all are below 10 and the time that they started working with other scholars
is late. It indicates that the scholars conducting the credit risk study are more dis-
persed, and they have weak academic links.

Table 2. The top 10 research directions of W.o.S. in credit risk research (1998–2017).
Research directions of W.o.S. Number The percentage of total Histogram

Business Economics 1,812 75.943%
Mathematics 443 18.567%
Operations Research Management Science 280 11.735%
Mathematical Methods in Social Sciences 204 8.550%
Computer Science 199 8.340%
Engineering 118 4.946%
Urban Studies 49 2.054%
Government Law 35 1.467%
Physics 34 1.425%
Science Technology other Topics 33 1.383%
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Table 3. The top 20 most used articles of W.o.S. in credit risk research (1998–2017).
Title Authors Year Number Source

Evaluating credit risk and loan
performance in online
Peer-to-Peer (P2P) lending

Emekter, Tu,
Jirasakuldech,
and Lu

2015 393 Applied Economics

Instance-based credit risk
assessment for investment
decisions in P2P lending

Guo, Zhou, Luo, Liu,
and Xiong

2016 306 European Journal of
Operational Research

A survey of multiple classifier
systems as hybrid systems

Wo�zniak et al. 2014 175 Information Fusion

Machine learning in financial
crisis prediction: A survey

Lin, Hu, and Tsai 2012 165 IEEE Transactions on
Systems Man and
Cybernetics Part
C-Applications
and Reviews

Financial innovation: Credit
default hybrid model for
SME lending

Li, Niskanen,
Kolehmainen,
and Niskanen

2016 158 Expert Systems with
Applications

Determinants of default in
P2P lending

Serrano-Cinca,
Gutierrez-Nieto,
and
Lopez-Palacios

2015 153 Plos One

A decision support approach
for accounts receivable
risk management

Wu, Olson, and Luo 2014 142 IEEE Transactions on
Systems Man
Cybernetics-Systems

Machine learning models and
bankruptcy prediction

Barboza, Kimura,
and Altman

2017 139 Expert Systems with
Applications

Predicting financial distress
and corporate failure: A
review from the state-of-
the-art definitions,
modeling, sampling, and
featuring approaches

Sun, Li, Huang,
and He

2014 126 Knowledge-Based Systems

Predicting China’s SME credit
risk in supply Chain
financing by logistic
regression, artificial neural
network and hybrid models

Zhu, Xie, Sun, Wang,
and Yan

2016 123 Sustainability

A comparative analysis of
current credit risk models

Crouhy, Galai,
and Mark

2000 122 Journal of Banking
and Finance

A multi-objective weighted
voting ensemble classifier
based on differential
evolution algorithm for
text sentiment classification

Onan, Koruko�glu,
and Bulut

2016 120 Expert Systems with
Applications

The financing of innovative
SMEs: A multicriteria credit
rating model

Angilella and Mazzu 2015 120 European Journal of
Operational Research

Credit scoring using the
clustered support
vector machine

Harris 2015 118 Expert Systems with
Applications

Predicting China’s SME credit
risk in supply chain finance
based on machine
learning methods

Zhu, Zhu, Xie, Wang,
and Yan

2016 116 Entropy

Extreme learning machines for
credit scoring: An
empirical evaluation

Beque
and Lessmann

2017 110 Expert Systems with
Applications

Bankruptcy visualization and
prediction using neural
networks: A study of US
commercial banks

Iturriaga and Sanz 2015 107 Expert Systems with
Applications

2014 106 Information Sciences

(continued)
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3.2. Institution collaboration network analysis in credit risk research

The institution collaboration network consisted of 335 nodes, 407 links and the over-
all density is 0.0073. As shown in Figure 6, each node represents a different institu-
tion. The size of the node represents the number of documents issued by the
organisation. The larger the node, the more documents are distributed by the organ-
isation. Among them, the node representing New York University is the largest.
Moreover, the links represent the cooperation relationship between the organisations.
The more links, the closer the cooperation between the organisations. We can find
that the links between the various institutions are complex, and the colour is mainly
yellow, indicating that there are more close relationships and carried out in recent
years. Besides, the outermost purple circle of the node reflects the centrality of each
institution. It suggests the proportion of the shortest path through the node in the
shortest path between all other vertices in the network. If the ratio is larger, the pur-
ple circle is thicker, demonstrating that the node has a high centrality, and the insti-
tution has a higher status in the field. Combined with Table 5, the nodes
representing New York University have the thickest purple circle, and its centrality is
0.19. Other institutions with a purple aperture include Columbia University (0.16),
National Bureau of Economic Research (0.12) and European Central Bank (0.11),
which means that these institutions have great influence and are worthy of attention.
Furthermore, among the 20 mentioned institutions in Table 5, nine were from the
U.S., five from China, two each from England and Germany. Toronto and the Czech
Republic each have one. New York University in the U.S. ranks first, with 49 publica-
tions. Occupying second position is the Chinese Academy of Sciences, with 28 publi-
cations. Other institutions with more than 20 publications include the University of
Toronto (26), Columbia University (26), National Bureau of Economics Research
(25), the University of Southampton (25), Stanford University (23), the European
Central Bank (23), and the City University of Hong Kong (20).

3.3. Country collaboration network analysis in credit risk research

A total of 54 nodes and 262 links makes up the country collaboration network. The
overall density is 0.1831 and the nodes represent countries or regions (Figure 7).

Table 3. Continued.
Title Authors Year Number Source

Evaluation of clustering
algorithms for financial risk
analysis using
MCDM methods

Kou, Peng,
and Wang

How media coverage of
corporate social
irresponsibility increases
financial risk

Kolbel, Busch,
and Jancso

2017 101 Strategic
Management Journal

Multiple criteria decision
aiding for finance: An
updated
bibliographic survey

Zopounidis,
Galariotis,
Doumpos, Sarri,
and
Andriosopoulo

2015 101 European Journal of
Operational Research
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There is much cooperation among countries or regions in the late twentieth and early
twenty-first centuries according to the direct connection of nodes. The top 20 coun-
tries or territories that accounted for the major part of the total output contribution
are listed in Table 6. The U.S. is the largest contributor, publishing 723 articles, fol-
lowed by the People’s Republic of China (281), England (274), and Germany (244),
while the frequency of other countries’ publications is below 200. In terms of central-
ity strength, the centrality of the U.S. remains the first place (0.49), followed by
England (0.37), indicating that their mediating role in the field of credit risk research

Figure 3. Work-flow diagram of credit risk research.

Figure 4. A visualisation of the author collaboration network.
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Table 4. Top 20 authors based on frequency in credit risk research.
Authors Year Frequency Authors Year Frequency

Jeanblanc M 2004 11 Wang XC 2016 7
Lucas A 2005 10 Gourieroux C 2006 6
Lai KK 2006 9 Capponi A 2014 6
Baesens B 2004 8 Mues C 2004 6
Wang SY 2006 8 Chen TK 2011 6
Giesecke K 2010 8 Kou G 2011 6
Rosch D 2011 8 Shi Y 2006 6
Jarrow RA 2007 7 Koopman SJ 2005 6
Bielecki TR 2004 7 Yu L 2006 5
Schuermann T 2004 7 Liao HH 2011 5

Figure 5. Collaboration history of two authors.

Figure 6. A visualisation of the institution collaboration network.
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is more obvious and they have played a vital role in establishing contacts with other
countries. It is interesting that though Spain and the Netherlands’ publications ranked
tenth and twelfth respectively, their centrality is the same as that of Germany, which
ranks fourth, with 0.12. On the contrary, the centrality of the People’s Republic of
China, which is ranked second in the frequency of publications, is only 0.05, and the
centrality of the Taiwan region is 0.00. This means that the Asia still lacks influence
in this field.

3.4. Geographical collaboration network analysis in credit risk research

A geographic information map is the interaction between CiteSpace software and
Google Maps. We can understand the geographical distribution of a study quickly
and its academic cooperation through the networks. The red dot represents the spe-
cific geographical distribution of credit risk research. The greater the density of red

Table 5. Top 20 institutions based on frequency in credit risk research.
Institutions Countries/Territories Centrality Frequency

New York University The U.S. 0.19 49
Chinese Academy of Sciences The People’s Republic of China 0.07 28
University of Toronto Toronto 0.04 26
Columbia University The U.S. 0.16 26
National Bureau of Economic Research The U.S. 0.12 25
University of Southampton England 0.04 25
Stanford University The U.S. 0.08 23
European Central Bank Germany 0.11 23
City University of Hong Kong The People’s Republic of China 0.04 20
Charles University in Prague Czech Republic 0.03 17
University of Edinburgh England 0.02 16
National Taiwan University Taiwan 0.03 16
University of Pennsylvania The U.S. 0.00 16
Cornell University The U.S. 0.00 16
University of California Berkeley The U.S. 0.01 14
International Monetary Fund The U.S. 0.10 14
Southwestern University of Finance and Economics The People’s Republic of China 0.03 13
Deutsche Bundesbank Germany 0.02 12
The Board of Governors of the Federal Reserve System The U.S. 0.01 12
National Chiao Tung University The People’s Republic of China 0.01 12

Figure 7. A visualisation of the country collaboration network.
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dots, the more research is happening here. The lines between the red dots represent
the cooperation between the authors in the institutions of the corresponding countries
and the different colours correspond to cooperation time. It is obvious that the U.S.
and European countries are major contributors to credit risk research and the distribu-
tion of research in Europe is the most intensive (Figure 8). In addition, Europe, the
U.S., and Asia have formed a triangular zone for cooperation. As far as Asia is con-
cerned, China, South Korea, and Japan have more research in the field of credit risk
(b). These results are consistent with the conclusions drawn in Figures 6 and 7.

4. Co-citation analysis in credit risk research

Co-citation analysis can reveal the internal relations and laws of scientific literature
and describe the dynamic structure of scientific development. It refers to the fact that
two documents establish links with one or more other documents and can be used
for research on document relations, literature retrieval, and literature structure
research. For the two documents that have a co-citation relationship, the co-citation
characteristics determine that they are always in a passive position. The relationship
between them is always waiting for other documents to be established. Therefore, it is
more adaptable to certain current research objects having constantly changing and
developing characteristics. Credit risk research is just a dynamic science field that is
constantly changing. This article has conducted the co-citation analysis of document,
author and journal to investigate the development track of credit risk research. We
expect to understand the knowledge base and obtain a leading role in this field.

4.1. Document co-citation network analysis in credit risk research

In general, the traditional document review based on narrative is qualitative, mainly
depend on individual judgements and explanations, while CiteSpace software can

Table 6. Top 20 countries/territories based on frequency in credit risk research.
Countries /Territories Year Centrality Frequency

The U.S. 1998 0.49 723
The People’s Republic of China 2003 0.05 281
England 2000 0.37 274
Germany 2000 0.12 244
France 2004 0.10 126
Canada 2000 0.08 122
Italy 2002 0.04 119
Taiwan 2005 0.00 104
Australia 2004 0.08 96
Spain 2003 0.12 95
Switzerland 2002 0.01 83
Netherlands 2001 0.12 69
South Korea 2004 0.00 57
Belgium 2004 0.02 44
Czech Republic 2001 0.00 42
Japan 2005 0.00 42
Greece 2002 0.03 37
Portugal 2006 0.00 34
Austria 2004 0.02 33
Sweden 2001 0.08 33
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visualise this non-descriptive judgement. These two methods complement each other
and make the study more convincing. Document co-citation analysis can identify key
or core literature in the field of credit risk research. Figure 9 shows the full shot of
document co-citation network. This document co-citation network consisted of 648
nodes and 2293 links, and the density of the entire network map is 0.0109. These cit-
ation rings represent the citation history of each article. The colour of the citation
tree-rings corresponds to the cited time. The thickness is proportional to the number
of citations in the corresponding time partition. Using multivariate statistical analysis
methods such as cluster analysis, the intricate co-citation network relationship
between many analysis objects is simplified into a relatively small number of groups
and visually represented. The results obtained after the clustering of the literature are
displayed in the form of a timeline fisheye diagram and are presented in Figure 10.
The colour of the citation tree-rings transitions from cool to warm means the con-
tinuous advancement of scientific knowledge intuitively. Yellow citation tree-rings are
the current research hotspot. The entire network is divided into 85 clusters, and these
main clusters are labelled by index terms from their own citers and are summarised
with ‘#’ on the right side of Figure 10. It should be noted that it uses title terms and
a log-likelihood ratio (L.L.R.) weighting algorithm to label the clusters. L.L.R. is an
algorithm to calculate and determine each type of labels, which presents core concept
of each cluster with professional words (Fang, Yin, & Wu, 2017). These extracted pri-
mary clusters with ‘#’ reflect the research frontiers of the discipline’s development.

Figure 8. Geographical collaboration network in credit risk research.
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Therefore, ‘Rollover risk’, ‘Arbitrage-free pricing’, ‘Default cycle’, ‘Credit risk evalu-
ation’, ‘Correlated default’, ‘Credit portfolio model’, ‘Interest rate risk’, ‘Systemic risk’,
‘Quantifying credit risk’, ‘Asset price’, ‘capital structure’ and ‘feature selection’ are the
main research area in the knowledge field of credit risk. In detail, the results of top
10 clusters are summarised in Table 7. Size implies the numbers of the publications
in the cluster. The largest cluster (#0) contains 96 members’ references, followed by
cluster (#1), which has 82 members’ references. Silhouette is an index to measure the
homogeneity of a cluster, the higher the silhouette score, the better of the homogen-
eity. When the silhouette score is equal to 0.7, the clustering result is considered to
be highly reliable. When the silhouette score is greater than 0.5, the clustering result
is reasonable. The silhouette score of the largest 10 clusters listed in Table 7 are all
above 0.7, implying that these clusters are efficient and convincing. Mean represents
the average year of the published documents of the regarding cluster. It can be used
to judge whether the cluster is new or old (Yu & Xu, 2017). Cluster (#0) is the latest,
indicating that ‘Rollover risk’ is a research hotspot in the current research field.

Table 8 shows the top 20 most cited references, with more than 38 citations. The
listed references are the most cited documents from the 2,384 documents retrieved in
this article and not from the most cited documents in W.o.S. or Google Scholar.
These cited documents reflect the knowledge base, which is the reference trajectory of
the research frontier in the literature. Among the 20 references listed, an article enti-
tled ‘Corporate yield spreads: Default risk or liquidity? New evidence from the credit
default swap market’ in cluster (#0) by Longstaff et al. in the Journal of Finance is the
most cited article with 67 citations. The article used information from credit default
swaps to measure the size of defaults and non-defaults in corporate spreads and
found that most corporate spreads are due to default risk. At the same time, they dis-
cussed the relationship between non-defaulting parts and specific non-liquidity meas-
ures and macroeconomic measures of bond market liquidity. It is a core literature in

Figure 9. A visualisation of the document co-citation network.
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credit risk research. Furthermore, we believe research frontiers represent the develop-
ment of a research field. Those articles that cite these well used references constitute
the research frontiers. For example, Table 9 lists the top 20 articles citing the previ-
ously mentioned article by Longstaff et al. These citing articles are generally recently
published. The evolution of scientific knowledge in the field of credit risk research
and changes in the major research area can be found clearly by studying them. Other
documents in Table 8 from cluster (#0), such as ‘How sovereign is sovereign credit
risk?’ published in the American Economic Journal – Macroeconomicas were also by
Longstaff et al., who have made a significant contribution to this field.

4.2. Author co-citation network analysis in credit risk research

By analysing author co-citation, we can find out the influential talents in the credit
risk research field and provide reference for the introduction of talents in specific
relevant institutions. The network contains 356 nodes and 1,629 links and has an
overall density with 0.0258 which is illustrated in Figure 11. It should be pointed out
that only the first author was considered in the study. The largest node represents the
cited author Merton RC, with a frequency of 666. The centrality of this node with a
purple outer ring is 0.12, which indicates that Merton RC has a certain position in
this field. Table 10 lists the top 20 cited authors with a citation frequency greater
than 136. The node representing Altman EI has the highest centrality of 0.23, so it is
a key node. Because high centrality is a measure of the transformative potential asso-
ciated with scientific contributions. Other cited authors such as Jarrow RA, Longstaff
FA, Acharya W, Berger AN and Das SR whose centrality is all greater than 1, are
also worthy of attention. The conclusion that Longstaff FA is the core author is con-
sistent with the results of the document co-citation analysis, which verifies the accur-
acy of our research from a different angle.

4.3. Journal co-citation network analysis in credit risk research

The research literature on credit risk is from various journals. Understanding the dis-
tribution of core journals in this field can help to provide a valid basis for literature
collection. The main journal clusters in credit risk research area are revealed in
Figure 12. Combined with Figure 12 and Table 11, we can see that the top journals
in this field are Journal of Finance, Journal of Banking and Finance, Review of

Table 7. Top 10 clusters based on size in credit risk research.
Cluster ID Size Silhouette score Label (L.L.R.) Mean (Cite year)

0 96 0.81 Rollover risk 2009
1 82 0.798 Arbitrage-free pricing 1998
2 71 0.843 Default cycle 2001
3 71 0.92 Credit risk evaluation 2007
4 71 0.705 Correlated default 2007
5 45 0.795 Credit portfolio model 2001
6 39 0.826 Interest rate risk 2005
7 34 0.896 Systemic risk 2007
8 18 0.978 Quantifying credit risk ii 1999
9 10 0.071 Asset price 1999
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Financial Studies, Journal of Financial Economics, Econometrica, Journal of Political
Economy, Journal of Financial and Quantitative Analysis, American Economic Review,
Journal of Business, and Journal of Money Credit and Banking, and so on. Among the

Table 8. Top 20 references based on frequency in credit risk research.
Title Authors Year Frequency Source

Corporate yield spreads:
Default risk or liquidity?
New evidence from the
credit default swap market

Longstaff, Mithal,
and Neis

2005 67 Journal of Finance

How sovereign is sovereign
credit risk?

Longstaff, Pan,
Pedersen,
and Singleton

2011 63 American Economic
Journal-
Macroeconomicas

Credit risk: Pricing,
measurement,
and management

Darrell
and Singleton

2003 62 Princeton University Press

Forecasting default with the
Merton distance to
default model

Bharath
and Shumway

2008 60 Review of Financial Studies

Modeling term structures of
defaultable bonds

Duffie and Singleton 1999 60 Review of Financial Studies

Default and recovery implicit
in the term structure of
sovereign CDS spreads

Pan and Singleton 2008 57 Journal of Finance

Common failings: How
corporate defaults
are correlated

Das, Duffie, Kapadia,
and Saita

2007 56 Journal of Finance

Multi-period corporate default
prediction with
stochastic covariates

Duffie, Saita,
and Wang

2007 54 Journal of
Financial Economics

The determinants of credit
default swap premia

Ericsson, Jacobs,
and Oviedo

2009 51 Journal of Financial and
Quantitative Analysis

Frailty correlated default Duffie, Eckner, Horel,
and Saita

2009 48 Journal of Finance

A Markov model for the term
structure of credit
risk spreads

Jarrow, Lando,
and Turnbull

1997 44 Review of Financial Studies

A comparative anatomy of
credit risk models

Gordy 2000 43 Journal of Banking
and Finance

Market liquidity and
funding liquidity

Brunnermeier
and Pedersen

2009 43 Review of Financial Studies

A risk-factor model
foundation for ratings-
based bank capital rules

Gordy 2003 41 Journal of Financial
Intermediation

Structural models of corporate
bond pricing: An
empirical analysis

Eom, Helwege,
and Huang

2004 41 Review of Financial Studies

Estimating standard errors in
finance panel data sets:
Comparing approaches

Petersen 2009 41 Review of Financial Studies

An empirical analysis of the
dynamic relation between
investment-grade bonds
and credit default swaps

Blanco, Brennan,
and Marsh

2005 40 Journal of Finance

Deciphering the Liquidity and
Credit Crunch 2007–2008

Brunnermeier 2009 39 Journal of Economic
Perspectives

Corporate yield spreads and
bond liquidity

Chen, Lesmond,
and Wei

2007 38 Journal of Finance

Explaining credit default swap
spreads with the equity
volatility and jump risks of
individual firms

Zhang, Zhou,
and Zhu

2009 38 Review of Financial Studies
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Table 9. Top 20 citing articles of the article entitled ‘Corporate yield spreads: Default risk or
liquidity? New evidence from the credit default swap market.’
Title Authors Year Citations Source

The behaviour of emerging
market sovereigns’ credit
default swap premiums
and bond yield spreads

Adler and Song 2010 10 International Journal of
Finance & Economics

Sovereign CDS and bond
pricing dynamics in
emerging markets: Does
the cheapest-to-deliver
option matter?

Ammer and Cai 2011 18 Journal of International
Financial Markets
Institutions and Money

Systemic sovereign credit risk:
Lessons from the US
and Europe

Ang and Longstaff 2013 79 Journal of
Monetary Economics

What determines Euro area
bank CDS spreads?

Annaert, Ceuster,
Roy, and Vespro

2013 40 Journal of International
Money and Finance

Credit-risk valuation in the
sovereign CDS and bonds
markets: Evidence from the
euro area crisis

Arce, Mayordomo,
and Pena

2013 16 Journal of International
Money and Finance

Growth options,
macroeconomic conditions,
and the cross section of
credit risk

Arnold, Wagner,
and Westermann

2013 13 Journal of
Financial Economics

Counterparty credit risk and
the credit default
swap market

Arora, Gandhi,
and Longstaff

2012 65 Journal of
Financial Economics

Discussion of “Financial
statement comparability
and credit risk”

Arora 2013 0 Review of
Accounting Studies

Premia for correlated
default risk

Azizpour, Giesecke,
and Kim

2011 17 Journal of Economics
Dynamics and Control

Investigating the role of
systematic and firm-specific
factors in default risk:
Lessons from empirically
evaluating credit risk

Bakshi, Madan,
and Zhang

2006 35 Journal of Business

The illiquidity of
corporate bonds

Bao, Pan, and Wang 2011 143 Journal of Finance

The direct relevance of
accounting information for
credit default swap pricing

Batta 2011 9 Journal of Business Finance
and Accounting

Flight-to-quality or flight-to-
liquidity? Evidence from
the euro-area bond market

Beber, Brandt,
and Kavajecz

2009 156 Review of
Accounting Studies

Scenario-based dynamic
corporate bond
portfolio management

Beraldi, Simone,
Violi, Consigli,
and Iaquinta

2012 2 Ima Journal of
Management
Mathematics

From actual to risk-neutral
default probabilities:
Merton and beyond

Berg 2010 7 Journal of Credit Risk

The levered equity risk
premium and credit
spreads: A
unified framework

Bhamra, Kuehn,
and Strebulaev

2010 71 Review of Financial Studies

Credit derivatives and the
default risk of large
complex financial
institutions

Calice, Ioannidis,
and Williams

2012 6 Journal of Financial
Services Research

The impact of earnings on
the pricing of credit
default swaps

Callen, Livnat,
and Segal

2009 39 Accounting Review

(continued)
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top 10 most cited journals listed, Journal of Finance is the most frequently cited, with
1,512 co-citations. In terms of centrality, Journal of Finance still ranked first, with
0.16. Therefore, Journal of Finance had the highest impact factor at 8.968 of the listed
journals and so is a core journal in the field. It plays a major role in connecting with
other journals according to these two indicators. Other journals with high centrality
are Journal of Financial Economics and Econometrica, both with a centrality of 0.11,
they are also of great value for credit risk researchers.

Table 9. Continued.
Title Authors Year Citations Source

Stock options and credit
default swaps: A joint
framework for valuation
and estimation

Carr and Wu 2010 38 Journal of Financial
Econometrics

Dynamic interactions between
interest-rate and credit risk:
Theory and evidence on
the credit default swap
term structure

Chen, Cheng,
and Wu

2013 15 Review of Finance

Figure 11. A visualisation of the author co-citation network.

Table 10. Top 20 most cited authors based on frequency in credit risk research.
Cited authors Centrality Frequency Cited authors Centrality Frequency

Merton RC 0.12 666 Acharya W 0.11 197
Duffie D 0.05 563 Leland HE 0.03 187
Altman EI 0.23 440 Gordy MB 0.07 179
Jarrow RA 0.11 401 Berger AN 0.16 171
Longstaff FA 0.16 385 Fama EF 0.04 167
Black F 0.05 366 Campbelln JY 0.01 159
Hull J 0.02 289 Das SR 0.12 152
Lando D 0.06 263 Bielecki TR 0.02 149
Basel Committee on Banking Supervision 0.03 243 Giesecke K 0.02 149
Collin-Dufresne P 0.04 211 Vasicek O 0.03 136
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With the increasing complexity of research issues, the intersection between dis-
ciplines is required. An overlay of the cited journal is presented in Figure 13. Each
point in the figure represents a journal, and the aggregation of each colour means
the corresponding subject. The left side of the graph indicates the subject distribu-
tion of the citing article while the right expresses the subject distribution of the
cited article. It is obvious that there are Mathematics, Medicine, Ecology,
Molecular, Physics, Systems, Environment and so on in the base map. In addition,
the position of the ellipse represents the distribution of disciplines involved in this
study. The number of authors is explained by the horizontal axis of the ellipse,
and the number of article is explained by the vertical axis of the ellipse. Total two
distinct wavy lines in the picture that leads from left to right of the elliptical can
be found. The red wavy line illustrates the interdisciplinary cross-reference
between Mathematics, Systems, Mathematical and Systems, Computing, Computer,

Figure 12. A visualisation of the main journals cluster network.

Table 11. Top 10 most cited journals based on frequency in credit risk research.
Journal Frequency Centrality Impact factor Year

Journal of Finance 1512 0.16 8.968 1998
Journal of Banking & Finance 1308 0.08 2.848 1998
Review of Financial Studies 912 0.08 5.864 1999
Journal of Financial Economics 879 0.11 7.513 1998
Econometrica 627 0.11 5.742 1999
Journal of Political Economy 514 0.05 6.209 1999
Journal of Financial and Quantitative Analysis 477 0.05 3.007 1999
American Economic Review 467 0.02 6.498 1998
Journal of Business 432 0.05 1.465 1999
Journal of Money Credit and Banking 380 0.03 2.13 1998
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while blue wavy lines connect citing articles and cited articles which represent
Economic and Political in this study.

Table 12 reveals the top 10 most prolific journals in credit risk research during the
period of 1998–2017, the Journal of Banking and Finance published the most articles
(244), accounting for 10.226% of the total, while other journals published below 100.
However, the publications in the Journal of Finance which have the highest centrality
and cited amount in Table 11 did not appear here.

5. Co-occurrence analysis in credit risk research

5.1. Burst detections of keywords

The keywords are the refinement of the main content of the thesis, which can reflect
the author’s academic thoughts and viewpoints fully. The sudden detection of

Table 12. Top 10 most prolific journals based on publication number in credit risk research.
Journal Publication number The percentage of total Impact factor

Journal of Banking & Finance 244 10.226% 2.848
Expert Systems with Applications 66 2.766% 3.711
Quantitative Finance 63 2.640% 1.19
Journal of Credit Risk 62 2.598% 0.354
European Journal of Operational Research 55 2.305% 3.96
Journal of Financial Stability 52 2.179% 2.517
Journal of Risk Model Validation 37 1.551% 0.429
Insurance Mathematics & Economics 32 1.341% 1.732
Journal of the Operational Research Society 32 1.341% 1.634
Journal of Financial Economics 31 1.299% 7.513

Table 13. Top 20 keywords based on burst strength in credit risk research.
Keywords Strength Begin End 1998-2017

Corporate debt 10.6585 2000 2006
Crisis 9.7225 2015 2017
Term structure 9.6572 1999 2005
Interest rate 8.7493 1999 2003
Basel ii 8.5946 2004 2011
System 7.8983 2008 2012
Value at risk 7.8627 2002 2009
Contagion 7.7693 2013 2017
Risk management 7.7076 2000 2008
Performance 7.2428 2015 2017
Default probability 6.5142 2006 2013
Financial ratio 6.4795 2010 2014
Economy 6.3673 2015 2017
Firm 6.3011 2015 2017
Monetary policy 5.9013 2014 2017
Logistic regression 5.8361 2010 2012
Management 5.7977 2015 2017
Scoring model 5.4086 2010 2011
Financial crisis 5.359 2015 2017
Liquidity 5.3092 2012 2013
Credit risk model 5.1512 2004 2005
Banking 5.1275 2007 2012
Counterparty risk 5.1001 2014 2017
Corporate governance 5.0794 2015 2017
Systemic risk 4.9002 2014 2017
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keywords refers to the words that are more frequently used or used in a shorter
period and the special attention received by scholars at a certain time. According to
the word frequency change of the emergent words, the frontiers and trends in this
research area can be judged. Table 13 lists the top 20 keywords with the strongest
bursts. The last column of the line means the entire year of the study (1998–2017),
and the red line represents the duration of the keyword outbreak. In terms of burst
strength, the top ranked is ‘Corporate Debt’ with bursts of 10.6585, followed by
‘Crisis’ with bursts of 9.7225, occupying the third position is ‘Term structure’
(9.6572), followed by ‘Interest rate’ (8.7493), ‘Basel ii’ (8.5946), ‘System’ (7.8983),
‘Value at risk’ (7.8627), ‘Contagion’ (7.7693), ‘Risk management’ (7.7076),
‘Performance’ (7.2428) which burst strength is all above 7.

These burst keywords reflect the characteristics of a certain period. Through
detailed study, we can discover that the hot topics in this field change over time. In
the 1990s, ‘Term structure’ and ‘Interest Rate’ are the mainstream trend of the credit
risk research area. However, ‘Crisis’, ‘Contagion’, ‘Performance’, ‘Economy’, ‘Firm’,
‘Monetary policy’, ‘Management’, ‘Financial crisis’, ‘Counterparty risk’, ‘Corporate
governance’ and ‘Systemic risk’ have become the research frontier in recent years.

6. Conclusion

This article has been a scientific review of 2,384 data on credit risk based on W.o.S.,
applying CiteSpace software. Some useful conclusions have been obtained through cit-
ation analysis, co-citation analysis and co-occurrence analysis. The literature on the
credit risk knowledge area has increased significantly, especially after 2008. However,
the research has been scattered, and there has been only little collaborations among
scholars. The U.S. has been the main contributor, as many high-yield institutions
such as New York University, Columbia University and the National Bureau of
Economic Research, and so on, have been located here. Other areas with more
research on credit risk have been Europe and Asia. In addition, Merton Robert Cox
and Jarrow Robert Alan have been researchers worthy of attention in the field of
credit risk. Journal of Finance, Journal of Financial Economics and Econometrica have
played a vital role in establishing links with other journals. Besides, ‘Rollover risk’,
‘Arbitrage-free pricing’, ‘Default cycle’, ‘Credit risk evaluation’, ‘Correlated default’,
‘Credit portfolio model’, ‘Interest rate risk’, ‘Systemic risk’, ‘Quantifying credit risk’
and ‘Asset price’ have been the main research area in the knowledge field of ‘credit
risk’. Further, ‘Crisis’, ‘Contagion’, ‘Performance’, ‘Economy’, ‘Firm’, ‘Monetary pol-
icy’, ‘Management’, ‘Financial crisis’, ‘Counterparty risk’, ‘Corporate governance’ and
‘Systemic risk’ have become research hotspots in recent years.

In short, the scientometrics analysis is of great significance for identifying potential
relationships between the literature and investigating the knowledge evolution of
credit risk research. However, it should be pointed out that there are still some limi-
tations in this research. For example, keywords are not comprehensive when search-
ing for data, which can lead to the omission of partial data. In order to verify the
accuracy of the research results and broaden the scope, collecting data with different
related terms, conducting specific research on one or more core journals in this field

ECONOMIC RESEARCH-EKONOMSKA ISTRA�ZIVANJA 3473



based on CiteSpace or utilising other scientific measurement software tools to do an
analysis are expected in further study.
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