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ABSTRACT ARTICLE HISTORY

Big data analytics often refer to the breakdown of huge amounts Received 20 August 2018
of data into a more readable and useful format. This study utilises Accepted 29 October 2018
Google Trends big data as a proxy for an analysis of housing
demand. We employ a qualitative method (fuzzy set/Qualitative
Comparative Analysis, fsQCA), instead of a quantitative method,
for our estimate and forecast. The empirical results show that
fsQCA successfully forecasts seasonal time series, even though the
datasgt is small in size. Qur flndlngs fill the gap in thg qualitative JEL CLASSIFICATIONS
and time series forecasting literature, and the forecasting proced- C32: C35; R21

ure herein also offers a good standard for industry.
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1. Introduction

One potential cause of inefficiency in a housing market is a lack of liquidity (Tsai &
Tsai, 2018). Building up a housing demand index could help understand why such
liquidity may not arise at certain times. With Internet usage now rather common
worldwide, vast amounts of consumer data are now available. A question thus arises:
Can we analyse big data to forecast housing demand?

Big data technologies are naturally very useful when it comes to storing and proc-
essing huge sums of data (Diaconita, 2015). Wu and Brynjolfsson (2015) showed that
queries submitted to Google’s search engine correlated strongly with both the volume
of housing sales as well as a house price index released by the Federal Housing
Finance Agency in the U.S. Hence, this study uses Google Trends data as the fore-
casting target, because the data are collected from the Internet and are readily avail-
able to the public.

Housing demand exhibits seasonality, as shown, for example, in Bangladesh
(Ahmad, 2015) and the U.S. (Wu & Brynjolfsson, 2015). Other studies have applied a
seasonal adjustment to model the housing demand problem, such as that in New
Zealand (Grimes & Aitken, 2010), in Central, Eastern, and Southeastern Europe
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(Vandenbussche, Vogel, & Detragiache, 2015), and in Ireland (Addison-Smyth &
McQuinn, 2010), to name a few.

Fuzzy set/Qualitative Comparative Analysis (fsSQCA) is a variant of QCA (Roig-
Tierno, Gonzalez-Cruz, & Llopis-Martinez, 2017). It reveals the sufficient conditions
that lead to a specific outcome (equivalent to a dependent variable in multiple regres-
sion analysis, MRA) (Woodside, 2013; Woodside, Nagy, & Megehee, 2018). The suffi-
cient conditions can be combinations of antecedents or independent variables in
MRA. Hence, to tackle seasonal time series like those existing for housing demand
(Badun, & Frani¢, 2015), this study thus (1) uses fsQCA to autoregressively model a
time series of order k, AR(k), as the antecedent and the next time period’s data as the
outcome and (2) employs the model to forecast the AR time series.

The rest of this study is organised as follows. Section 2 reviews the relevant litera-
ture. Section 3 introduces how to use Google Trends data as a big data proxy for
housing demand, fsQCA, and the model set-up. Section 4 discusses the empirical
analyses. Finally, section 5 concludes this study.

2. Literature review

FsQCA has been applied to solve various types of problems. For example, Trueb
(2013) utilised fsQCA to integrate qualitative and quantitative data to create useful
index for economic and policy development. Vis, Woldendorp, and Keman (2013)
employed fsQCA to examine the variation in economic performance. Denk and
Lehtinen (2014) used both Qualitative Comparative Analysis (QCA) and fsQCA to
conduct contextual analysis of mobilisation of minority. Huarng (2015) employed
fsQCA to analyse relationships within the development of information and communi-
cation technologies in more than 100 countries.

Huarng and Yu (2015) used fsQCA to explore the sufficient conditions for the out-
come of healthcare expenditure from various antecedent combinations such as lon-
gevity, number of doctors, aging population, etc. FsQCA provided antecedent
combinations for each year to show that causal complexities lead to highly consistent
outcomes. The analysis in that study also showed strong predictive validities. Rey-
Marti, Ribeiro-Soriano, and Palacios-Marqués (2016) also used both QCA and fsQCA
to analyse culinary tourism success and entrepreneurial attributes under human cap-
ital and contingency factors.

The literature also shows how fsQCA can be employed to solve various time ser-
ies problems. Huarng (2016), for example, used fsQCA to explore the relationships
between energy consumption related antecedents and the outcome of gross domestic
product. These regime switches identified by the drastic changes of the values in the
antecedent combinations matched the real historical events, such as oil crises.
Huarng and Yu (2017) employed fsQCA to analyse the autoregressive relationships
of upward and downward regime switches for in-sample Taiwan Capitalisation
Weighted Stock Index. The relationships are used to forecast regime switches in
out-of-sample data. Taking data on the Taiwan Capitalisation Weighted Stock Index
for analysis, the empirical results again show that fsQCA provides strong predict-
ive validities.
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3. Data and research method
3.1. Data

This study uses Google Trends to search for keyword ‘591.com’, one of the most
popular housing websites in Taiwan and obtain the target data for this study (Google
Trends data hereafter). The monthly data spanned the period January 2010 to March
2018. The data for the period January 2010 to November 2016 were used as the in-
sample, and the data for the period December 2016 to March 2018 were used as the
out-of-sample.

3.2. Seasonality

We define a seasonal time series, k, as follows:

obs(t—k), obs(t—k+1), ..., obs(t—1) — obs(t),

where ¢ is the time period, and obs(t-k), obs(t-k+ 1), ... are the Google Trends data.
Because this study is modelling housing demand, we set k to 11. For example, when
we want to establish the relationships among the data, we present:

2010-Jan, 2010-Feb, 2010-Mar, ... 2010-Nov — 2010-Dec
2010-Feb, 2010-Mar, 2010-Apr, ... 2010-Dec — 2011-Jan
2010-Mar, 2010-Apr, 2010-May, ... 2011-Jan — 2011-Feb

2015-Feb, 2015-Mar, 2015-Apr, ... 2015-Dec — 2016-Jan
2015-Mar, 2015-Apr, 2015-May, ... 2016-Jan — 2016-Feb

2015-Dec, 2016-Jan, 2016-Feb, ... 2016-Oct — 2016-Nov
In addition, for our forecast, we have:

2016-Jan, 2016-Feb, 2016-Mar, ... 2016-Nov — 2016-Dec

2016-Feb, 2016-Mar, 2016-Apr, ... 2016-Dec — 2017-Jan

2016-Mar, 2016-Apr, 2016-May, ... 2017-Jan — 2017-Feb

2017-Feb, 2017-Mar, 2017-Apr, ... 2017-Dec — 2018-Jan
2017-Mar, 2017-Apr, 2017-May, ... 2018-Jan — 2018-Feb
2017-Apr, 2017-May, 2017-Jun, ... 2018-Feb — 2018-Mar
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3.3. FsQCA

Based on fuzzy sets and set theory, fSQCA is a popular qualitative analysis method
and tool. There are four major differences between fsSQCA and MRA (Ragin, 2008).
First, MRA creates coefficients for the dependent variables that are symmetrically
designed. Secondly, fsQCA focuses on set relations that are asymmetrical, while MRA
conducts analysis on the data directly. However, the data for fuzzy sets must be cali-
brated before analysis. Thirdly, MRA treats each independent variable individually,
whereas fsQCA yields antecedent combinations as the sufficient conditions for an
outcome. Fourth and lastly, MRA focuses on net effects, but in fsQCA there may be
multiple antecedent combinations for the same outcome.

For fsQCA analysis, we first need to calibrate the data into values between 0.0 and
1.0, where 0.0 means full non-membership, 1.0 means full membership, and 0.5
means neither non-membership nor full membership. Using Google Trends, we
search 591.com for the data. Because the values of the data from Google Trends fall
into the range between 26 and 100, we set 80, 60, and 40 to be 1.0, 0.5, and 0.0,
respectively, for calibration.

This study conversely proposes a new method called de-calibration. In other
words, after forecasting, we need to covert the fuzzy values back into real data so that
we can compare the forecasting performance. For example, the value of 1.0 is de-cali-
brated to 80, 0.5 to 60, and 0.0 to 40.

FsQCA analyses the relationships between the calibrated data and renders ante-
cedent combinations, such as:

~XxY — Z,

where X and Y are the antecedents (equivalent to independent variables), and Z is
the outcome (equivalent to the dependent variable). The symbol * represents AND;
the symbol ~ represents NOT; and the symbol — means ‘is sufficient for’. The ante-
cedents connected by * and~are called antecedent combinations (AC), such
as ~ X*Y. The above equation means that the antecedent combination ~ X*Y is a suf-
ficient condition for Z. In other words, ~X*Y can lead to Z.

We calculate consistency as follows:

>_min(comp, y)
> comp

consistency =

where comp represents the calibrated value for each AC, and y is the calibrated value
of the outcome.

4. Empirical analyses

For both the in-sample and out-of-sample data, we first conduct calibration. Based
on the calibrated data, we then proceed to the model and lastly to the forecast.
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Table 1. The antecedent combinations for each month.

Outcome Antecedent combination
January AC = dec*nov*oct*sep*aug*jul*jun*may*apr*mar*feb
February AC = mar*apr*may*jun*jul*aug*sep*~oct*~nov*~dec*~jan
March AC1 = ~feb*dec*nov*oct*sep*aug*jul*jun*may*apr
AC2 = feb*~jan*~dec*~nov*~oct*sep*aug*jul*jun*may*apr
April AC1 = mar*~feb*dec*nov*oct*sep*aug*jul*jun*may
AC2 = mar*feb*~jan*~dec*~nov*~oct*sep*aug*jul*jun*may
May AC1 = apr¥*mar*~feb*dec*nov*oct*sep*aug*jul*jun
AC2 = apr¥*mar*feb*~jan*~dec*~nov*~oct*sep*aug*jul*jun
June AC1 = may*apr*mar*~feb*dec*nov*oct*sep*aug*jul
AC2=~may*~apr*~mar*~feb*~jan*~dec*~nov*~oct*~sep*~aug*~jul
AC3 = may*apr*mar*feb*~jan*~dec*~nov*~oct*sep*aug*jul
July AC1 = jun*may*apr¥mar*~feb*dec*nov*oct*sep*aug
AC2= jun*~may*~apr*~mar*~feb*~jan*~dec*~nov*~oct*~sep*~aug
AC3 = jun*may*apr¥mar*feb*~jan*~dec*~nov*~oct*sep*aug
August AC1 = jul*jun*may*apr*mar*~feb*dec*nov*oct*sep
AC2 = jul*jun*~may*~apr*~mar*~feb*~jan*~dec*~nov*~oct*~sep
AC3 = jul*jun*may*apr*mar*~feb*~jan*~dec*~nov*~oct*~sep
AC4 = jul*jun*may*apr*mar*feb*~jan*~dec*~nov*~oct*sep
September AC1 = aug*jul*jun*may*apr*mar*~jan*~dec*~nov*~oct
AC2 = aug*jul*jun*may*apr*mar*~feb*dec*nov*oct
October AC1 = sep*aug*jul*jun*may*apr*mar*~jan*~dec*~nov
AC2 = sep*aug*jul*jun*may*apr*mar*~feb*dec*nov
November AC1 = oct*sep*aug*jul*jun*may*apr*mar*~feb*dec
AC2 = ~oct*sep*aug*jul*jun*may*apr*mar*~feb*~jan*~dec
AC3 = oct*sep*aug*jul*jun*may*apr*mar*feb*~jan*~dec
December AC1 = nov*oct*sep*aug*jul*jun*may*apr*mar*feb*~jan

AC2 = nov*oct*sep*aug*jul*jun*may*apr*mar*~feb*jan

4.1. In-sample estimation

The in-sample data allow us to establish relationships. For example, the in-sample

data are:

2010-Jan, 2010-Feb, 2010-Mar, ... 2010-Nov — 2010-Dec

2011-Jan, 2011-Feb, 2011-Mar, ... 2011-Nov — 2011-Dec

2012-Jan, 2012-Feb, 2012-Mar, ... 2012-Nov — 2012-Dec

2013-Jan, 2013-Feb, 2013-Mar, ... 2013-Nov — 2013-Dec

2014-Jan, 2014-Feb, 2014-Mar, ... 2014-Nov — 2014-Dec

2015-Jan, 2015-Feb, 2015-Mar, ... 2015-Nov — 2015-Dec

Based on the above relationship for December (as the outcome), fsQCA generates
two ACs leading to this outcome (December):

ACl = nov*oct*sep*aug*jul*jun*may*apr*mar*feb*~jan

AC2 = nov*oct*sep*aug*jul*jun*may*apr*mar*~feb*jan

All the ACs can be generated for the other months, as seen in Table 1. Note that
there can be multiple ACs leading to one month. Table 2 lists the correspondences

for all the ACs.
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Table 2. In-sample consistency.
Consistency Compl1 Comp2 Comp3 Comp4
2016-Dec 0.9741 1
2017-Jan 0.9381
2017-Feb 0.9286
2017-Mar 1 1
2017-Apr 1 1
2017-May 1 1
2017-Jun 1 1 1
2017-Jul 1 1 1
2017-Aug 1 0.8182 1 1
2017-Sep 0.9041 1
2017-Oct 0.9257 1
2017-Nov 1 0.8693 1
2017-Dec 0.9741 1
2018-Jan 0.9381
2018-Feb 0.9286
2018-Mar 1 1
Table 3. The values of comp’s.
Comp’1 Comp2 Comp’3 Comp’4
2016-Dec 0.32 0.32
2017-Jan 0.32
2017-Feb 0.16
2017-Mar 0.11 0.16
2017-Apr 0.68 0.26
2017-May 0.11 0.16
2017-Jun 0.11 0.03 0.16
2017-Jul 0.11 0.03 0.16
2017-Aug 0.11 0.03 0.11 0.16
2017-Sep 0.16 0.11
2017-Oct 0.32 0.11
2017-Nov 0.11 0.11 0.35
2017-Dec 0.57 0.1
2018-Jan 0.43
2018-Feb 0.43
2018-Mar 0.43 0.29
Table 4. Product of comp” and in-sample consistency.
Product Comp’l Comp”2 Comp’3 Comp’4
2016-Dec 0.3117 0.32
2017-Jan 0.3002
2017-Feb 0.1486
2017-Mar 0.11 0.16
2017-Apr 0.68 0.26
2017-May 0.11 0.16
2017-Jun 0.11 0.03 0.16
2017-Jul 0.11 0.03 0.16
2017-Aug 0.11 0.0245 0.1 0.16
2017-Sep 0.1447 0.11
2017-Oct 0.2962 0.1
2017-Nov 0.11 0.0956 0.35
2017-Dec 0.5553 0.11
2018-Jan 0.4034
2018-Feb 0.3993
2018-Mar 0.43 0.29
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1-below0.5 Comp’1 Comp'2 Comp’3 Comp’4
2016-Dec 0.6883 0.68

2017-Jan 0.6998

2017-Feb 0.8514

2017-Mar 0.89 0.84

2017-Apr 0.68 0.74

2017-May 0.89 0.84

2017-Jun 0.89 0.97 0.84

2017-Jul 0.89 0.97 0.84

2017-Aug 0.89 0.9755 0.89 0.84
2017-Sep 0.8553 0.89

2017-Oct 0.7038 0.89

2017-Nov 0.89 0.9044 0.65

2017-Dec 0.5553 0.89

2018-Jan 0.5966

2018-Feb 0.6007

2018-Mar 0.57 0.71

Table 6. De-calibrated values.

De-calibrated Comp’1 Comp'2 Comp’3 Comp'4
2016-Dec 65 65

2017-Jan 66

2017-Feb 72

2017-Mar 74 71

2017-Apr 65 67

2017-May 74 71

2017-Jun 74 83 71

2017-Jul 74 83 71

2017-Aug 74 84 74 71
2017-Sep 72 74

2017-Oct 66 74

2017-Nov 74 75 64

2017-Dec 61 74

2018-Jan 63

2018-Feb 63

2018-Mar 62 67

4.2. Out-of-sample forecasting

Because we execute the forecast one by one, there is no summation for the function

of consistency. Therefore, the equation becomes:

consistency =

comp

min(comp, y)

For out-of-sample forecasting, we have comp’ and y/, representing the calibrated

values of the out-of-sample:

In other words, we have:

min(comp’, y') = comp’ x consistency, whereby:

consistency =

min(comp', y')
comp'
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Figure 1. XY-Plot of the forecasts for 2017 January and 2018 January.
If comp’ > y’, then min(comp’, y') = y's

If comp’ <y, then there is no way to know y’ from min(comp’, y’).

Hence, we suppose min(comp’, y')=y’. In other words, y'= comp’ x consistency.

The value of consistency is known from the in-sample estimation. The values of
comp’ are calculated by the out-of-sample data as seen in Table 3. Thus, we are able
to calculate the value of y’ as Table 4 shows.

The values of y’ may be greater than or lower than 0.5. If the future trend is
clearly rising or dropping, then we can determine whether the values are greater or
lower than 0.5. Suppose the trend is upward (downward); the values therefore need
to be greater (lower) than 0.5. If the values are opposite to this, then we need to con-
vert them by 1-y’.

All the values (except compl’ for 2017 April and compl’ for 2017 December) in
Table 4 are lower than 0.5. However, we know that the trend is upward. Hence, we
take 1-y’ for all the values as presented in Table 5. As for the values greater than 0.5,
they remain the same. As stated previously, we de-calibrate the values back to the
real data, listing the de-calibrated results in Table 6.

4.3. Performance evaluation

There are different ways to validate the empirical results. First, as in many fsQCA
studies, we use an XY plot to see if the forecasts fall in the upper-left triangle of the
chart, which would be considered as good forecasts. Figure 1 presents the forecasts
for both 2017 January and 2018 January. The dashed circle indicates the forecast of
2017 January, and the dashed triangle indicates the forecast of 2018 January. Both
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Table 7. The analysis of good forecasts.

Month Comp’1 Comp2 Comp’3 Comp’4

2016-Dec
2017-Jan
2017-Feb
2017-Mar
2017-Apr
2017-May
2017-Jun
2017-Jul
2017-Aug
2017-Sep
2017-Oct
2017-Nov
2017-Dec
2018-Jan
2018-Feb
2018-Mar

<

< X< << <<<<<<<<<<ZK<K
< < < < << << <<
<
<

Table 8. RMSE comparison.

Actual comp’1 comp2 comp’3 comp’4 Method 1 Method 2 Method 3
64 65 65 1 1 1
57 66 81 81 81
74 72 4 4 4
83 74 Al 81 144 81
83 65 67 256 324 324
78 74 71 16 49 16
82 74 83 71 1 121 1
79 74 83 71 16 64 16
71 74 84 74 71 169 0 169
66 72 74 64 36 64
62 66 74 144 16 144
62 74 75 64 169 4 169
58 61 74 256 9 256
61 63 4 4 4
54 63 81 81 81
72 62 67 25 100 25
RMSE 9.2466 8.0545 9.4736

are above the diagonal line and are therefore considered as good forecasts. Table 7
shows that all the forecasts are denoted as being good, except that for
2018 February.

Secondly, one can always use conventional root mean squared errors (RMSEs) to
test a forecasting performance. There is a de-calibrated value corresponding to each
relationship. When there are multiple relationships for the same outcome, there are
multiple de-calibrated values. Hence, the choice of which de-calibrated value as the
representative value to the outcome becomes an issue. There are three possible ways
to decide. Method 1 picks the largest product values for different comps. Method 2
chooses the smallest product values for different comps. Method 3 chooses the largest
product values, but with values greater than 0.5 first. Table 8 compares the RMSEs.

5. Discussion and conclusion

To tackle a seasonal time series for housing demand, this study uses fsQCA (1) to
model the time series of an AR(k) and (2) employs the model to forecast the AR
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time series. First, this study demonstrates how Google Trends data can represent a
proxy source of big data, offering a proper standard for industry. Secondly, fsQCA
generates multiple relationships that lead to the same outcome. In other words, mul-
tiple causes can lead to the same result. Thirdly, when facing a small dataset, fsQCA
is still able to successfully model and forecast a higher-order time series that outper-
forms conventional statistical methods.

There are a few limitations of this study. As discussed in the text, the equation to
calculate consistency involves a minimum function, which absorbs some amount of
information. Hence, during out-of-sample forecasting, there is no way to discover the
absorbed information. In addition, multiple relationships also cause bias or problems
in out-of-sample forecasting. A consistent approach is needed to determine which
relationship is more suitable in a given situation.

Following these limitations, we suggest that future studies focus on how to choose
the proper relationship from multiple relationships. Such investigations can be done
by applying domain-specific knowledge, such as through heuristics or with domain-
independent knowledge. Another interesting topic to work on is how to retain the
absorbed information in a minimum function.
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