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Abstract. The socioeconomic or political structures of countries and investment costs play a crucial
role in investor decisions, especially in developing countries where the environment is unstable. In this
regard, fuzzy models that consider the investment amount and cost may enable making more realistic
decisions rather than the deterministic models used in portfolio optimization (PO). Hence, the objective
of this paper is to examine the effects of the environment, investment amount and cost on PO in a
politically, socially and economically unstable environment. Konno-Yamazaki PO model was fuzzified
by adopting fuzzy linear programming (FLP) approaches of Verdegay and Werners for this purpose.
Afterward, extended models were created. To do that, investment amount, tax and transaction costs
were integrated into the return constraint of the fuzzified models. Mean-Variance Model (MVM)
of Markowitz was also used for comparatively interpreting the results of the optimization. Results
show that the fuzzified models based on Verdegay and Werners FLP approaches can be suggested as a
decision-making tool, respectively for risk-averse and risk-taker investors. The extended models provide
much better results compared to the fuzzified models. On the other hand, they are not more successful
than the MVM in an unstable environment but the stable environment. The main contributions are
considering political, social and economic events in the optimization, comparatively analyzing fuzzified
Konno-Yamazaki model with its extended versions and the MVM, investigating the relationship between
optimization models and investor types.
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1. Introduction

Markowitz developed the MVM to determine the weights that minimize the risk while keeping
the return constant at a certain level. Thus, the number of the assets in the portfolio and share
of them can be determined easily for different expected returns. However, uncertainties resulting
from the various socio-economic, social and political situations may prevent the use of MVM
by itself (Please refer to the appendix for MVM of Markowitz). Instead, using fuzzy models
considering uncertainty may be beneficial to use since fuzzy numbers are powerful for describing
impreciseness or vagueness of numeric quantities in the field of decision-making [20], and the
selection of the optimal portfolio belongs to that field [19]. Fuzziness/ fuzzy logic-optimization
has been widely used and successfully applied in real-life problems in social sciences. Setting up
a fuzzy mathematical model, computation and interpretation of it is less complicated and much
understandable, and its outputs much easily applicable than that of many other methodologies.
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Moreover, the classical Markowitz model is formulated under an L2 risk function. There-
fore, computational difficulty related to solving quadratic programming problems with a dense
covariance matrix is another issue regarding MVM of Markowitz [12]. On the contrary, there
is no need to compute the covariance matrix in linear models such as the Konno-Yamazaki
model. Konno-Yamazaki model is formulated under an L1 risk function. Therefore solving it
is much easier than solving a quadratic problem. Also, controlling the number of assets in the
portfolio is an easy task with a control variable in Konno-Yamazaki model comparing to MVM
model. Therefore, Konno-Yamazaki PO model was fuzzified with Verdegay and Werners FLP
approaches [32, 34] in this paper.

Cost and the investment amount is another issue in PO. Many existing studies have shown
that transaction costs can significantly affect investment behavior. There are several kinds of
transaction costs like proportional, fixed, linear or non-linear [20]. Omitting them or deducting
the cost from the portfolio return may result in inefficient portfolios. In other words, costs can
erode the gains from a trading strategy [25]. Hence, fuzzified Konno-Yamazaki models were
extended with the inclusion of tax and transaction costs for different investment amounts in
this study. The data were collected from the capital market Istanbul Stock Exchange (Borsa
Istanbul-BIST) and a state bank in Turkey for the period between 01.01.2013 and 30.03.2014.

The organization of this paper is as follows. The relationship between PO and FLP was
discussed in the preliminaries section. In this scope, the approaches of Konno-Yamazaki [13],
Verdegay [32] and Werners [34] were explained. Then the effects of costs in the PO were
discussed, and the extended models considering costs were explained. It is followed by the
data, application, results, conclusion and appendix section.

2. Preliminaries

The primary objective of portfolio management is to create effective portfolios about the risk
and return balance. The determination of an effective portfolio can be done via quadratic
programming by calculating the expected return and the variance-covariance values of assets.
However, this method does not consider the uncertainty level of decision-makers. That is due
to the financial markets which cause immediate decision changes in investors influenced by
uncontrollable events such as natural disasters, corruption and strikes. This change is entirely
shaped by the perception, experience and insufficient knowledge of investors. Hence using fuzzy
methods may be beneficial as it is a practical approach when there is insufficient information
regarding the event. Indeed, fuzzy PO methods ensure a certain level of satisfaction and may
provide more realistic results than deterministic models [2, 33].

Almost hundreds of studies have been carried out on fuzzy PO in the past 30 years. One
of the most important ones was the study carried out by [26]. In that study, a dynamic
PO model was developed by fuzzifying the uncertainty of the future prices and risks of the
assets. Ramaswamy [28] developed fuzzy multi-criteria linear programming models for several
rates of return levels. Fuzziness was applied to the subjective decisions of investors for an
uncertain period via trapezoidal membership function. The objective was the fuzzified utility
maximization. Tanaka and Guo [30] used possibility distributions instead of average variance
for representing the knowledge of decision-makers. They partially rejected the assumption of
Markowitz regarding the effectiveness of the past data in the future by integrating it with
the knowledge and judgments of decision-makers. They generated an exponential possibility
distribution for each decision-maker and integrated them into one. According to [17], PO
models should have considered the nature of the data, risk and return expectations. In this
regard, they examined several approaches regarding the data uncertainty and re-optimized the
infeasible models by using duality theory and fuzzy programming. Another fuzzy PO model
that was based on MVM was developed by Watada [33]. The satisfaction level for the expected
return and risk was defined by a logistic membership function.
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In PO, the Konno-Yamazaki Linear Programming model provides more effective results at
large scale problems in comparison to the Markowitz model. That is why it is one of the most
frequently used deterministic methods in PO [8, 27]. The objective of the Konno-Yamazaki
model is to determine the assets with the lowest deviation at any return level. In other words,
this is a method that takes average absolute deviation as a reference [8, 27], and focuses on assets
of which the average return is equivalent to the desired return level [12, 13]. The model is solved
repetitively for each expected return since it is deterministic and thus provides instantaneous
results to the investor. The following model is due to Konno and Yamazaki [12].
Model 1(M1):

min
yt

1

T

T∑
t

yt, (1)

subject to:

yt +

n∑
j=1

[(rtj − rj)xj ] ≥ 0, t = 1, 2, . . . , T, (2)

yt −
n∑
j=1

[(rtj − rj)xj ] ≥ 0, t = 1, 2, . . . , T, (3)

n∑
j=1

(rjxj) ≥ ρM0, (4)

n∑
j=1

xj = M0 = 1, (5)

yt ≥ 0, t = 1, . . . , T. (6)

In the Konno-Yamazaki model, T is the number of periods, j is the number of assets, ρ is
the rate of expected return, rj is the average rate of return of the jth asset, xj is the share of
the jth asset, t is the tth period, yt is the assistant variable, rtj is the real return of the jth asset
at the tth period and M0 is the total investment amount. rtj − rj is the difference (deviation)
between the real rate of return of the jth asset in the tth period and the average rate of return of
the same asset for the total T period. This difference represents a risk. Assets with a minimum
risk of zero are determined for each t period with the Eq. (2). Therefore, assets with negative
deviation are eliminated with it. Assets with the smallest risk are determined with the Eq. (3).
Assets of which average risk (return ratio) is equal to or greater than the total expected return
are determined with the Eq. (4). The sum of the investment amounts is equated with the Eq.
(5). The objective in the model minimizes the deviation from the total expected return ρ. In
other words, it is the determination of the xj ’s of which risk is minimum and average return is
equal to or greater than the expected return by minimizing the yt assistant variable at period
t.

It is known that the optimal solution of a linear programming model only depends on the
constraints, and much of the information present in the data is ignored. The use of probabilistic
distributions allows to account for more information, but it may be impossible to collect enough
data for determining the probability distribution in emerging stock markets without enough
historical data such as in China [20] and similar as in Turkey. With the introduction of the
concept of fuzzy sets in the seminal paper of L. A. Zadeh [38], we have an alternative and
powerful way of modeling data information without using stochastic concepts [29]. Fuzzy logic
can express uncertain knowledge and makes it suitable for representing the inherently uncertain
nature of PO problem [19].
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Figure 1: The fuzzy trapezoidal membership function of (a) expected return and (b) risk

The fundamental difference between a linear programming and an FLP model is the resource
constraints or/and the objective function in an FLP model being in the form of approximate
inequalities. Approximateness can be provided by membership functions. When the demands
of investors and the nature of the problem are considered; trapezoidal and logistic membership
functions can be used [18, 33]. There are several approaches available in FLP. For example,
the objective function and criteria in Zimmermann approach are fuzzified by a tolerance in-
terval, which is initially given [16, 39]. Similarly, an interval is used for the same purpose
also in Werners approach, but it is calculated with specific formulations [16, 34, 11]. On the
other hand, in the Verdegay approach, only the criteria are fuzzified, and the model is solved
repetitively for different satisfaction levels [32, 12]. In this study, only Verdegay and Werners
FLP approaches were adopted as there were no real decision-makers to determine a tolerance
interval for Zimmermann method.

The general model of linear programming with fuzzy constraints is formulated as follows
[16]:
Model 2:

max
x

cx (7)

subject to:

(Ax)i . bi, i = 1, . . . ,m, (8)

x ≥ 0

where . is fuzzy less than or equal to and bi is in [bi, bi + pi] ∀i with a given tolerance pi. The
value of the pi or in other words upper and lower limits of the tolerance, so the right-hand side
of Eq. (8), varies depending on a θ which is in [0, 1]. Therefore, (Ax)i . bi is equivalent to
(Ax)i . bi + θpi. Hence, as in the paper of Kocadağlıand Cinemre [11], if the rate of return
(expected return) ρ in Eq. (4) is assumed to be a fuzzy number since its value is between [0, 1],
the model becomes a fuzzy model. If τ denotes the tolerance variable of the expected return, ρ
denotes the average of the expected returns and ρmax represents the maximum of it, then the
tolerance of the expected return is calculated as τ = ρmax−ρ. The sum of ρ ·M0 +τ is accepted
as the upper limit of the expected return. Therefore, the membership function of the constraint
can be arranged as below in Eq. (9) and Figure 1(a) as it is monotonically increasing.

µ(x) =


0,

∑n
j=1 [(rtj − rj)xj ] < ρM0

[
∑n

j=1[(rtj−rj)xj ]−ρM0]
τ , ρM0 ≤

∑n
j=1 [(rtj − rj)xj ] ≤ ρM0 + τ

1,
∑n
j=1 [(rtj − rj)xj ] > ρM0 + τ

(9)

Note that the membership function µ(x) does not start from zero. The reason for this is
that an investor expects a return equal to or higher than the average return of the portfolio.
Thus, the minimum expected return of the investor does not start from zero but a positive value
on the x-axis. As seen in Eq. (9) and Figure 1(a), functions are continuous and monotonic.
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Therefore, the model, in general, is represented as below [16].
Model 3:

minZ (10)

subject to
x ∈ Xα (11)

where Xα = {x|∀i, µi(x) ≥ α, x ≥ 0}, for eqach α−level cut (satisfaction level) α ∈ [0, 1]. When
Eq. (9) is applied to model 3 and Eq. (4), M1 is rearranged as below.
Model 4 (M4):

min
yt

1

T

T∑
t

yt, (12)

subject to:

yt +

n∑
j=1

[(rtj − rj)xj ] ≥ 0, t = 1, 2, . . . , T, (13)

yt −
n∑
j=1

[(rtj − rj)xj ] ≥ 0, t = 1, 2, . . . , T, (14)

n∑
j=1

(rjxj) ≥ ρM0 + ατ, α ∈ [0, 1] (15)

n∑
j=1

xj = M0 = 1, (16)

yt ≥ 0, t = 1, . . . , T. (17)

In the Verdegay approach, only the return constraint has been fuzzified, and the objective
function has been bound indirectly to the fuzzy return constraint via a variable, yt. Calculations
should be carried out repeatedly for different satisfaction levels. However, because of the fuzzy
constraint, Eq. (15), in M4, the objective function should be fuzzified as well [16]. Moreover,
the objective in real life is to determine an α, which provides optimum satisfaction for different
risk and return combinations simultaneously. This determination can be made via the Werners
approach [16].

In Werners approach, α is tried to be maximized. Werners stated that the objective function
of Model 2 should be fuzzy because of fuzzy constraints. Let us assume that tolerance pi for the
fuzzy constraints is given again. Then Model 2 is repetitively solved for the lower and upper
limits of Eq (8) as below:

Z0 = max
x

cx subject to (Ax)i . bi, ∀i, x ≥ 0

Z1 = max
x

cx subject to (Ax)i . bi + pi, ∀i, x ≥ 0

Then a membership function for the objective (maximization) is created as in Figure 1(b). As
it is a continuously decreasing linear membership function, it is formulized as below in Eq. (18).

µ(x) =


1, Z < Z0

1− (Z−Z0)
(Z1−Z0) , Z

0 ≤ Z ≤ Z1

0, Z > Z1

(18)

In this respect, M4 is solved repetitively by taking satisfaction level α = 0 and α = 1. Thus
obtaining a risk value Z0 for 0% satisfaction and a risk value Z1 for 100% satisfaction.
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The max-min operator can be used to obtain an optimal decision, and model 2 can be solved
by using maxx≥0 α, where α = min[µ0(x), µ1(x), . . . , µm(x)]. That is

Model 5:
maxα (19)

subject to:

µ0(x) ≥ α (20)

µi(x) ≥ α,∀i (21)

α ∈ [0, 1]x ≥ 0

Therefore Eq.(13), is applied on model 5, and M4 is rearranged as below
Model 6 (M6):

maxα (22)

subject to:

yt +

n∑
j=1

[(rtj − rj)xj ] ≥ 0, t = 1, 2, . . . , T, (23)

yt −
n∑
j=1

[(rtj − rj)xj ] ≥ 0, t = 1, 2, . . . , T, (24)

n∑
j=1

(rjxj) ≥ ρM0 + ατ, α ∈ [0, 1], (25)

n∑
j=1

xj = M0 = 1, (26)

1

T

T∑
t=1

(yt) + α(Z1 − Z0) ≤ Z1, (27)

yt ≥ 0, t = 1, . . . , T. (28)

The risk value Z corresponds to the optimized α value and is in the interval of Z1 ≤ Z ≤ Z0.
However, the model does not provide the risk value directly. It should be calculated by using
the graph in Fig. 1(b).

3. Costs in portfolio optimization

The use of fuzzy models by themselves does not sufficiently ensure the convergence of the
optimization results to reality. To explain, investors seek to create portfolios that provide mini-
mum risk or maximum satisfaction by increasing their net incomes. An optimization model that
does not include costs results in the generation of non-effective portfolios [22], and optimization
results and portfolio performance are significantly affected [1].

The most frequently encountered portfolio costs are transaction, commission, management,
performance (liquidity) costs and taxes. Transaction costs may be constant (fixed) or propor-
tional [10, 21]. Fixed transaction costs increase with the diversification as the fixed costs vary
with the number of assets in the portfolio. Hence the number of assets in the portfolio might
decrease with the optimization [22]. On the contrary, proportional transaction costs depend on
the investment amount. Contrary to fixed costs, proportional transaction costs encourage the
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variety of tools included in the portfolio. Moreover, their shares decrease when the investment
amount increases [15, 22, 31].

In the literature, it has been mentioned that transaction costs are significant for portfolio
optimization [7], and such costs are added indirectly only by subtracting the cost from portfolio
return due to the calculation load and the complex structure of the model. As was stated by [22],
transaction costs have been included in the model as a constraint only in several studies, such
as [35, 37]. Whereas in practice, transaction costs may become meaningless concerning large
investment amounts. Therefore, there is no drawback in neglecting these costs [14]. However,
transaction costs are significant for cases when portfolio return is low and also for investors
who make frequent purchases/sales [15]. Moreover, in recent studies like [25], the importance
of transaction cost and investment amount on the portfolio has been comparatively examined
by using different methodologies like robust PO and Bayesian PO. According to the authors,
investment amount and cost interacts with each other. For example, small trades do not impact
the market price, and the transaction cost is assumed to be proportional to the amount traded.
Larger trades impact the market price, and it is assumed that it results in quadratic transaction
cost [24, 25].

The addition of real constraints to such mathematical models makes the already complex
model even more complicated. The cost function may be linear, piecewise linear, constant,
piecewise constant linear or concave/convex nonlinear. For example, in the case of proportional
transaction costs, the linearity of the model may be disrupted because this kinds of cost struc-
tures may require the transformation of the linear model into a piecewise linear structure [9]
and the addition of integer or (0-1) binary variables [22]. As a result, the model becomes a
mixed-integer linear programming model. It is stated that the optimization is much easier when
the transaction costs are linear or constant in comparison with other cases [21, 31]. According
to Konno and Yamamoto [15], the most frequently encountered transaction cost functions are
piecewise linear concave and piecewise constant linear. Therefore, the inclusion of this kind of
cost variables requires the use of binary variables in the optimization.

According to Mansini et al. [22], there are two types of models in portfolio optimization
problems that have real futures, namely relative and absolute. If a model has decision variables
in shares or percentages, the model is called the relative model and the variables relative.
However, a model may have real futures in absolute values as well. In this case, the model is
called the absolute model and the variables absolute.

In this paper, the fixed cost was not considered because no information could be obtained
from the state bank. In such a case, a hypothetic constraint could have been set. However,
we prefer not to set it because all the data and cost information used in the models were real.
Nevertheless, two equations Eq. (35, 36) were proposed for the inclusion of the fixed cost later
in the appendix in order to partially overcome this limitation of the study. The models in
this paper become mixed-integer linear programming models with the inclusion of the proposed
equations, Eq. (35, 36).

For the inclusion of the tax (BITT – Banking and Insurance Transactions Tax) and trans-
action cost, variables of which values were real futures were generated, but it was impossible
to include them into M4 and M6 as they were relative models. Hence, the return constraint
Eq. (15) was transformed into an absolute structure by multiplying the right and left-hand
sides of it by the investment amount MR. After that, the tax CTX and the transaction cost
CTR were subtracted from the left-hand side of it. However, CTR is a function depending on
the investment amount, and can be determined before the optimization. Hence, it should be
transferred to the right side of the constraint. On the other hand, CTX is a function that
depends on the portfolio return so the investment amount and the share of each asset. Since
the shares are indefinite, it is unknown. Hence, it should be on the left side. Finally, new form
of Eq. (15) is as below:
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n∑
j=1

(rjxj) ≥ ρM0 + ατ, α ∈ [0, 1] (29)

MR

n∑
j=1

(rjxj)− CTR − CTX ≥MR(ρM0 + ατ)

MR

n∑
j=1

(rjxj)− CTX ≥MR(ρM0 + ατ) + CTR, α ∈ [0, 1] (30)

As stated previously, the investment amount directly affects the portfolio structure [15,
22, 31]. The number of tools increases, and shares decrease especially when the investment
amount increases. Even though the investment amount was not considered as a variable to
be optimized in this paper, optimizations were done for different given investment amounts to
investigate its effects on the portfolios. Then a set of constraints Eq. (37-43) was proposed
for the purpose of optimizing the investment amount in the appendix. The models in this
paper become mixed-integer quadratic programming models with the inclusion of the proposed
equations, Eq. (37-43).

4. Data

Turkey was among the countries where uncertainty was more considerable than in developed
countries. Some political and social events in Turkey had created anxiety in foreign investors
and IMF [3, 5] in 2013 and 2014. It was also stated in an article by CNN titled ”Is instability
the ’new normal’ for Turkey?” [4]. However, according to some other sources, Turkey was
also on a positive trajectory [36] during that time. Therefore, it may have been difficult for
investors to make decisions in such fuzzy environments where social and political uncertainties
abounded together with different interpretations. Hence, Turkey was considered to be a well-
suited country for examining the effects of the uncertain environment, investment amount and
costs on the optimum portfolio.

The effects of the environment were investigated by dividing the investment period into
sub-periods of which starting and ending dates were either social, political or financial events.
Firstly, critical events in 2013 and 2014 were determined. Then the whole period in question
was divided into five sub-periods. Afterward, continuity of the 30 assets between periods was
checked. It was determined that the number of assets in each period differs because some assets
were delisted and trading for some others was suspended temporarily between the sub-periods.
For example, 32 assets in the first and second periods, 33 assets in the third period, and 31
assets in the fourth and fifth periods were continuous. Then, daily data for the stocks and
closing prices for gold, US Dollar and Euro parities was collected from BIST. Before the appli-
cation, raw data were standardized and graphically visualized, and major breaking points were
determined for examining if heuristically determined periods fit the reality. As seen in Figure
2, the whole period had five sub-periods of which starting and ending dates complied with the
abovementioned dates. The first period (01.01.2013 – 27.05.2013) was the time interval before
the Gezi Park protests and FED declaration regarding the reduction of monetary expansion
(1st FED declaration). Most probably, as a result of these events, international funds exited
Turkey by consuming foreign currency in the country during that period. The second period
(28.05.2013 – 21.08.2013) started with Gezi Park protests and ended with the 2nd FED dec-
laration in which no statement was made regarding when the expansion would be completed.
In experts’ opinion, the Turkish market had been affected negatively by this uncertainty. The
third period (22.08.2013 – 17.09.2013) was the time interval between the 2nd FED declaration
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Figure 2: Graphical visualization of the standardized data

Figure 3: (a) Transaction cost and (b) tax function

and the 3rd FED declaration stating that monetary expansion would not be reduced. It was put
forth that the markets experienced relief with the declaration. The fourth period (18.09.2013
– 16.12.2013) started with the 3rd FED declaration and ended with the December 17 investi-
gations, which was a political crisis in Turkey. The last period (17.12.2013 – 30.03.2014) was
the time interval started with the investigation in Turkey to the local elections. In the end, the
cost data were obtained from a state bank in Turkey.

5. Application

Transaction costs are calculated over the capital invested, whereas BITT is reflected in the
investor over the acquired return. The cost functions should be determined based on the data
obtained from a state bank in Turkey to integrate transaction and tax costs to the Verdegay
and Werners models. BITT rate is 0.05 for any amount of return. Hence its function is
constant. On the contrary, the transaction cost rate differs for different investment amounts
in Turkish Lira (TL): 0.0015 for (0 < MR ≤ 50, 000), 0.0013 for (50, 000 < MR ≤ 100, 000),
0.0011 for (100, 000 < MR ≤ 250, 000), 0.0009 for (250, 000 < MR ≤ 500, 000), 0.0007 for
(500, 000 < MR ≤ 1, 000, 000) and 0.0005 for (100, 000, 000 < MR). Therefore, it is variant,
and its function is piecewise constant linear. After obtaining the rate data, their functions
have been determined, as in Figure 3(a) via the line equation with slope and one point where
f(bn) represents the function of each line segment, and n represents the number of divides.
For example, there are seven divides and six line segments of which functions are f(b1) =
0.0015MR, f(b2) = 0.0013MR, f(b3) = 0.0011MR, f(b4) = 0.0009MR, f(b5) = 0.0007MR and
f(b6) = 0.0005MR respectively.

Afterward, an investment amount on each line segment was determined arbitrarily, and
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their transaction costs were calculated as follows: C(TR(40,000)) = 60TL,C(TR(90,000)) = 127TL,
C(TR(200,000)) = 250TL, C(TR(400,000)) = 440TL, C(TR(900,000)) = 810TL, C(TR(2,000,000)) =
1380TL. As an example, transaction cost for 900.000 TL was C(TR(900,000)) = 530+(0.007(900, 000−
500, 000)) = 810TL.

As was explained previously, BITT is calculated over the portfolio return, and it cannot be
determined at this point since it is not for sure how much return of the portfolio will be. Thus,
symbolic data were used for BITT cost and Figure 3(b) was obtained. The goal here was to
determine the tax function in TL.

As can be seen from Figure 3(b), the cost function of the tax has a linearly increasing
trend hence it can be represented with CTX = 0.05MR

∑n
j=4(rjxj) . The subscript j, which

represents the asset number, starts from four due to a particular instance of the data used in
the study. As was stated previously, the portfolio pool not only contains the stocks in BIST30
but also gold, Euro and US Dollar, and these assets are the first three instruments for which
tax costs have not been reflected upon. Hence, the first value of the j was assigned four, and it
became necessary to rearrange the Eq. (30) as follows.

MR

n=3∑
j=1

(rjxj) + 0.95MR

n∑
j=4

(rjxj) ≥MR(ρM0 + ατ) + CTR, α ∈ [0, 1] (31)

6. Results

Firstly, the optimization was done with M4 and M6 for each investment period and each in-
vestment amount. Then Eq. (15) was replaced by the Eq. (31) in M4 and M6 in order to
obtain the extended M4 (e-M4) and extended M6 (e-M6), and the optimization repeated with
the extended models. Finally, MVM of Markowitz was used for each expected return obtained
from the extended models in order to interpret the results comparatively.

Rate of expected return, ρ for each period were just above zero, 0.000924833, -0.003413221,
0.004737533, 0.000578897 and -0.000414058 respectively. That means there were several assets
of which average rate of return, rj were negative in each period. As a result, there were only
14, 4, 6, 9 and 8 assets in the optimized portfolios for each investment period. Satisfaction for
each period was calculated respectively as 0, 0.2087, 0, 0.0137 and 0.2602 with M4. The risk
levels corresponding to the satisfactions were determined respectively as 0.0021, 0.0335, 0.0004,
0.0023 and 0.0390.

Z1 risk values were determined as infeasible at α = 1 level in the second and fifth period
in M6. Thus, optimization could not be carried out for these periods with that model. The
satisfaction levels obtained for the first, third and fourth periods were 0.6660, 0.6174 and 0.6136,
and there were 9, 2 and 7 assets in their corresponding portfolios. Since M6 cannot provide
satisfaction level and risk simultaneously, risk values of that periods were determined by using
the graph in Figure 1(b). They were 0.0072, 0.0019 and 0.0092.

When all investment periods are examined based on the results mentioned above, M6 pro-
vides a higher satisfaction level in comparison with M4. It gives this by slightly increasing the
risk. Another finding is that the portfolios generated via M4 are more extensive in comparison
with those created via M6. It means that M4 that adopts the Verdegay approach provides a
more varied portfolio. This variety may be because the objective function minimizes the risk
by increasing the number of assets. Another finding is that M6 has prevented the decision-
makers from investing during the second and fifth periods. These periods are the time when
the Gezi Park events and December 17 Investigations drifted the country towards uncertainty.
The average returns of these periods are negative as expected.

When optimization was carried out via e-M4 and e-M6, all results of e-M6 were infeasible.
In other words, e-M6 prevented decision-makers from making investments. On the other hand,
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e-M4 provided considerable increases in satisfaction level by making slight increases in the
risk as seen in Table 1. It can also be observed that the portfolios obtained in this model were
smaller in comparison with those obtained via M4, that the tools included in the portfolio varied
about type and proportion, and that the portfolio structure changed with different investment
amounts. Another observation is that the portfolios and optimization results for the second
and the fifth period were the same for both M4 and e-M4. The reason for this is that the
average return of the assets in this period is negative. Also, portfolios comprised of only a
single instrument were generated for some investment amounts during the first, fourth and fifth
periods.

Table 1: Results of the optimization carried out via M4, e-M4 and MVM (*Costs are reflected
after the optimization by deducting them from the portfolio return.)

As explained previously, e-M4 does consider transaction cost and tax for different investment
amounts, whereas M4 does not. Expectedly, e-M4 provided higher PCR values, while the
reflection of the transaction cost and tax upon the optimized M4 models caused lower or negative
PCR, as seen in Table 1.

Finally, MVM of Markowitz was used for the optimization. The optimization was done
for only return values of the portfolios generated with e-M4 since the optimization results of
e-M6 were all infeasible. Portfolios obtained with MVM of Markowitz were more extensive in
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Figure 4: Efficient frontier

comparison with those obtained via e-M4 as in Table 1. This result might be a pitfall if the
fixed cost is considered since it incurs for each asset in the portfolio. Hence if the number of
assets in the portfolio increases, also cost increases and profit decreases.

When transaction cost and tax were reflected upon the portfolios optimized via MVM, it
was clear that such an application provided almost the same PCR values, except in the first
period. In that period, PCR values of e-M4 became higher with the increase of the investment
amount. In other words, it is more favorable to invest in a portfolio of which PCR value is
higher for the same variance (risk) and with the same investment amount.

The first period is the time beginning of which there is not any particular event that may af-
fect the environment. The range of its efficient frontier is the narrowest starts from 0,000008 for
the average expected return (0,000924833) and to 0,000511 for the maximum return (0,003844)
as in Figure 4. It can be assumed that the first period is more stable compared to the other
periods. Therefore, it can be stated that e-M4 may provide better results compared to the
MVM of Markowitz in a stable environment.

7. Conclusion

This paper aims to examine the effects of the environment, investment amounts, and costs on
the portfolios under fuzziness. Verdegay and Werners FLP approaches that were applied to
Konno-Yamazaki PO model were used in this study. The constant linear structure of the tax
cost with a piecewise constant linear structure of the transaction costs was integrated into these
models as linear. The optimization was carried out with the models based on Verdegay and
Werners FLP approaches, with their extended versions and with MVM of Markowitz.

When the optimized portfolios are considered in general, M4 can be suggested as a decision-
making tool for risk-averse investors. Indeed, the objective function of this model is minimizing
the risk. On the contrary, M6 can be suggested for risk taker-lover-investors. As a result, the
Werners approach provides portfolios that include less number of assets by increasing the risk,
whereas the Verdegay approach provides more extensive portfolios regarding the number of
assets by distributing the risk.

The extended models may provide more realistic results compared to M4 and M6. To
explain, even though M6 provides portfolios with a higher satisfaction/return by slightly in-
creasing the risk, it can prevent investors from investing when the risk is high. Moreover,
portfolios of the same period for different investment amounts differ from each other regarding
the type, number and share of the assets. In other words, the investment amount directly affects
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portfolio variance and PCR. The costs also directly affect portfolios. The portfolios obtained
via the extended models were utterly different from the portfolios acquired via M4 and M6
regarding the type, number and share of assets in the portfolio as well as the satisfaction level
and the risks taken. On the other hand, when the extended models are compared with MVM
of Markowitz, unfortunately, the results do not differ in an unstable environment but a stable
environment. e-M4 provided better results compared to the MVM of PO results for the first
investment period. On the other hand, e-M6 prevented investors from making any investment
in an investment period. Therefore, it could not be compared with MVM of Markowitz. Also,
it was clear that different portfolios for different investment amounts were obtained in the same
period. Unfortunately, any particular generalization about the effect of the investment amount
on the portfolio could not be made.

The main contributions of this paper are determining the effects of the investment amount,
tax and transaction cost on portfolios, investigating the relationship between optimization mod-
els and investor types, considering various social, political and financial events, and examining
if fuzziness can be a practical approach in PO in an unstable environment. Furthermore, we
compare the optimization models with and without tax and transaction costs for different in-
vestment amounts. On the other hand, there are also some limitations. For example, lower and
upper investment amounts, holding period, transactions with credit, short selling operations,
and sell-out costs can be considered. The time intervals can be extended; the pool of assets may
include risk-free assets or assets traded at foreign stock exchanges. Also, since none of the fuzzy
models in this paper could provide better results than the MVM of Markowitz in an unstable
environment (but produced better results in a stable environment), robust optimization can be
considered where social, political or financial instability and so uncertainty is high by adopting
different uncertainty set for social, political and financial indicators.

Appendix

Mean-Variance Model of Markowitz. Based on the Markowitz’s approach to portfolio selection,
an investor may have two objectives which are maximizing the portfolio return with mx = ERx
where mx denotes the average return of and ERx denotes the random return of the portfolio
x, and minimizing the portfolio risk which is measured by σ2

x = V arRx or σx where σx denotes
the standard deviation of the random variable Rx. The more “variable” the random return Rx
on the portfolio x, the higher the variance of Rx. If the return Rx is certain then the variance is
equal to zero, and so such a portfolio becomes risk-free. Therefore, an investor puts weights on
these two conflicting objectives and wants to maximize τmx−σ2

x where τ denotes the risk toler-
ance [6]. For more detailed information regarding the MVM of Markowitz, please refer to [6, 23].

Model 7:

max
x∈RN

{
τ

N∑
i=1

ximi −
N∑
i=1

N∑
j=1

σijXiXj

}
(32)

subject to

N∑
i=1

Xi = 1 (33)

Xi ≥ 0 for i = 1, . . . , N

τ > 0 (34)

Fixed cost. It is also one of the most common cost types incurs, especially when a broker
manages a portfolio for an investor. For integrating the fixed cost to the model, a binary
variable ωj can be used as below:
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MR

n∑
j=1

(rjxj)− CTX −
n∑
j=1

fjωj ≥MR(ρM0 + ατ) + CTR, α ∈ [0, 1], ω ∈ 0, 1 (35)

xj ≤ ωj (36)

ωj = 0 or 1

where fj denotes the fixed cost in terms of currency per asset in the optimum portfolio and
ωj is a binary variable. If the share of the jth asset is greater than zero, Eq. (36) forces ωj = 1.
On the contrary, if the share of the jth asset is zero, the desired value of ωj becomes zero, and
Eq. (36) does not guarantee it. In this case, it can be either zero or one. However, it does
not prevent obtaining an optimum portfolio. To explain, assume an ideal solution, which is
xm = 0, ωm = 0, and left-hand side of Eq. (35) has a real value R, which is higher than the
right-hand side of the Eq. (35). On the other hand, the other solution is xm = 0, ωm = 1, and
the left-hand side of Eq. (35) also has a real value G, which is also higher than the right-hand
side of the Eq. (35). When these two values are compared, it is clear that G < R because the
higher fixed cost is subtracted from the return value on the left-hand side of the Eq. (35) due
to ωm = 1. It means that even if ωm = 1 when xm = 1, the solution is still feasible for the
same objective function.

Investment amount variable. If the investment amount is considered as a decision vari-
able, the optimization model is transformed into a structure that requires the use of quadratic
programming approach since Eq. (31) of the extended models become a quadratic constraint.
The concave or convex structure of the cost functions should be examined first to determine
the optimum investment amount. Then the equations of the functions should be generated.
Finally, they are integrated into e-M4 and e-M6. However, the inclusion of the cost functions
requires (0-1) type binary decision variables, and the model becomes a Mixed Integer Linear
Programming model. For example, one of the most common transaction cost function type is
a piecewise linear concave function. In this case, Eq. (37-43) may be considered additionally.

F (MR) = z1f(b1) + z2f(b2) + · · ·+ znf(bn) (37)

bn ≤MR ≤ bn+1 (38)

MR = z1b1 + z2b2 + · · ·+ znbn (39)

z1 ≤ l1, z2 ≤ l1 + l2, · · · zn−1 ≤ ln−2 + ln−1, zn ≤ ln−1 (40)

l1 + l2 + · · ·+ ln−1 = 1, l ∈ {0, 1} (41)

z1 + z2 + · · ·+ zn = 1 (42)

zn ≥ 0, bn ≥ 0 (43)

where MR represents the real investment amount. n represents the number of divides in costs.
The starting and ending points of all line segments are symbolized by bn and it is known as
the breaking point. Each line segment has been represented by ln−1. This is a variable that
ensures that the investment amount is located on the related line and does not take any value
other than 0, 1 which adds the related transaction cost in the model. zn corresponds to the line
segment interval on which MR, the investment amount is located. It has a value which yields
the investment amount MR when the start and endpoint of the line segment are multiplied by
bn and summed up. Thus, zn is a point on the line segment and it is the proportional location
of the point on the line. In light of this information, only a single ln−1 variable can have a
value greater than zero at any instant, and this value can only be 1. Only two zn variables
can take on a value that is greater than zero due to the expressions z1 ≤ l1, z2 ≤ l1 + l2, . . . ,
zn−1 ≤ ln−2 + ln−1, zn ≤ ln−1. Thus, the investment amount MR is expressed in terms of zn
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and bn. This structure may help to determine an optimum investment amount. To check if this
formulation works please go back to Figure 3(a). Each line segment in it can be represented by
ln−1. The first line segment is defined by l1 and l2 is defined as the second line segment, etc. For
the optimization problem in this paper, there are 6 line segments or investment intervals. As an
example, l1 = 1 indicates that the investment amount MR is between the values of (0–50, 000)
TL and that all other ln−1 are zero because l1 + l2 + · · ·+ ln−1 = 1, l ∈ {0, 1}. After making all
necessary calculations, the additional equations are finalized as follows.

f(bn) = {0, 75, 140, 305, 530, 880, and 1380}
F (MR) = z10 + z275 + z3140+z4305 + z5530 + z6880 + z71380

MR = z10 + z250000 + z3100000+z4250000 + z5500000 + z6106 + z72e6

z1 ≤ l1, z2 ≤ l1 + l2, z3 ≤ l2 + l3, z4 ≤ l3 + l4, z5 ≤ l4 + l5, z6 ≤ l5 + l6, z7 ≤ l6
l1 + l2 + · · ·+ l6 = 1, l ∈ {0, 1}
z1 + z2 + · · ·+ z7 = 1

zn ≥ 0, bn ≥ 0n = 1, . . . , 7

Let us assume MR = 90, 000 TL as the optimum investment amount. This amount is located
in the interval of 50000 ≤ MR ≤ 100000 and is located on the line segment l2. Thus, l2 = 1
and all other ln−1 = 0 and the variable l2 is included only in the z2 ≤ l1 + l2, z3 ≤ l2 + l3
inequalities. Therefore, z2 6= 0 and z3 6= 0. The start and endpoints of this line segment
are (b1 − b2) = (50, 000–100, 000). In the light of these findings, Eq. (39) and Eq. (42) are
rearranged and the values of z2 and z3 are determined as below.

50000z2 + 100000z3 = 90000

z2 + z3 = 1

⇒ z2 =
1

5
and z3 =

4

5

Then these values are placed in Eq. (37) and the transaction cost for 90,000 TL is calculated
as F (90, 000) = 75z2 + 140z3 = 127 TL.

M4, M6, e-M4 and e-M6 become mixed-integer linear programming models after the inclu-
sion of the fixed cost Eq. (35, 36), and investment amount Eq. (37-43).
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