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Abstract. This paper is concerned with the statistical modeling of the latent dependence and co-
movement structures of multivariate financial data using a new approach based on mixed factorial hid-
den Markov models, and their applications in Value-at-Risk (VaR) valuation. This approach combines
hidden Markov Models (HMM) with mixed latent factor models. The HMM generates a piece-wise con-
stant state evolution process and the observations are produced from the state vectors by a mixture of
factor analyzers observation process. This new switching specification provides an alternative, compact,
model to handle intra-frame correlation and unobserved heterogeneity in financial data. For maximum
likelihood estimation we have proposed an iterative approach based on the Expectation-Maximisation
(EM) algorithm. Using a set of historical data, from the Tunisian foreign exchange market, the model
parameters are estimated. Then, the fitted model combined with a modified Monte-Carlo simulation
algorithm was used to predict the VaR of the Tunisian public debt portfolio. Through a backtesting
procedure, we found that this new specification exhibits a good fit to the data, improves the accuracy
of VaR predictions and can avoid serious violations when a financial crisis occurs.
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1. Introduction

The Value-at-Risk (VaR) is one of the main risk indicators for management of financial portfolios
(see [5]). It is defined as the money-loss in a portfolio that is expected to occur over a pre-
determined horizon and with a pre-determined degree of confidence. More precisely, it is the
threshold above which a loss over a chosen time horizon occurs with at most a given level of
confidence.

Calculation of portfolio VaR is often based on some assumptions, such as returns follow a
conditional normal distribution and a diffusion process. Vast academic literatures indicate that
the unconditional return distribution of financial assets is non-normal and tends to have fat
tails and high peaks. Besides, the returns are often characterized by a number of stylized facts,
and the risk profile of an asset does not remain constant overtime. A variety of systematic and
unsystematic events may change financial risk of the asset significantly. In particular, when
financial markets are subjected to a major regime shift, many volatilities and correlations can
be expected to shift as well, perhaps substantially. These shifts in risk are not predictable;
they should be regarded as random events. Also, the effect of these shifts should be taken
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into account by risk managers in the assessment of market risk and capital allocation and by
regulators in the definition of capital requirements.

The purpose of this paper is to resolve the puzzle by considering a new multivariate regime
switching approach for portfolio VaR estimation. This approach combines hidden Markov
Models (HMM) with mixed latent factor models, MFA (see [8]). Thus, a natural generalization
of the standard MFA to a multi-state model is achieved by allowing for model transitions that
are governed by a hidden Markov chain on a set of possible models that describe the different
states of volatility.

This paper is organized as follows. In the next section, the proposed model is presented,
followed by a description of a maximum likelihood estimation procedure, based on the EM algo-
rithm. Section 3 develops a modified Monte-Carlo simulation algorithm for calculating portfolio
VaR within a mixed factorial HMM framework, which constitutes the major contribution of
this paper. To see the advantage of this method, we compare in section 4 our results with VaR
results obtained from other benchmark methods. In this work the assessment of the exchange
rate risk, associated with the Tunisian public debt portfolio, through the VaR methodology is
considered as the basis for an application to our model. Section 5 concludes this article.

2. The mixed factorial hidden Markov model

It is well known that the return series of different assets are correlated with each other, i.e. the
assets follow common influences on their returns. This can be used to reduce the number of
parameters to be estimated. In the financial literature, various forms of factor models such as
the CAPM and the APT are often used. In general, factor models postulate that the return of
an asset is composed as the sum of an expected and an unexpected part. The unexpected part
of the return is assumed to consist of a systematic portion which cannot be diversified and an
unsystematic portion which is specific to the single asset.

Financial theory states that there are common influences such as macroeconomic data which
drive the returns of different assets. These are known factors. The systematic unexpected part
of the return is assumed to follow a factor structure. Furthermore, financial theory also states
that the assumption of normal probability distribution belongs to the biggest imperfections of
estimating VaR. In point of fact, the returns of financial time series are rather distributed lep-
tokurtic than normally. Moreover, the empirical distributions are often skewed. In these cases,
the assumption of normal distribution results in over/or underestimation of VaR especially
when the quantiles are very high/low. Therefore it is necessary to put emphasis on respecting
the leptokurtic and skewed return distribution. To take into account all these assumptions and
the possibility of regime switching in stock market returns, we propose a model that combines:

1. an HMM structure in order to take into account different states of the world that can
affect the evolution of the time series, and

2. a mixture of probabilistic factor analyzers with constant regime parameters to take into
account the unobserved heterogeneity and the assumptions of leptokurtic and skewed
return distributions.

The use of this new specification solves various problems related to the changes of the
internal and unobservable structure of financial data. These are problems of the type:

(i) Can we distinguish different heterogeneous regimes in stock market returns?

(ii) How do the regimes differ?

(iii) How frequent are regime switches and when do they occur?
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(iv) What is the impact of a particular regime on the common and specific variances?

(v) Are regime switches predictable?

2.1. Basic model and factor structure

Our proposed model is a dynamic state space generalization of a multiple component factor
analysis system. The k -dimensional state vectors are generated by a standard diagonal co-
variance Gaussian mixture HMM. The q-dimensional observation vectors are generated by a
multiple noise component factor analysis observation process. A generative model for our mixed
factorial HMM can be described as follows:

yt = Astft + εst (1)

where ∀ t = 1, ..., T and ∀ i, j = 1, ...,m

St ∼ P (St = j|St−1 = i) (2)

is an homogenous hidden Markov chain indicating the state or the regime at the date t. The
common latent factor vector is given by

ft = wst (3)

where

wj ∼
∑
n

c
(f)
jn N

(
θ
(f)
jn ,Σ

(f)
jn

)
(4)

and the vector of specific factors is as follow

εj ∼
∑
m

c
(y)
jmN

(
θ
(y)
jm ,Σ

(y)
jm

)
(5)

The HMM state transition probabilities from state i to state j are represented by pij and the

state and observation space mixture distributions are described by the mixture weights c
(f)
jn ,

c
(y)
jm; the mean vectors θ

(f)
jn , θ

(y)
jm and the diagonal variance-covariance matrices Σ

(f)
jn and Σ

(y)
jm.

2.2. Likelihood Calculation

An important aspect of any generative model is the complexity of the likelihood calculations.
The generative model in equations (1-5) can be expressed by the following two Gaussian dis-
tributions

p(ft|St = j, w
(f)
t = n) = N

(
θ
(f)
jn ,Σ

(f)
jn

)
(6)

p(yt|ft, St = j, w
(y)
t = m) = N

(
Ajft + θ

(y)
jm,Σ

(y)
jm

)
(7)

The likelihood of an observation yt given the state St = j, state space component w
(f)
t = n and

observation noise component w
(y)
t = m can be obtained by integrating the state vector ft out

of the product of the above Gaussians. The resulting likelihood is also a Gaussian and can be
written as
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bjmn(yt) = p(yt|St = j, w
(y)
t = m,w

(f)
t = n) = N (θjmn,Σjmn) (8)

where

θjmn = Ajθ
(f)
jn + θ

(y)
jm (9)

and

Σjmn = AjΣ
(f)
jn A

′
j + Σ

(y)
jm (10)

Hence, the conditional observation density of state j factorial HMM can be viewed as an
M (y)M (f) component full covariance matrix GMM with mean vectors given by equation 9 and
covariance matrices given by equation 10.

2.3. Parameter Optimization

The maximum likelihood criterion may be used to optimize the parameters of the mixed factorial
HMM. In common with standard HMM training described in [11] the EM algorithm is used.‡

The auxiliary function for our proposed model can be written as

Q(Θ,Θ[e]) =
∑
∀S

∫
p(S|Y,Θ[e])p(F|Y, S,Θ[e]) log p(Y,F , S|Θ)dF (11)

where all the possible discrete state and continuous state sequences of length T are included
in the sum and the integral. A sequence of observation vectors is denoted by Y = {y1, ..., yT },
S = {S1, ..., ST } is a sequence of the HMM states, and F = {f1, ..., fT } is a sequence of latent
factors. The set of current model parameters is represented by Θ[e].

Sufficient statistics for the first term, p(S|Y,Θ[e]), in the auxiliary function in equation
11 can be obtained using the standard forward-backward algorithm described in [11] with
likelihoods given by equation 10. For the state transition probability optimization, two sets of
sufficient statistics are needed, the posterior probabilities of being in state j at time t, γj(t) =
p(St = j|Y,Θ[e]), and being in state i at time t− 1 and in state j at time t, ξij(t) = p(St−1 =
i, St = j|Y,Θ[e]). For the state conditional observation density parameter optimization, the

component posteriors, γjmn(t) = p(St = j, w
(y)
t = m,w

(f)
t = n|Y,Θ[e]), have to be estimated.

These can be obtained within the forward-backward algorithm as follows:

γjmn(t) =
1

p(Y|Θ[e])

Ns∑
i=1

pijαi(t− 1)c
(y)
jmc

(f)
jn bjmn(yt)βj(t) (12)

where Ns is the number of HMM states in the model, αi(t − 1) is the standard forward and
βj(t) is the standard backward variable defined for HMMs in [11].

The second term, p(F|Y, S,Θ[e]), in the auxiliary function in equation 11 is the distribution
of the vector of latent factors given the observation sequence and the HMM state sequence.
Only the first and second-order statistics are required since the distributions are conditionally
Gaussian given the state and the mixture components. Using the conditional independence
assumptions made in the model, the posterior can be expressed as

p(ft|yt, St = j, w
(y)
t = m,w

(f)
t = n) =

p(yt, ft|St = j, w
(y)
t = m,w

(f)
t = n)

p(yt|St = j, w
(y)
t = m,w

(f)
t = n)

(13)

‡For further details about the EM algorithm, see [2] or [7].
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which using equations 6, 7 and 8 simplifies to a Gaussian distribution with mean vector, f̂jmnt,

and correlation matrix, R̂jmnt, defined by

f̂jmnt = θ
(f)
jn +Kjmn

(
yt −Ajθ

(f)
jn − θ

(y)
jm

)
(14)

R̂jmnt = Σ
(f)
jn −KjmnAjΣ

(f)
jn + f̂jmntf̂

′
jmnt (15)

where Kjmn = Σ
(f)
jn A

′
j

(
AjΣ

(f)
jn A

′
j + Σ

(y)
jm

)−1
. Given the two sets of sufficient statistics above,

the model parameters can be optimized by solving a standard maximization problem. The
parameter update formulae for the underlying HMM parameters in mixed factorial HMMs are
very similar to those for the standard HMM (see [10]) except the above state vector distribution
statistics replace the observation sample moments. Omitting the state transition probabilities,
the state space parameter update formulae can be written as

ĉ
(f)
jn =

T∑
t=1

M(y)∑
m=1

γjmn(t)

T∑
t=1

γj(t)

(16)

θ̂
(f)
jn =

T∑
t=1

M(y)∑
m=1

γjmn(t)f̂jmnt

T∑
t=1

M(y)∑
m=1

γjmn(t)

(17)

Σ̂
(f)
jn = diag


T∑

t=1

M(y)∑
m=1

γjmn(t)R̂jmnt

T∑
t=1

M(y)∑
m=1

γjmn(t)

− θ̂(f)jn θ̂
(f)′
jn

 (18)

where diag(.) sets all the off-diagonal elements of the matrix argument to zeros. The cross
terms including the new state space mean vectors and the first-order accumulates have been
simplified in equation 18. This can only be done if the mean vectors are updated during the
same iteration, and the covariance matrices and the mean vectors are tied on the same level.

The new observation matrix, Âj , has to be optimized row by row as in [4]. The l -th row
vector âjl of the new observation matrix can be written as

âjl = k′jlG
−1
jl (19)

where the k by k matrix Gjl and the k -dimensional column vector kjl are defined as follows

Gjl =

M(y)∑
m=1

1

σ
(y)2
jml

T∑
t=1

M(f)∑
n=1

γjmn(t)R̂jmnt (20)

kjl =

M(y)∑
m=1

1

σ
(y)2
jml

T∑
t=1

M(f)∑
n=1

γjmn(t)
(
ytl − θ(y)jml

)
f̂jmnt (21)

where σ
(y)2
jml is the l -th diagonal element of the observation covariance matrix Σ

(y)
jm, ytl and

θ
(y)
jml are the l -th elements of the current observation and the observation noise mean vectors,

respectively.
Given the new observation matrix, the observation noise parameters can be optimized using

the following formulae
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ĉ
(y)
jm =

T∑
t=1

M(f)∑
n=1

γjmn(t)

T∑
t=1

γj(t)

(22)

θ̂
(y)
jm =

T∑
t=1

M(f)∑
n=1

γjmn(t)
(
yt − Âj f̂jmnt

)
T∑

t=1

M(f)∑
n=1

γjmn(t)

(23)

Σ̂
(y)
jm =

T∑
t=1

M(f)∑
n=1

γjmn(t)diag
{
yty
′
t −∆jmnt −∆′jmnt + Ωjmnt

}
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t=1
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n=1

γjmn(t)

(24)

where

∆jmnt =
[
Âj θ̂

(y)
jm

] [
f̂jmnty

′
t

y′t

]
and

Ωjmnt =
[
Âj θ̂

(y)
jm

] [ R̂jmnt f̂jmnt

f̂ ′jmnt 1

][
Â′j
θ̂
(y)′
jm

]

3. Value-at-Risk Computation

To estimate the mixed factorial HMM VaR, we will use a Monte-Carlo simulation approach.
This method is an accurate way to calculate the VaR measurement for all financial instruments
linear and nonlinear. Monte-Carlo estimates the VaR by simulating random scenarios based on
the predicted hidden states obtained from the mixed factorial HMM.

3.1. Making Predictions with mixed factorial HMM

In this paper, the prediction process is carried out together with the training at the same time.
In other words, at the end of each trading day, when the market return of that day is known to
the public, we include it in the training system to absorb the most updated information. This
is exactly what human analysts and professional traders do. The mixed factorial HMM is then
trained again with the newest time series and the parameters are updated.

When the training is done and parameters of the mixed factorial HMM are updated, the
optimal forecast of the next state St+1 (based on the information set available at time t), can
be obtained as follows:

Ŝt+1|t = arg max
j

p(St+1 = j|Y1:t; Θ) , 1 ≤ t ≤ n− 1

where
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p(St+1 = j|Y1:t; Θ) =

m∑
i=1

P (St+1 = j, St = i|Y1:t)

=

m∑
i=1

p(Y1:t, St = i)p(St+1 = j|St = i)

p(Y1:t)
=

m∑
i=1

αt(i)pij

m∑
i=1

αt(i)

In this paper, we use the hard competition. In hard competition, it is believed that only one
model is responsible for describing the observation at time t + 1. This is done by considering
only the model j with the highest predicted probability p(St+1 = j|Y1:t; Θ).

3.2. Monte-Carlo simulations

We now come to the core part of the problem: how to compute the VaR of a portfolio using
Monte Carlo simulation. The return of the portfolio at present time t will be denoted by Rp

t .
Let us assume that Rp

t depends on q risk factors (foreign exchange rates in our case), then a
Monte Carlo computation of the VaR would consist of the following steps:

1. Choose the confidence level 1− α to which the VaR refers.

2. Simulate the evolution of the mixed common latent risk factors ft from time t to time
t+1 by generating n-tuples of pseudo random numbers with appropriate joint distribution
that describe the behavior of the common risk factors in the optimal futur hidden state
Ŝt+1|t.

(a) Generate f̃t from the multivariate normal distribution N (0, Ik).

(b) Generate a random number U from the uniform distribution U(0, 1).

(c) Return

fst =

M(f)∑
n=1

(
µ̂
(f)
jn + Σ̂

∗(f)
jn · f̃t

)
I{n−1∑

l=1

ĉfjl≤U<
n∑

l=1

ĉfjl

}

where
0∑

l=1

ĉfjl = 0. I is the indicator function and Σ̂
∗(f)
jn a lower triangular matrix

obtained from the Cholesky decomposition of Σ̂
(f)
jn .

3. Simulate the evolution of the mixed specific risk factors εt from time t to time t + 1 by
generating n-tuples of pseudo random numbers with appropriate joint distribution that
describe the behavior of the specific risk factors in the optimal future hidden state Ŝt+1|t.

(a) Generate ε̃t from the multivariate normal distribution N (0, Iq).

(b) Generate another random number V from the uniform distribution U(0, 1).

(c) Return

εst =

M(y)∑
m=1

(
µ̂
(y)
jm + Σ̂

∗(y)
jm · ε̃t

)
I{m−1∑

o=1
ĉyjo≤V <

m∑
o=1

ĉyjo

}
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where
0∑

l=1

ĉyjl = 0 and Σ̂
∗(y)
jm is a lower triangular matrix obtained from the Cholesky

decomposition of Σ̂
(y)
jm.

Note that the number Ms of these n-tuples is a critical variable when using this procedure.
Obviously, the larger Ms is, the more accurate the VaR will be. However, the simulation
can be time-consuming, especially when conducted in a recursive or rolling forecasting
scheme (see [1]). Fantazzini (2008) suggests a choice of 100.000 simulations, while Bas-
tianin (2009) suggests only 5.000 and Lu et al., (2014) uses 10.000. For the accuracy of
VaR, We use 25.000 simulations, which represents a good compromise between accuracy
and efficiency.

4. Compute the portfolio returns, Rp
t+1,1, R

p
t+1,2, ..., R

p
t+1,Ms

, using the simulated vectors of
the common latent and specific risk factors at time t+ 1:

Rp
t+1,s = δ1y

s
1t+1 + δ2y

s
2t+1 + ...+ δqy

s
qt+1

where δ1, δ2, ..., δq are the weights of the q assets of our portfolio, whose returns are
simulated thanks to the following model:

yst+1 = Ajf
s
t + εst

5. Ignore the fraction of the α worst returns Rp
t+1,s. The minimum of the remaining returns

is the VaR of our portfolio, V aR(α, t, t+ 1).

As soon as the time evolves from t to t+ 1, we can backtest V aR(α, t, t+ 1) by comparing
it with the effective portfolio return at time t+ 1, Rp

t+1.

4. Numerical example

In this section, we report on an analysis of the correlation structure of three representative
Tunisian foreign exchange rates using our new mixed factorial HMM. Second, we calculate
risk measures of the portfolio from the well-fitted latent structure. Lastly, through the VaR
exceedance test based on the best fitted model and alternatives, we evaluate how well the
best-fitted model describes the dependence structure of the foreign exchange rate series.

4.1. Dataset description

All the competitor models presented in this work are applied to the Tunisian external public
debt portfolio composed by the main currencies, namely the American dollar, the European
euro, and the Japanese yen expressed in terms of the Tunisian dinar (TND/USD, TND/EUR
and TND/JPY). Our database contains 2250 daily exchange rates from January 08, 2011 to
December 30, 2018. This period is considered as a transitional stage from fixed to floating
exchange rate regime. This transition period has experienced a succession of severe crises and
was characterized by significant fluctuations and recurrent shocks in volatility, which peaked at
the end of September 2016.

Note here that our approach can be applied to model the switching latent dependence and
co-movement structures of the returns of any kind of risky financial assets, but in this work
we have especially chosen this dataset to test the ability of this new specification to accurately
reproduce observed patterns and to identify the major dimensions of change over the period
from 2011 to 2018, including the impact of the crisis and the changing of the foreign exchange
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rate regimes over time on the common and specific variances and the correlation structure of
the different series. The data were downloaded from the PACIFIC Exchange Rate Service§.
For evaluating our VaR-methodology and the other competing models, we transformed the
exchange rates into log-returns.

Using basic descriptive statistics, we tested the empirical skewness and kurtosis of the log-
returns against the values of normal distributions. We also performed the Shapiro-Wilk test of
normality. All the results are summarized in Table 1. There are also p-values of relevant test
in brackets.

Table 1: Basic descriptive statistics of the daily log-returns

Descriptive statistics USD/TND EUR/TND JPY/TND
Minimum -3.56% -1.93% -4.04%
Maximum 2.71% 2.04% 6.02%
Mean 0.0198% 0.0149% 0.0211%
Median 0.0071% 0.0159% 0.0090%
Standard deviation 0.51% 0.32% 0.78%
Skewness -0.2362 -0.0343 0.3341

(0.0000) (0.158) (0.0001)
Kurtosis 6.5780 5.3086 7.5014

(0.0000) (0.0000) (0.0000)
S-W test (0.0000) (0.158) (0.0001)

It follows from the results above that empirical distribution of the selected time series
are non-normal. All the log-returns are even skewed (JPY/TND positive, USD/TND and
EUR/TND negative); the kurtosis is in all cases higher than it corresponds to the normal
distribution.

The first panel of figure 1 shows the histograms of the daily log-return series. We also su-
perimpose, on each histogram, the normal density function using the same mean and the same
variance. The second panel of this figure shows the normal probability plots for the different
series, which displays departures from the Gaussian shape and can indicate their nature. From
this figure it appears clearly, that all the log-return series are not normally distributed during
this period. In particular, the normal probability plots show that the empirical probability
density functions at the tails of the distributions are heavier than those of the Gaussian distri-
bution: the left tail is above the straight line, and the right tail is below it. Therefore we can
conclude that it is really reasonable assuming a mixture of distributions in our application.

4.2. Identification of the best VaR model

Now, our objective is to identify the most appropriate forecasting methodology to predict the
VaR for the Tunisian public debt portfolio. In a first step, the latent correlation structure
is estimated from the proposed analytical form of the jointly multivariate distribution. To
compute the VaR, the data set was divided into two parts: the estimation period (In Sample)
which begins on 08/01/2011 until 05/01/2012, (250 observations) and the backtesting period
(Out-of-Sample), that begins on 06/01/2012 and ends on 30/12/2018 (2000 observations). To
estimate the VaR for a given confidence level, we used Monte Carlo simulations and the portfolio
weights: δ1 = 75% (for the EUR), δ2 = 15% (for the USD) and δ3 = 10% (for the JPY).

In a second step we back test the VaR, using the method of rolling sample, with the sig-
nificance levels 1%, 2%, 5% and 10%. In each backtesting step 25.000 trials were simulated
and VaR was calculated. In line with the backtesting procedure described in [9], the observed

§The university of British Columbia, Sauder School of Business http://fx.sauder.ubc.ca/.
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Figure 1: Histograms (the top panels) and the Normal probability plots (the bottom panels) of
the daily, log return series from 08-01-2011 to 30-12-2018.

numbers of exceptions were recorded and p-values of LRPoF , LRIND and LRCC tests were cal-
culated.¶ These computations were done in many ways assuming that the data are generated
from: a multivariate Gaussian distribution using the classical Monte-Carlo Method (CMC), a
mixture of multivariate Gaussian distributions (GMM), a mixture of factor analyzers model
(MFA), a mixed hidden Markov model (MHMM), and a mixed factorial hidden Markov model
(MFHMM).

All Backtesting results are presented in tables 2-6. In general, these results show that there
has been an appreciable improvement in the prediction of the VaR through the Monte Carlo
based-MFHMM and MFA models compared to the CMC, and the Monte Carlo based-GMM
and MHMM methodologies. As expected, the CMC methodology has the worst results on all
the period 2011-2018. Indeed, this approach presented poor results through underestimating
the VaR for the different risk levels 1%, 2%, 5% and 10%. The results of the conditional
coverage test for this method was, respectively, 8.5074, 8.8173, 9.3084 and 10.1899.

Table 2: Backtesting results of the CMC method.

Characteristics α = 10% α = 5% α = 2% α = 1% LRcritic

α∗ = 5%
Failure rate 13.22% 7.10% 3.41% 1.65%

First violation 9 9 13 13
LRPoF 7.391 8.073 9.224 10.121 3.841
LRIND 1.1164 0.7443 0.0844 0.0689 3.841
LRCC 8.5074 8.8173 9.3084 10.1899 5.991

From Figure 2, we can easily see that the predicted VaR obtained by the optimal mixed
factorial HMM is highly affected by the significant and recurrent shocks in volatility. Therefore,
we conclude that the poor results obtained by the CMC, GMM and MHMM methods are

¶LRPoF is the Proportion of Failure likelihood ratio; LRind is the likelihood ratio when the exceptions are
distributed equally in time, i.e. without any dependence (autocorrelation); and LRcc is the conditional coverage
joint likelihood ratio, including both conditional coverage and independence between exceptions.
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due to the abnormal fluctuations of the three currencies during this period. Accordingly, we
reject the credibility of these models because of their poor fit and their lack of reactivity. To
accurately capture risks in such portfolios, it is important for risk managers to incorporate
the co-movements and the interactions between the different heterogeneous risk factors. Such
correlation structure of the risk factors can be modeled using a mixture of linear factor models
with a Markov switching structure for the parameters. This permits reflecting two defining
features of the latent volatility: co-movement among financial returns and switching between
different unobservable regimes. Thus, as noted before, the Monte Carlo-MFHMM approach is
the most suitable to construct the joint multivariate loss distribution in this situation.
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Figure 2: Backtesting results of the Tunisian public debt portfolio, using the optimal mixed
factorial HMM (Ns = 2, Nmix = 3) for quantiles α = 1%, 2%, 5% and 10% and 25000 Monte
Carlo steps.

Table 3: Backtesting results of the GMM.

Model Characteristics α = 10% α = 5% α = 2% α = 1% LRcritic

α∗ = 5%
Failure rate 12.55% 6.25% 3.50% 1.55%

Nmix = 2 First violation 9 10 13 13
LRPoF 6.7508 8.1512 9.4058 9.5176 3.841
LRIND 1.2823 0.8549 0.0399 0.0941 3.841
LRCC 8.0331 9.0061 9.4457 9.6117 5.991

Failure rate 12.25% 6.10% 3.35% 1.40%
Nmix = 3 First violation 7 9 13 13

LRPoF 3.459 5.626 6.147 6.084 3.841
LRIND 1.0686 0.7124 0.0285 0.0672 3.841
LRCC 4.5276 6.3384 6.1755 6.1512 5.991

As mentioned earlier, the improvement in the results of the VaR estimates (for the different
confidence levels) are mainly due to the fact that our proposed method is more flexible, than the
other competing models, in capturing the heterogeneous volatility fluctuations and co-movement
between log-returns over time. The failure rates given in tables 2-6 and figure 2, show high
correlation between VaR violations and the volatility fluctuations during the Out-of-Sample
period.

We note here an improvement in the detection of the first violation. For the risk level
10%, the optimal MFHMM and MFA models (Nmix = 3, Ns = 2) detect a first violation on
the 8-th day compared to the CMC approach 9-th day, GMM 7-th day and MHMM 9-th day.
Furthermore, for the 1% and 2% risk levels the first violations occurred at the 18-th and 17-th



252 Mohamed Saidane

Table 4: Backtesting results of the MFA.

Model Characteristics α = 10% α = 5% α = 2% α = 1% LRcritic

α∗ = 5%
Failure rate 11.88% 6.17% 3.16% 1.83%

Nmix = 1 First violation 11 13 17 17
LRPoF 4.4911 5.3930 6.2578 6.4078 3.841
LRIND 1.4456 0.9638 0.0011 0.0017 3.841
LRCC 5.9367 6.3568 6.2589 6.4095 5.991

Failure rate 11.11% 5.92% 2.74% 1.57%
Nmix = 2 First violation 9 12 17 17

LRPoF 2.4210 3.3368 4.4675 5.6425 3.841
LRIND 1.2391 0.8261 0.0042 0.0036 3.841
LRCC 3.6601 4.1629 4.4717 5.6461 5.991

Failure rate 10.15% 5.25% 2.15% 1.15%
Nmix = 3 First violation 8 12 17 17

LRPoF 1.3508 1.8807 2.0482 3.1732 3.841
LRIND 1.0326 0.6884 0.0000 0.0000 3.841
LRCC 2.3834 2.5691 2.0482 3.1732 5.991

days. We note also that the optimal MHMM and MFA methods give similar results for the
1% coverage rate. More precisely, the results obtained by the LRCC test give the same failure
rate (1.15%) and the same statistic (3.1732). In this paper, both the optimal MFHMM and
MFA methods give too similar VaR sequences in such a way that the backtests cannot easily
discriminate between them.

Backtesting results presented in tables 4 and 6, show the validity of the risk measures at the
1% and 2% levels of the optimal MFHMM and MFA models (Nmix = 3, Ns = 2). Moreover,
in terms of conditional and unconditional coverage tests, it appears that the optimal MFHMM
model gives better results than those obtained by the MFA method.

From table 6 we can see that at the risk level 2%, the failure rate obtained by the optimal
MFHMM for the tunisian external public debt portfolio has been 2.05%. This result imply that
our proposed model is more accurate than the optimal MFA model (table 4). Moreover, it has
approved the ”unconditional coverage” and the ”independence” tests, respectively (0.0923) and
(0.0000), which imply a significant conditional coverage Test (0.0923 < χ2 = 5.991).

Tables 6 and 4, show also the superiority of the optimal MFHMM compared to the best
MFA for the risk levels 5% and 10%. In terms of LRCC tests, it appears that the MFHMM
results (1.4685; 0.6244) are more significant than those of the MFA model (2.5691; 2.3834).

5. Conclusion

This paper introduces a new VaR methodology suitable for trading portfolios that are driven
by correlated financial variables characterized by strong volatility clustering, and skewed and
fat-tailed returns distributions. The use of the mixed factorial HMM in VaR allows the risk
manager to accurately account for these characteristics that occur in real data. We test the
method, with different confidence levels, on the Tunisian external public debt portfolio and show
that MFHMM-VaR compares favorably to VaRs based on the classical Monte Carlo method, the
Gaussian mixture model, the mixture of factor analyzers model and the mixed HMM in terms
of backtesting violations. More precisely, for each confidence level the absolute deviations of the
percentages of the backtesting failures from the quantiles are smaller in the case of the mixed
factorial HMM compared with the other competing models. Hence, our new approach is proven
to provide an objective and more accurate forecasts of returns, and it outperforms particularly
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Table 5: Backtesting results of the MHMM.

Model Characteristics α = 10% α = 5% α = 2% α = 1% LRcritic

α∗ = 5%
Nmix = 1 Failure rate 12.48% 6.61% 3.77% 2.33%
Ns = 2 First violation 11 14 15 15

LRPoF 4.2857 4.3966 5.1369 5.6425 3.841
LRIND 2.8058 2.5372 1.0184 1.0109 3.841
LRCC 7.0915 6.9338 6.1553 6.6534 5.991

Failure rate 12.51% 6.43% 3.56% 2.18%
Ns = 3 First violation 10 13 15 15

LRPoF 4.4603 4.3683 5.1565 5.8771 3.841
LRIND 2.9339 2.3560 1.0110 1.0117 3.841
LRCC 7.3942 6.7243 6.1675 6.8888 5.991

Nmix = 2 Failure rate 12.34% 6.28% 3.35% 2.11%
Ns = 2 First violation 10 12 15 15

LRPoF 3.5666 3.4533 4.1271 4.5252 3.841
LRIND 2.8493 2.6997 1.1214 1.1103 3.841
LRCC 6.4159 6.1530 5.2485 5.6355 5.991

Failure rate 11.93% 5.72% 3.09% 1.93%
Ns = 3 First violation 11 13 14 15

LRPoF 3.5312 3.4249 4.1174 3.4078 3.841
LRIND 2.6776 2.5184 0.1452 0.1785 3.841
LRCC 6.2088 5.9433 4.2626 3.5863 5.991

Nmix = 3 Failure rate 11.89% 5.25% 2.35% 1.15%
Ns = 2 First violation 9 13 14 15

LRPoF 4.3541 4.2833 3.0978 3.1732 3.841
LRIND 2.7184 1.8123 0.0000 0.0000 3.841
LRCC 7.0725 6.0956 3.0978 3.1732 5.991

Failure rate 12.20% 6.32% 2.84% 1.55%
Ns = 3 First violation 9 12 14 15

LRPoF 6.4249 5.3400 4.1467 4.7598 3.841
LRIND 2.2621 2.1748 1.6228 1.2543 3.841
LRCC 8.6870 7.5148 5.7695 6.0141 5.991

during the crisis period. This supports the economic argument for integrating heterogeneity
and Markov switching properties of returns into the risk measurement methodology.

To be able to decide whether or not one should prefer the mixed factorial HMM to the
traditional models, a supplementary investigation of the speed of the proposed algorithm would
be useful. Furthermore, our model can be generalized to one where one allows the common
latent factors and the specific factors to be stochastic functions of time. Secondly, we can
also think of the case where the state transition probabilities are not homogeneous in time,
but depend on the previous state and the previously observed covariates levels. The study of
such models would provide a further step in the extension of hidden Markov models to mixed
conditionally heteroscedastic factor analysis and allow for further flexibility in value-at-risk
applications.

Acknowledgements

We would like to thank the editor and an two anonymous referees for their detailed and useful
comments that greatly improved this paper.



254 Mohamed Saidane

Table 6: Backtesting results of the MFHMM.

Model Characteristics α = 10% α = 5% α = 2% α = 1% LRcritic

α∗ = 5%
Nmix = 1 Failure rate 11.26% 6.07% 2.81% 1.78%
Ns = 2 First violation 7 10 17 17

LRPoF 0.4778 0.3823 0.1292 1.6425 3.841
LRIND 0.3963 1.6736 0.0017 0.0143 3.841
LRCC 0.8741 2.0559 0.1309 1.6568 5.991

Failure rate 10.91% 5.66% 2.44% 1.55%
Ns = 3 First violation 8 11 17 17

LRPoF 0.4437 0.3550 0.1477 1.8771 3.841
LRIND 1.4680 1.5540 0.0019 0.0163 3.841
LRCC 1.9117 1.909 0.1496 1.8934 5.991

Nmix = 2 Failure rate 10.47% 5.38% 2.21% 1.33%
Ns = 2 First violation 8 11 17 18

LRPoF 1.5461 0.4370 0.1200 1.5252 3.841
LRIND 1.4530 1.9126 0.0016 0.0133 3.841

7 LRCC 2.9991 2.3496 0.1216 1.5385 5.991
Failure rate 10.07% 5.10% 2.14% 1.22%

Ns = 3 First violation 8 12 17 18
LRPoF 1.5120 0.4097 0.1108 1.4078 3.841
LRIND 1.4247 1.7931 0.0014 0.0122 3.841
LRCC 2.9367 2.2028 0.1122 1.4200 5.991

Nmix = 3 Failure rate 10.00% 5.10% 2.05% 1.15%
Ns = 2 First violation 8 12 17 18

LRPoF 0.3413 0.2731 0.0923 1.1732 3.841
LRIND 0.2831 1.1954 0.0000 0.0000 3.841
LRCC 0.6244 1.4685 0.0923 1.1732 5.991

Failure rate 10.00% 5.10% 2.05% 1.15%
Ns = 3 First violation 8 12 17 18

LRPoF 1.4096 0.3277 0.1384 1.7598 3.841
LRIND 1.3397 1.4345 0.0018 0.0153 3.841
LRCC 2.7493 1.7622 0.1402 1.7751 5.991
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