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Abstract. Interval programming provides one of the modern approaches to modeling optimization
problems under uncertainty. Traditionally, the best and the worst optimal values determining the
optimal value range are considered as the main solution concept for interval programs. In this paper,
we present the concept of semi-strong values as a generalization of the best and the worst optimal
values. Semi-strong values extend the recently introduced notion of semi-strong optimal solutions,
allowing the model to cover a wider range of applications. We propose conditions for testing values
that are strong with respect to the objective vector, right-hand-side vector or the constraint matrix for
interval linear programs in the general form.
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1. Introduction

Throughout the last years, several different approaches for incorporating uncertainty and in-
exactness of real-world data into mathematical models have emerged. Interval programming
[6, 19] provides a tool for representing problems, in which the input data can perturb indepen-
dently within the given lower and upper bounds. The interval approach has been utilized in
various applications, such as portfolio selection [11], transportation problems [1] or input-output
models [10].

One of the main questions posed in interval linear programming is the problem of computing
or approximating the optimal value range, i.e. finding the best and the worst optimal value over
all possible scenarios. Methods for exact calculation of these bounds are available [5, 15, 19],
however, it is a computationally challenging problem, in general.

Other questions include properties of classical linear programming studied in the weak or
strong sense. In other words, we are interested whether a given property holds for some or
for all scenarios of the interval program, e.g. whether a given solution is feasible or optimal
for some realization of the input data. However, besides the traditional solution concept of
weak feasibility used in interval linear systems, other concepts that were more suited towards
particular applications have been proposed. These concepts include tolerance solutions, control
solutions [20] or AE solutions [8], which were later unified and extended under the notion
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of generalized feasibility [12, 22]. Recently, a similar concept was also introduced to interval
optimization in the form of semi-strong optimality [9, 13, 14], which serves as a generalization
of weak and strong optimality.

In this paper, we present a notion of generalized optimal values in the context of semi-strong
optimality. This approach allows to represent two different types of uncertain input data and
consider optimal values that are strong with respect to only some of the coefficients, thus
providing a natural extension of the best and the worst optimal values. The paper is organized
as follows: In Section 2, we review the necessary concepts of interval linear programming.
Section 3 addresses the problem of computing the optimal value range and introduces the
related notions of weak and strong values. Section 4 presents a generalization to semi-strong
values and discusses the corresponding testing conditions. In Section 5, we summarize the
results and propose some ideas for further research.

2. Interval linear programming

Let us first introduce the essential definitions and notation used in interval linear programming.
For a vector p ∈ Rn, we denote by Tp the corresponding diagonal matrix with the vector p on
the diagonal. Given two real matrices A,A ∈ Rm×n with A ≤ A, we define an interval matrix
as the set

A = [A,A] = {A ∈ Rm×n : A ≤ A ≤ A}.
The center and the radius of an interval matrix A are defined as Ac = 1

2 (A + A) and A∆ =
1
2 (A−A), respectively. Hereinafter, we denote interval objects by bold letters. The symbol IR
stands for the set of all real intervals.

Given interval matrices A ∈ IRk×m, B ∈ IRk×n, C ∈ IRl×m, D ∈ IRl×n, right-hand-side
vectors b ∈ IRk,d ∈ IRl and objective vectors a ∈ IRm, c ∈ IRn, we define the corresponding
interval linear program (ILP) in the general form as a family of linear programs

minimize aTx + cT y
subject to Ax + By = b,

Cx + Dy ≤ d,
x≥ 0,

(1)

with A ∈ A, B ∈ B, C ∈ C, D ∈ D and a ∈ a, b ∈ b, c ∈ c, d ∈ d. A particular linear program
in the family is called a scenario. For the sake of brevity, we also write an interval linear
program as a linear program with interval coefficients, i.e.

minimize aTx + cT y
subject to Ax + By = b,

Cx + Dy ≤ d,
x≥ 0.

(2)

While the distinction between equations and inequalities or free and non-negative variables
in program (1) may seem unnecessary, note that the standard equivalent transformations known
from classical linear programming are not applicable in the interval case due to the so-called
dependency problem (see also [3]). By transforming an interval constraint aTx = b into two
inequalities aTx ≤ b and aTx ≥ b, we introduce new scenarios into the system that were
not present in the original constraint. This is caused by the loss of dependency between the
two occurrences of the interval coefficient a in the transformed system: while the original
constraint represents the set {aTx = b : a ∈ a}, the latter system represents the larger set
{aT1 x ≤ b, aT2 x ≥ b : a1, a2 ∈ a}.

A natural way of defining an interval counterpart to various properties of linear programs is
to study whether the property holds for some scenario (we say it is a weak property) or for each
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scenario (a strong property) of the interval program. For example, a vector x ∈ Rn is a weakly
feasible solution to the interval linear program (2), if it is feasible for some scenario (1) of the
program. Furthermore, we say that an ILP itself is weakly feasible, if there exists a feasible
scenario. A solution or a program is strongly feasible, if the feasibility property holds for each
scenario. For notational simplicity, throughout the text we refer to the data of the constraints
of ILP (2) shortly by S = (A,B,C,D, b,d) and denote the set of all weakly feasible solutions
by M(S).

A condition for testing weak feasibility of an interval linear system of equations (and a
description of the weakly feasible set) was given by Oettli and Prager [16], and was later
extended to inequality systems by Gerlach [4]. Building on these results, a characterization of
weak feasibility for interval linear systems in general form was derived by Hlad́ık [7].

Theorem 1 (see [4, 7, 16]). The set of weakly feasible solutions to an interval linear system

Ax + By = b, Cx + Dy ≤ d, x ≥ 0

is described by the non-linear system

Ax + Bcy ≤ B∆|y|+ b,

−Ax−Bcy ≤ B∆|y| − b,

Cx + Dcy ≤ D∆|y|+ d, x ≥ 0.

If all variables of the system are restricted to a single orthant, the characterization given in
Theorem 1 reduces to a linear system. Therefore, weak feasibility of a general interval linear
system can also be tested by using an orthant decomposition and solving an exponential number
of linear systems.

Corollary 1 (see [4, 7, 16]). An interval linear system

Ax + By = b, Cx + Dy ≤ d, x ≥ 0

is weakly feasible if and only if the linear system

Ax + (Bc −B∆Tp)y ≤ b,

−Ax− (Bc + B∆Tp)y ≤ −b,
Cx + (Dc −D∆Tp)y ≤ d, x ≥ 0

if feasible for some p ∈ {±1}n.

A similar characterization was also derived for testing strong feasibility of an interval system
based on the results of Rohn and Kreslová [18, 21].

Theorem 2 (see [7, 18, 21]). An interval linear system

Ax + By = b, Cx + Dy ≤ d, x ≥ 0

is strongly feasible if and only if the linear system

(Ac + TpA∆)x + (Bc + TpB∆)y1 − (Bc − TpB∆)y2 = bc − Tpb∆,

Cx + Dy1 −Dy2 ≤ d,

x, y1, y2 ≥ 0

is feasible for each p ∈ {±1}k.
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For the case of strong feasibility, the testing system for inequality constraints is linear.
However, for equation-constrained interval systems, the characterization requires an exponential
number of linear systems even with non-negative variables.

Note that even if a strongly feasible solution is not likely to exist for a system of interval
equations, in general, the system itself can still be strongly feasible. For inequality-constrained
systems, the two notions coincide and the strongly feasible solutions can be characterized by
Corollary 2.

Corollary 2 (see [20]). A solution y ∈ Rn is strongly feasible for the system Dy ≤ d if and
only if y = y1 − y2 for some y1, y2 ∈ Rn satisfying

Dy1 −Dy2 ≤ d, y1 ≥ 0, y2 ≥ 0.

3. Optimal value range

One of the basic questions studied in interval optimization is the problem of computing the best
and the worst optimal value over all scenarios, often referred to as the optimal value range. For
a classical minimization linear program (1) given by constraint data S = (A,B,C,D, b, d) and
an objective vector (a, c), we define the optimal value of the program as

f(S, a, c) = inf{aTx + cT y : (x, y) ∈M(S)}.

For the optimal value of a linear program, one of the three cases occurs:

• f(S, a, c) = −∞ if the program is unbounded,

• f(S, a, c) =∞ if the program is infeasible,

• f(S, a, c) = aTx∗ + cT y∗ if there is an optimal solution (x∗, y∗).

Analogously, for an interval linear program (2), the bounds of the optimal value range [f, f ]
enclosing all optimal values (also known as the best and the worst optimal value, respectively)
are defined as

f = inf {f(S, a, c) : S ∈ S, a ∈ a, c ∈ c},
f = sup {f(S, a, c) : S ∈ S, a ∈ a, c ∈ c}.

Algorithms for computing the exact bounds f, f were proposed for different forms of interval
linear programs [15, 19], as well as a unified approach for programs in the general form [2, 5].

Let us now reformulate the problem of computing the optimal value range in the context of
weak and strong properties of an ILP. We can say that a value r is a weak value, if there is a
scenario of the program with f(S, a, c) ≤ r. In other words, the value r (or a better one) can
be achieved by at least one scenario. Analogously, we can define r as a strong value, if we have
f(S, a, c) ≤ r for each scenario. Then, the best and the worst optimal values f, f can be viewed
as the best of all weak or strong values, respectively.

Consider an interval linear program in the form (2) and let a value r ∈ R be given. Theorems
3 and 4 restate the problem of testing whether the value r is a weak or a strong value in terms
of weak and strong feasibility of an interval linear system.

Theorem 3. There exists a scenario S ∈ S, a ∈ a, c ∈ c with f(S, a, c) ≤ r if and only if the
interval linear system

aTx + cT y ≤ r,Ax + By = b,Cx + Dy ≤ d, x ≥ 0

is weakly feasible.
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Theorem 4. We have f(S, a, c) ≤ r for each S ∈ S, a ∈ a, c ∈ c if and only if the interval
linear system

aTx + cT y ≤ r,Ax + By = b,Cx + Dy ≤ d, x ≥ 0

is strongly feasible.

4. Semi-strong values

The definition of weak and strong values introduced in Section 3 leads to a natural generaliza-
tion of the extremal (best and worst) optimal values, inspired by the concepts of generalized
feasibility [22] and semi-strong optimality [13]. Alternative quantifier-based solution concepts
for interval programs have been proposed as special cases of generalized feasibility, such as tol-
erance solutions, control solutions or algebraic solutions (see [20] and references therein), to be
used for various practical applications, such as input–output planning [17] and control system
design [22].

The concept of weak or strong solutions assumes that the coefficients can only be affected
by the same type of uncertainty or inexactness. However, in many applications, some of the
coefficients can be controlled by the decision-maker (within a prescribed tolerance), while other
suffer from external uncertainty and cannot be influenced. To reflect such distinction in the
model, it may be beneficial to consider optimal values that are “strong” with respect to some
of the coefficients, but can still be “weak” with respect to others.

Let U ⊆ {A,B,C,D,a, b, c,d} be a set of interval matrices and vectors in the program.
Further, define the interval matrices A∀, . . . ,D∀,A∃, . . . ,D∃ and interval vectors a∀, . . . ,d∀,
a∃, . . . ,d∃ as follows:

I∀ =

{
I if I ∈ U ,
0 if I /∈ U ,

I∃ =

{
0 if I ∈ U ,
I if I /∈ U ,

for each I ∈ {A,B,C,D,a, b, c,d}. We say that a given value r is U-strong, if

∀A∀ ∈ A∀, . . . , D∀ ∈D∀, a∀ ∈ a∀, . . . , d∀ ∈ d∀,

∃A∃ ∈ A∃, . . . , D∃ ∈D∃, a∃ ∈ a∃, . . . , d∃ ∈ d∃ : f(S, a, c) ≤ r,

where S = (A∀+A∃, B∀+B∃, C∀+C∃, D∀+D∃, b∀+ b∃, d∀+d∃), a = a∀+a∃ and c = c∀+ c∃.
We also refer to such values collectively as semi-strong values.

For example, we say that a given value r is {A,B,C,D}-strong, if for each A ∈ A, B ∈ B,
C ∈ C, D ∈ D there exist a ∈ a, b ∈ b, c ∈ c, d ∈ d such that f(S, a, c) ≤ r for S =
(A,B,C,D, b, d). Similarly, a strong value (as defined in Section 3) is an {A,B,C,D,a, b, c,d}-
strong value in this sense and a weak value is an ∅-strong value. In this section, we examine
values that are strong with respect to the objective vector, right-hand side or the constraint
matrix.

Theorem 5. A value r ∈ R is {a, c}-strong if and only if the interval system

aTx + cT y ≤ r, (x, y) ∈M(S) (3)

is strongly feasible.

Proof. Assume that for each a ∈ a, c ∈ c there exists a scenario S ∈ S satisfying f(S, a, c) ≤ r.
Then S has a feasible solution (x∗, y∗) with aTx∗ + cT y∗ ≤ r, and thus ILP (3) is strongly
feasible. On the other hand, strong feasibility of the interval system ensures that for each
objective vector a ∈ a, c ∈ c we have a weakly feasible solution (x∗, y∗) and a corresponding
scenario S, which satisfy r ≥ aTx∗ + cT y∗ ≥ f(S, a, c).
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Recall that we can describe the weakly feasible solution set M(S) of an interval linear
system by the non-linear system presented in Theorem 1. Furthermore, we can also apply the
conditions for testing strong feasibility stated in Theorem 2.

Corollary 3. A value r ∈ R is {a, c}-strong if and only if the system

aTx + cT y1 − cT y2 ≤ r, y = y1 − y2,

Ax + (Bc −B∆Tp)y ≤ b,

−Ax− (Bc + B∆Tp)y ≤ −b,
Cx + (Dc −D∆Tp)y ≤ d, x, y1, y2 ≥ 0, Tpy ≥ 0

(4)

is feasible for some p ∈ {±1}n.
Proof. First, we can write out the weakly feasible set M(S) to obtain the system

aTx + cT y ≤ r,

Ax + Bcy −B∆|y| ≤ b,

−Ax−Bcy −B∆|y| ≤ −b,
Cx + Dcy −D∆|y| ≤ d, x ≥ 0.

(5)

Assume now that the non-linear system (5) is strongly feasible and consider all quadruples
(a, c, x, y) satisfying the constraints. Let (a∗, c∗, x∗, y∗) be a feasible solution maximizing the
value aTx + cT y. Then (x∗, y∗) is feasible for system (5) for each a ∈ a, c ∈ c, since we have

aTx∗ + cT y∗ ≤ (a∗)Tx∗ + (c∗)T y∗ ≤ r

and the pair satisfies the absolute-value constraints. Therefore, (x∗, y∗) is also a strongly feasible
solution of aTx+ cT y ≤ r and by the characterization of strong solutions (see Corollary 2) and
orthant decomposition, it satisfies system (4).

Conversely, if system (4) is feasible for some p ∈ {±1}n, then there exists a strongly feasible
solution of aTx + cT y ≤ r satisfying the additional constraints. Thus, system (5) is strongly
feasible.

We can formulate a similar condition for testing semi-strong values with respect to right-
hand sides or constraint matrices, as shown in Theorems 6 and 7.

Theorem 6. A value r ∈ R is {b,d}-strong if and only if the system

aTx + cTc y − cT∆|y| ≤ r,

Ax + Bcy −B∆|y| ≤ z,

−Ax−Bcy −B∆|y| ≤ −z,
Cx + Dcy −D∆|y| ≤ d, x ≥ 0, z = b

is strongly feasible.

Proof. For fixed b ∈ b, d ∈ d, there exist the corresponding constraint matrices and objective
vectors if and only if the weakly feasible set

aTx + cTc y − cT∆|y| ≤ r,

Ax + Bcy −B∆|y| ≤ b,

−Ax−Bcy −B∆|y| ≤ −b,
Cx + Dcy −D∆|y| ≤ d, x ≥ 0

is non-empty. Since the condition should hold for each b and d in their respective intervals, we
can set d = d as the worst-case scenario and require strong feasibility with respect to b.
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Theorem 7. A value r ∈ R is {A,B,C,D}-strong if and only if the system

aTx + cTc y − cT∆|y| ≤ r,

Ax + By = z, b ≤ z ≤ b,

Cx + Dy ≤ d, x ≥ 0

is strongly feasible.

Proof. Again, we can replace the existentially quantified vectors by using the characterization
of weak feasibility. Namely, we can describe the weakly feasible set of aTx + cT y ≤ r by the
constraint aTx+cTc y−cT∆|y| ≤ r, substitute the interval vector b by a vector of variables bound
to the interval, and the interval d by the best value d. Strong feasibility of the system ensures
that the condition holds for each of the constraint matrices.

Let us now formulate conditions for testing values that are strong with respect to two of
the three considered parts of an interval linear program. The proofs of the following theorems
are analogous to the previous results.

Theorem 8. A value r ∈ R is {A,B,C,D,a, c}-strong if and only if the interval linear system

aTx + cT y ≤ r,

b ≤ Ax + By ≤ b, Cx + Dy ≤ d, x ≥ 0

is strongly feasible.

Theorem 9. A value r ∈ R is {A,B,C,D, b,d}-strong if and only if the system

aTx + cTc y − cT∆|y| ≤ r,

Ax + By = b, Cx + Dy ≤ d, x ≥ 0

is strongly feasible.

Theorem 10. A value r ∈ R is {a, b, c,d}-strong if and only if the system

aTx + cT y ≤ r,

Ax + Bcy −B∆|y| ≤ z,

−Ax−Bcy −B∆|y| ≤ −z,
Cx + Dcy −D∆|y| ≤ d, x ≥ 0, z = b

is strongly feasible.

The resulting conditions for testing semi-strong values can also be described by means of
so-called AE feasibility of an interval system [8]. Note that the concept of semi-strong values
can be generalized even further by considering a finer partition of the coefficients or choosing a
different order of the quantifiers.

5. Conclusion

We introduced the concept of semi-strong values as a generalization of the optimal value range
in interval linear programming. Semi-strong values provide a natural extension of the best and
the worst optimal values and form a complement to the notions of generalized feasibility and
semi-strong optimal solutions. By weakening the definition of optimal values and considering
values that are strong only with respect to some of the uncertain input data, we allow the
model to reflect different controllability over various parts of the program. We derived testing
conditions for several types of semi-strong values related to AE feasibility of interval systems.
Since the best semi-strong values may be of interest, these conditions can also serve as a basis
for designing a method to compute such generalized optimal values.
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