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ABSTRACT

In order to create extremely sharp photographs, focus
stacking has become a widely used method nowadays,
mainly in macro or micro photography. Whereas the as-
pect of computationally detecting sharp regions of an im-
age has been dealt with in many publications, there is only
little published about the geometric background. This pa-
per analyzes the process from a purely geometrical point
of view, revealing some non-trivial aspects that may po-
tentially also lead to improvements in a variety of appli-
cations such as the 3D scanning of small objects. It is
shown that – under calibrated conditions and with cer-
tain restrictions – focus stacking of a scene leads to ar-
bitrarily many geometrically correct perspective images of
this scene, even including normal projections. The rea-
son for this is that the process of photography never leads
to purely two-dimensional images, but collinearly distorted
spatial images.
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Podešavanje dubinske oštrine s čisto geometrij-
skog gledǐsta

SAŽETAK

Da bi se stvorile izuzetno oštre fotografije u današnje se
vrijeme često koristi metoda podešavanja dubinske oštrine.
Posebno je česta njezina upotreba u makro ili mikro fo-
tografiji. Iako je tema računalnog odred-ivanja oštrih po-
dručja slike obrad-ena u mnogim publikacijama, o nje-
govoj je geometrijskoj pozadini objavljeno malo radova.
Ovaj rad analizira spomenuti postupak s čisto geometri-
jskog gledǐsta otkrivajući neke netrivijalne aspekte koji
mogu dovesti do pobolǰsanja u mnogim njegovim primje-
nama kao što je 3D skeniranje malih predmeta. Pokazano
je da podešavanje dubinske oštrine scene – pod kalibri-
ranim uvjetima i uz odred-ena ograničenja – može proizvesti
po volji mnogo geometrijski ispravnih perspektivnih slika
te scene, pa čak i njezinu ortogonalnu projekciju. Ra-
zlog tome je činjenica da proces fotografiranja nikada ne
rezultira čistim dvodimenzionalnim slikama, već kolinearno
iskrivljenim prostornim slikama.

Ključne riječi: geometrijska optika, podešavanje du-
binske oštrine, dubinska oštrina, računski rekonstruirana
fotografija, registracija slike, light field kamera

1 Are photographs central projections?

Photography is a source of fascination for many people
– especially for mathematicians and geometry enthusi-
asts. In geometry classes, we sometimes say (in simpli-
fied terms): photographs correspond to central projections
(perspectives) of space. This means a reduction of three-
dimensional space into the two-dimensional plane. This
can be “proved” by the fact that it is possible to reconstruct

the photographed three-dimensional scene quite accurately
from a number of photographs. It is quintessential that
high-quality lens systems are used that reproduce straight
edges as exactly straight.
Even though this idea works quite well for scenes with
larger technical objects, such as polyhedra (e.g., a fur-
nished room or a building), it poses huge problems in the
context of macro photography, meaning photographs of
objects that measure just a few centimeters or even less
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Figure 1: Two flies, depicted in different ways. Left: Focus-stacked with medium aperture and without flash, right: single
photo, closed aperture, twin flash. Whereas the left image is completely sharp, the image on the right illustrates the limits
of macro photography, even with professional equipment.

than that. There, the “Depth of Field” (DoF) is compara-
tively much smaller than in regular photography.

2 An impossible photograph

The flies in Figure 1, measuring about 1 cm, are funda-
mentally different in terms of the photographic techniques
used to depict them. The picture on the left (with some
disgorged digestive juice) is in sharp focus overall. An
insect photographer will be puzzled: it seems impossible
to take such a photograph – even if we used highly ex-
pensive equipment with special macro objectives, macro
flashes and the highest aperture number possible (as in the
picture on the right, where minuscule droplets of water can
be seen on the complex eyes.)
This poses two questions: why can an object as small as a
fly not be rendered in sharp focus overall, and how does it
seem to be possible after all? This paper will explain the
situation from a mathematical/geometrical point of view.

3 The lens formula

In physics, the method of operation of a lens (or a well-
aligned lens system) is explained as follows: Let P be a
point in the real world. It emits (reflects) light rays in all
directions. Two of them will have easily predictable prop-
erties. The principal ray through the lens center C will not
be refracted, while the ray parallel to the optical axis will

go through the focal point F∗ after the refraction. Behind
the lens (the lens system), the two rays – and all others –
meet in the pixel P∗.

VIRTUAL
HALFSPACE

REAL
HALFSPACE

Figure 2: The principle of geometric ray optics (simpli-
fied): From the infinitely many light rays emitted from a
space point, the principal ray through the lens center C is
not refracted, and the ray parallel to the optical axis will
go through the focal point F∗ after the refraction.

From Figure 2, using similar triangles, we can derive the
lens formula:
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1
f
=

1
d
+

1
d∗

. (1)

Here, f denotes the focal distance and d and d∗ the ori-
ented distances of the point in space P and the pixel P∗

from the symmetry plane through the lens center C, re-
spectively.
Using this method, we can determine the corresponding
pixel for each point in space.

4 The Gaussian Collineation

Let us define d = k f . Using the lens formula, we then get

d∗ =
k

k−1
· f =

d
k−1

. (2)

According to the intercept theorems, we get the following
simple relation between the distances of a point in space P
and its pixel P∗ from the center C:

CP∗ =
1

k−1
·CP. (3)

Even though the geometrical mapping P 7→ P∗ works in
both directions, a camera will only be able to depict the
half space whose points lie at a greater distance from the
lens than the focal distance f (k > 1): points in the plane
through the point F perpendicular to the optical axis are
projected onto far points, because the denominator k− 1
vanishes in that case.
It is easy to show that the mapping P 7→ P∗ preserves
straight lines: Let g be an arbitrary straight line in space.
It can always be defined as the intersection of two special
planes ε and ϕ, with ε being the connecting plane of g with
the center C and ϕ being the plane through g that is paral-
lel to the optical axis. ε is transformed into itself (ε∗ = ε)
because we can think of the plane as a pencil of principal
rays. The other plane, ϕ∗, can be conceived of as rays par-
allel to the optical axis that transition into a pencil through
the focal point F∗ and the intersection line of ϕ with the
symmetry plane. The image g∗ of g is the intersection of
ε∗ and ϕ∗ and therefore a straight line ([1]). The mapping
P 7→ P∗ is thus a collineation – which is the technical term
for images that preserve straight lines. This mapping is a
very special form of perspective collineation: the center
lies in the collineation plane (the symmetry plane). Such
a collineation is called elation. This insight goes back to
C. F. GAUSS ([2]).

We briefly describe the Gaussian collineation P(x,y,z) 7→
P∗(x∗,y∗,z∗) analytically. The coordinate system shall
have its origin in the camera center C, and the z-axis shall
be the optical axis. Then we have

 x∗

y∗

z∗

=
f

f − z

 x
y
z

 . (4)

When we switch to homogenous coordinates

x =
x1

x0
, y =

x2

x0
, z =

x3

x0
, and x∗ =

x∗1
x∗0
, y∗ =

x∗2
x∗0
, z∗ =

x∗3
x∗0
,

we obtain


x∗0
x∗1
x∗2
x∗3

=


f x0− x3

f x1
f x2
f x3

 . (5)

From this, we can immediately read all important facts of
the collineation, namely that it is an elation with center C.
The fixpoints lie in x3 = 0, i.e., the lens symmetry plane.
The zero plane and the vanishing plane are parallel to the
fixpoint plane at distance ± f , respectively.

5 How does this relate to photography?

Using the simple formula (3), we can very easily transform
spatial objects made of a number of points into equally
spatial objects. How does this relate to photography, which
after all produces a two-dimensional result?

Let us consider a point P at a distance d from the symme-
try plane (collineation plane). If the plane π of the sensor
of our camera happens to be located at a distance d∗ from
the collineation plane, the pixel P∗ will lie in π. Thus, the
intersection of the object that we aim to reproduce with the
“plane of sharpness” (also called focal plane), sometimes
also referred as through P at a distance d parallel to the
collineation plane is in sharp focus.1 All other points are
rendered more or less sharp.

The extent of blurring is dependent on a number of differ-
ent parameters, as we shall see. One crucial parameter is
the size of the distance of the photographed object propor-
tionally to the focal length.

1Using our common sense, we may have assumed that in a photographic image, all those points would be rendered sharp that have a certain constant
distance (thus lying on a sphere around C) from the lens center, which depends on the distance d∗ from the sensor plane. However, according to the lens
formula, this is not the case, as all of those points lie in a plane, the plane of sharpness, also called focal plane, at a distance d.
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6 Photographing elephants vs. flies

C

VIRTUAL HALFSPACE

REAL HALFSPACE

Figure 3: Depicting large objects from a great distance.
The corresponding virtual 3D image is “almost flat”, i.e.,
all image points are close to the sensor plane. The image
in the sensor plane is more or less “sharp”.

Let us first consider the image of a “large” object from a
great distance (what we mean is the relation of the object
size to the focal length f (Figure 3)).
For points at a great distance d = k · f (k >> 1), the image
distance d/(k−1) (formula 2) does not vary a great deal.
The collinear virtual object behind the lens will thus be
strongly oblate, which means that there will be minor blur-
ring of those points that do not lie precisely in the plane
of sharpness. Taking a sharp full-size photograph of an
elephant thus poses no problem.
The smaller the object that we want to photograph, and the
closer it is to the “forbidden” vanishing plane (Figure 4),
the more the expression f/( f −d) = 1/(1−k) in the trans-
formation formula (3) will vary. This means that the points
will become more blurry, which leads to a genuine prob-
lem.
A brief remark: Short focal lengths f apparently have a
positive effect on the focus depth, as a fly or a snail be-
comes larger proportionally to f . Cameras with small sen-
sors have a correspondingly shorter focal length.2

7 Geometry vs. physics

In geometry, the matter seems to be trivial: Let us intersect
the light ray through the lens center with the sensor plane.
Seen from the perspective of physics, this, of course, does
not work: a single light ray is not sufficient to expose the
sensor. We will thus have to install a circle-shaped opening

in the collineation plane – the aperture. All light rays ema-
nating from a point in space P will then lie inside a skewed
circular cone through the opening, which is itself refracted
in a skewed circular cone (Figure 5.)
The entirety of light rays in this refracted skewed circular
cone exposes the sensor plane in a dot-shaped way only if
P lies on the plane of sharpness. In all other cases, there
is a so-called circle of confusion on the sensor (CoC for
short.)
We could now assume that we only need sufficient lighting
(flash) in order to keep the aperture as small as possible
(we speak of a high aperture number in such cases.) How-
ever, that is only possible up to a certain limit (the aperture
should be bigger than 1 mm at any rate.) If we reduce
the size further, the wave properties of light further com-
plicate the matter: this leads to diffraction on the edges
of the aperture, which results in inconvenient diffraction
blurring. Optimal results can be obtained by using the op-
timum aperture indicated by the manufacturer of the lens.
Photographers know that exceeding the optimum aperture
will reduce the image quality.

8 Focus stacking

In the picture of the elephant, we hardly ran into any prob-
lems – if a photographer targets a point that lies approxi-
mately at the end of the first third of the desired distance
range, the picture will be sufficiently sharp.3

In macro photography, however, a lack of sharpness is a se-
rious problem – especially if we are not dealing with artis-
tic but scientific images.
Nowadays, a technique called focus stacking has been es-
tablished; in essence, it works in the following way: the
camera takes a number of images of a scene in as short an
interval as possible, varying the distance of the focal plane.
This way, we get an image series where different layers of
the object are focused consecutively.
The theory of image processing is quite advanced by now,
and software used for this purpose is able to distinguish
sharp from blurry pixels. Here, we can only briefly men-
tion two methods and do not go into details: One method
is to use the shape of the edge gradient profile at each par-
ticular edge point to classify edge sharpness (see, e.g., [3]).
The other method is to compute the fast Fourier Trans-
form and analyze the result. The Fourier transform tells
us which frequencies are present in the image. If there is a

2In technical specifications, the focal length (e.g., 100 mm) of a lens is often provided in terms of a 35 mm equivalent, which means that for a “full
format sensor size” of 24mm×36mm, the lens has a focal length of 100 mm.

If the sensor, however, only has a size of, for example, 6mm× 9mm, the same visual impression can be achieved with a focal length of just 25 mm.
In this special case, we have a crop factor of 4. Nowadays, it is possible to take amazingly sharp macro photographs with good smartphones, owing to
their extremely short focal lengths and correspondingly tiny sensors (with much larger crop factors.) However, this leads to the problem of having a large
number of pixels in the tightest of spaces, which inevitably leads to a loss of quality.

3Artistic photographers often encounter the opposite problem: they deliberately want to work with blurred areas. In such cases, using larger focal
lengths and a wide-open aperture is recommendable.
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π∗π
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Figure 4: When a small object close to the lens is being photographed, the 3D distortion of the corresponding virtual image
is considerable. Only points in the focal plane π∗ will therefore be depicted in sharp focus.
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Figure 5: The Circle of Confusion (CoC) in the sensor plane π can be interpreted as the intersection of an oblique cone
passing through the circular aperture opening c.

22



KoG•23–2019 G. Glaeser: Focus Stacking from a Purely Geometrical Point of View

Figure 6: Two mating dragon flies, photographed several times with varying lens centers (and focal points). The first and
the last photo of the series can be seen on the left. The focus-stacked image on the right can be considered sharp in the
zone that is defined by the two animals. The background still remains blurred, which is – aesthetically speaking – a big
advantage. Thus, focus stacking can also be considered as an artistic tool.

small amount of high frequencies, then the image is blurry
(e.g., [4]).

In a second step, one sharp image is created from this entire
image series. How well this works even without a tripod is
shown in Figure 6: on the left, we see the first and the last
picture of such a series by way of example; on the right,
we see the final product.4

If the photo series is done without tripod, there is of course
a slight movement of the camera to be expected between
the single photos. There even might be a tilt and/or motion
blur. In [5], solutions for these problems are proposed that
are based on affine transformations of the images.

There is an interesting connection to “light field cameras”
that capture information about the light field emanating
from a scene (conventional cameras only record light in-
tensity).

One type of light field camera uses an array of micro-lenses
placed in front of an otherwise conventional image sen-
sor to sense intensity, color, and directional information.
Multi-camera arrays are another type of light field camera.
Holograms are a type of film-based light field image.

9 The focal plane sweeps through the object

For any position of the sensor plane (distance d∗), there
is thus exactly one plane of sharpness (distance d) in the
Gaussian collineation; its position follows from the lens
formula (1):

d = f d∗/(d∗− f ). (6)

9.1 Focus stacking with a microscope

Before we continue with “ordinary photography” (espe-
cially macro photography), let us take a quick look at “mi-
cro photography”, i.e., taking pictures by means of a mi-
croscope (Figure 7). Here, the Depth of Field (DoF) is ex-
tremely shallow. When we use focus stacking, we sweep
the focal plane in tiny steps. In contrast to classic pho-
tography, however, the entire lens system – including the
sensor plane – is just translated. Thus, the distance of the
lens center to the sensor plane stays constant during the
sweeping process.
As a consequence, we do not have to care about rela-
tive scaling of the corresponding images. In principle,
we get section lines of our object and we even know

4An additional advantage of this method is the fact that we usually do not get an “infinitely” sharp image, but that there is a certain layer rendered in
sharp focus. Blurry backgrounds facilitate the isolation of objects from the background and prevent the viewer’s gaze from getting caught in unnecessary
details.
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the accurate distance of these section lines: the trans-
lation of either the lens system or the object carrier re-
spectively. Therefore, the scanned object is completely
recognized three-dimensionally (see Figure 8; the mi-
croscopic photos show salt crystals and were taken by
Johannes Weber, University of Applied Arts Vienna).

Figure 7: When the focal plane of a microscope sweeps
through the object, this is equivalent to a perfectly con-
trolled translation of the object along the optical axis. The
single pictures do not have to be registered – they are all
scaled in the same manner.

Figure 8: Having control of all coordinates, the object is
well-determined and can be displayed and measured arbi-
trarily.

9.2 Focus stacking with a normal camera

In contrast to focus-stacked pictures taken by a micro-
scope, focus stacking is a bit more complicated in ordinary
photography: In commercially available cameras, the po-
sition of the sensor plane is fixed and the position of the
lens center C moves forward and backward on the optical

axis. If we focus on points that are very far away, C lies
in front of the sensor plane at a distance f (if d∗ = f then
d = ∞). If we photograph a two-dimensional shape – such
as, for instance, a drawing – that lies in a plane parallel to
the sensor plane at a distance of s = d + d∗ and focus it,
the center C will have the position at a distance d∗ from
the sensor plane that we want to calculate.
With the formula (6), the following applies:

s = d∗2/(d∗− f ) or d∗2− sd∗+ s f = 0 (7)

The ambiguous solution of this quadratic equation is

d∗ =
s
2
±
√

s2

4
− s f .

In order for the expression below the root not to be nega-
tive, s ≥ 4 f must apply. This is, indeed, always the case
because of the requirement d > f (if d = d∗ = 2 f , the so-
lutions coincide). Furthermore, both solutions are always
valid, even though one would – for practical reasons – tend
to stick to one algebraic sign when computing a series of
camera positions.

Figure 9: When the center C of the lens system (and there-
fore also the focal point F) is moving along the optical axis
(with fixed sensor plane π), the plane of sharpness which
corresponds to the sensor plane is moving in parallel. Its
intersection lines with the spatial object are depicted in
sharp focus, but in an absolute size that depends on the
distance Cπ.

If the lens system lies within the computed distance d∗

in front of the fixed sensor plane π, our two-dimensional
shape will firstly be rendered sharp overall on the sensor,
and secondly, it will appear similar, and thus perspectively
undistorted, even though it will not keep its original size.
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Figure 10: A spatial object (in this case a red cube) is “scanned” by a “sweeping focal plane.” Only the intersections with
the plane are depicted in the sensor plane. If the corresponding images of the section are not scaled, the result is neither a
central nor a normal projection (image on the left). Scaled with the factor in Equation 8, the image is a normal projection
(middle image); scaled with the factor in Equation 9 as in the image to the right, the result is a perfect central projection
(= “perspective”.) In the latter case, the center of the perspective can vary almost arbitrarily.

Let us now turn back to three-dimensional objects. If we
take a series of photographs while purposefully varying
the distance of the lens center, we will get photographs in
which one section line of the object is rendered sharp and
largely undistorted (it is merely scaled.)
Figure 9 illustrates this matter: in a simulation of this pro-
cess, a cube was mapped by way of layers, which can be
triangles, quadrangles, pentagons or hexagons. However,
if we now simply put these pictures on top of one another,
we will end up with strangely distorted perspectives (see
also Figure 10 on the left).
Straight lines – such as the edges of the cube – are depicted
as curved (it is possible to show that they form parabolas.)
The reason for this is of course that, owing to the differ-
ent distance of the lens center from the sensor plane, the
section lines are scaled proportionately to this distance.

10 Converting the scanning process into
normal and central projections

Strictly speaking, we scanned our object three-
dimensionally in this way – even though we must bear
in mind that only those section lines were recorded that
were visible from the respective center. Let us now con-
duct some skilful scaling, in order to compute the relations
in the visible three-dimensional real space during the scan-
ning process.
Let t be a line segment in the plane of sharpness, and thus
in space, and t∗ the line segment parallel to it in the sensor

plane π. According to the intercept theorems, the follow-
ing applies: t : d = t∗ : d∗. With the scaling factor

λ = d/d∗, (8)

we can thus calculate the genuine length t from the im-
age length. If we scale all pictures of the series, with
the factor changing from one picture to another, we get
a normal projection of the object (see Figure 10, middle).
This is remarkable insofar as it is impossible to achieve a
normal projection with a single photograph, except if we
used an astronomical telescope with an almost infinite fo-
cal length.5

In order to achieve an exact central projection (perspec-
tive), which exclusively relies on unambiguously recorded
points, we will choose a position as the center where the
lens center used to be when the last still visible points of
the object to be depicted appeared sharp (d = dm maxi-
mal ⇒ d∗ = d∗m minimal). The ith picture will then not
only be scaled according to the formula (8), with the fac-
tor λi = di/d∗i , but additionally with the factor d∗m/dm: If
we now feed the image series into a software designed to
recognize sharp pixels, we will get a picture of graphical
precision that is sharp and perspectively correct, as can be
seen in Figure 10 on the right.

µ =
di

d∗i
· d
∗
m

dm
(9)

5There is, however, one limitation: even from a number of positions on the optical axis, we cannot always see as much of a surface as we would in a
genuine normal projection. Just think, for example, of a spaceship directly approaching the moon. From its position, we will never be able to see 50% of
the moon’s surface, the way we do from Earth.
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Figure 11: A square stamp of typical macro size is being
focus-stacked. With the application of the corresponding
scalings of the images, the result is a geometrically perfect
perspective.

The square stamp in Figure 11 passes the relatively strict
geometrical tests that can be used in order to test the cor-
rectness of a perspective, and the same is true of the “geo-
metric still life” in Figure 12. This is important because we
do not usually photograph miniature geometrical figures in
practice, but living beings and natural objects. Creating a
full-size sharp photograph of the stamp would be a classic
task of macro photography, while the still life is already a
medium-sized scene and thus easier to photograph with a
sharp focus overall.

Figure 12: A typical geometric scene (cube, square, cylin-
der of revolution). From the geometric point of view, the
stacked image fulfills all requirements of a single central
projection.

11 Outlook

Speaking from a mathematical/geometrical point of view,
it is important to note that much more can be done with
a series of pictures of an object, owing to the fact that
these pictures provide information of the object’s location
in space – one example would be 3D models. In any case,
focus stacking on the macro level should make it possible
to achieve results that would rival those of laser scanners, if
they were done under laboratory conditions – even though
the technology behind it is simpler, quicker, and cheaper.
Using the above described geometrical insights, methods
like the ones proposed by [6] could be enhanced.

Figure 13: Here, only three photos were stacked, allowing
major parts of the praying mantis to appear sharp. The
blurred rest of the stacked photo is deliberate.

If the objects that we want to photograph happen to be
small animals, we are faced with the additional problem
that these seldom tend to freeze in place, and usually at
least move their feelers or individual limbs (Figure 13).
In such cases, the image series should be processed in the
tenth of a second at the most, which will probably be pos-
sible in a few years’ time, bearing in mind the rapid tech-
nological advancement in recent years. Currently, com-
mercially available cameras still need a full half second
for a complete series of 8 to 10 pictures – the bottleneck
does not occur when saving the pictures but is a result of
the continuous re-adjustment of the focus. In order to de-
pict as many parts of the object’s surface as possible, and
also for additional accuracy, one could use several rigidly
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connected cameras simultaneously. The registration of the
surface parts should easily be possible since all camera po-
sitions are well known.
From an aesthetic point of view, we often only need two
or tree pictures of an insect for impressive photographs. In
Figure 13, it was important to focus on the tongs and eyes
of the praying mantis – it is secondary that the rest of its
body appears blurred.
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