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Background and Purpose: Coppice forests have a particular socio-economic and ecological role in forestry and environmental 
management. Their production sustainability and spatial stability become imperative for forestry sector as well as for local 
and global communities. Recently, integrated forest inventory and remotely sensed data analysed with non-parametrical 
statistical methods have enabled more detailed insight into forest structural characteristics. The aim of this research was to 
estimate forest attributes of beech coppice forest stands in the Sarajevo Canton through the integration of inventory and 
Sentinel S2A satellite data using machine learning methods.
Materials and Methods: Basal area, mean stand diameter, growing stock and total volume data were determined from the 
forest inventory designed for represented stands of coppice forests. Spectral data were collected from bands of Sentinel 
S2A satellite image, vegetation indices (difference, normalized difference and ratio vegetation index) and biophysical 
variables (fraction of absorbed photosynthetically active radiation, leaf area index, fraction of vegetation cover, chlorophyll 
content in the leaf and canopy water content). Machine learning rule-based M5 model tree (M5P) and random forest (RF) 
methods were used for forest attribute estimation. Predictor subset selection was based on wrapping assuming M5P and 
RF learning schemes. Models were developed on training data subsets (402 sample plots) and evaluations were performed 
on validation data subsets (207 sample plots). Performance of the models was evaluated by the percentage of the root 
mean squared error over the mean value (rRMSE) and the square of the correlation coefficient between the observed and 
estimated stand variables.
Results and Conclusions: Predictor subset selection resulted in a varied number of predictors for forest attributes and 
methods with their larger contribution in RF (between 8 and 11). Spectral biophysical variables dominated in subsets. The 
RF resulted in smaller errors for training sets for all attributes than M5P, while both methods delivered very high errors for 
validation sets (rRMSE above 50%). The lowest rRMSE of 50% was obtained for stand basal area. The observed variability 
explained by the M5P and RF models in training subsets was about 30% and 95% respectively, but those values were lower 
in test subsets (below 12%) but still significant. Differences of the sample and modelled forest attribute means were not 
significant, while modelled variability for all forest attributes was significantly lower (p<0.01). It seems that additional 
information is needed to increase prediction accuracy, so stand information (management classes, site class, soil type, 
canopy closure and others), new sampling strategy and new spectral products could be integrated and examined in further 
more complex modelling of forest attributes. 
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INTRODUCTION

Coppice forests have multiple roles related to their 
production in forest management, as well as their social, 
ecological and economic importance for local communities. 
Their contribution is recognized and emphasized in 
rural livelihoods, low-carbon bio-economy, in protective 
functions, sharing economy, provision and enrichment [1].  

Several studies were conducted analyzing structure, 
functions, silvicultural measures and other aspects in coppice 
forests in Europe and the Balkan region [1-8]. Authors [3-8] 
from South Eastern Europe (SEE) concluded that degradation 
and inappropriate treatments in high forests in the 20th 
century resulted in degradation and appearance of coppice 
forests on larger areas. Stajić et al. [3] described past and 
recent coppice forest management in some regions of SEE in 
relation to their characteristics. Višnjić et al. [8] investigated 
ecological and silvicultural characteristics of coppice forests 
in Bosnia and Herzegovina (B&H). In B&H coppice forests 
occupy around 23% of the forested area according to 
data from the second national forest inventory. Different 
silvicultural treatments (conversion, thinning, reforestation 
and others) for the improvement of their production and 
other forest functions were examined and analyzed [9, 10]. 
Recent intensive studies of coppice forests were conducted 
in the Sarajevo Canton [11-14]. Balić [11] presented the 
research on productivity, structural characteristics and 
models of growth and increment of coppice beech forests 
based on forest inventory data using statistical parametrical 
approach in the Sarajevo Canton.  

For management planning purposes it is important 
to estimate stand productivity variables (basal area, stand 
diameter, wood volume, growing stock and others) and their 
spatial distributions, especially where different management 
regimes are recommended. Therefore, apart from forest 
inventory data, forest management planning should 
consider all available information about the forest status 
and stand conditions. Available remote sensing data from 
different satellite programs compiled with forest inventory 
have been used as a source for additional research about 
forest characteristics since the middle of the 20th century. 
Landsat and Sentinel satellite images have been used most 
frequently for forest type classification [15-17], as well as 
for the estimation of forest productivity attributes [18, 19]. 
Rapid information technology development resulted in 
continuous improvements of remote sensing capabilities 
(satellite and aerial imagery, lidar), offering innovative 
possibilities of research on forest vegetation [19-21]. Then 
statistical classification and estimation methods supported 
with information technology development become more 
efficient and promising in spatial characterization of forest 
attributes on the forested area [22-24]. Recently, high forests 
and artificial stands were analyzed frequently using machine 
learning rule-based approach. Therefore research focus 
was re-directed on coppice forests where wide interest for 
further coppice forest characterization was obtained.

The aim of this paper is to evaluate beech coppice 
forest stand variable estimates based on machine learning 
rule-based methods: M5 model tree and random forest 
regression using inventory and Sentinel S2A spectral data. 

MATERIALS AND METHODS

Study Area
The study was conducted in the Sarajevo Canton (about 

1277 km2), which is bounded by the southern geographical 
latitudes 43°53' - 43°47' and the eastern geographical 
longitudes 18°16'-18°27’ in central Bosnia and Herzegovina 
(Figure 1). Forest stands of state-owned beech (Fagus 
silvatica L.) coppice forests surrounding the capital city of 
Sarajevo were selected as study areas. The selected beech 
coppice stands are situated on plane and hilly positions at 
altitude range of 550 to 1700 meters, but mostly below 1000 
meters (about 60%). About 80% of forest stands are situated 
on humid expositions with deeper and moist soils. More 
than 65% of forest stands are located on a position with an 
inclination above 20o, while less than 15% is on planes. The 
study area is influenced by moderate continental climate 
with subalpine character at higher altitudes.  

Field Data
Field measurements were acquired for geo-referenced 

field plots located at the intersection of 200×200 m grid. 
Trees with diameter of the breast height of 7 cm were 
selected in circular plots with different radii based on the 
probability proportional to size [25]. The most important 
forest stand attributes including the basal area, stand 
mean diameter, total volume and growing stock were 
calculated and used in this research (Table 1). Tree volume 
for individual trees was calculated using regression models 
[26] and then scaled to a per unit area basis (m3·ha-1). In 
this research 609 sample plots in 185 stands were used for 
modelling. Descriptive statistics of forest attributes and rank 
correlations with predictor variables were calculated for the 
sample dataset.

Sentinel S2A Data
One cloud-free Sentinel-2 scene acquired on 17th 

October 2018 was used in this study. The spectral data 
were obtained from the Copernicus Open Access Hub 
[27] as Level-1C data with Top of Atmosphere (TOA) 
reflectance. Characteristics of the spectral bands of 
Sentinel-2 MSI (Multi-Spectral Instrument) sensor and 
subset of used bands are presented in Table 2 [28].  
The atmospheric correction of Level-1C input data was 
performed using the Sen2Cor plug-in for Sentinel-2 
Toolbox and SNAP software provided by ESA (version 6.0.0, 
Brockmann Consult, Geesthacht, Germany). Corrected data 
were resampled on 20 m resolution, and vegetation indices 
and biophysical variables were calculated. 

Then, three spectral vegetation indices were calculated: 
difference vegetation index (DVI), ratio vegetation index 
(RVI) [29], and normalized difference vegetation index (NDVI) 
[30]. In addition, the biophysical variables were calculated 
in SNAP from its biophysical processor, which uses a neural 
network algorithm based on the PROSPECT+SAIL (PROSAIL) 
radiative transfer model [31]. Five biophysical variables were 
determined: fraction of absorbed photosynthetically active 
radiation (fapar), leaf area index (LAI), fraction of vegetation 
cover (FCOVER), chlorophyll content in the leaf (CHC), and 
canopy water content (CWC).
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Machine Learning Algorithms
Machine learning approach refers to analytical model 

building automatically learning from data itself. Here two 
different machine learning-based rules algorithms for 
regression were applied: M5P and RF. M5P is a machine 
learning technique introduced as reconstruction of Quinlan’s 
M5 algorithm for tree-based regression modelling [32]. 
It creates decision tree with linear regression function at 
the nodes using splitting criterion that minimizes the intra-
subset variation. The RF regression model is an ensemble 
of tree predictors constructed from bootstrapping training 
data. For both algorithms parameters tuning is related to 

the number of regression trees and the number of features 
(explanatory variables). Here default rules for the number 
of trees in Weka software were applied [33]. Important 
influence on the results of the applied rule-based algorithms 
has the feature selection. Here the ”wrapper method was 
used, which selects a set of features most suitable for a 
particular algorithm. Datasets were separated in reference 
(66%) and validation (33%) subsets randomly. Accuracy 
assessment was evaluated using the mean square error 
(MAE), root mean square error (RMSE) and relative RMSE 
(RMSE%) calculated using the following equations:

                                                              (1)
 

                                                (2)

                                                  (3)

where yi is observed forest attribute of the data i,  ŷi is 
estimated forest attribute of i, n is the number of validation 
data and y⁻ is the mean of the observed forest attribute. 
Then, determination was used to examine relationships 
between observed and estimated values. 

The finalized machine learning models were used to 
make predictions for measured and non-measured geo-
positions on pixel level in the study area. Input data were 
extracted from raster layers for each pixel geo-positioned on 
determined x and y coordinates. 

Described method was applied for forest attributes 
estimates based on inventory and Sentinel S2A spectral data 
in similar studies [19, 22, 23].

 

FIGURE 1. Position of the study area in B&H and Sarajevo Canton.
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Bosnia and Herzegovina
Canton Sarajevo
Study area

Legend

TABLE 2. Spectral bands of Sentinel-2 MSI sensor.

Band λ
(nm)

Δλ
(nm)

Resolution
(m)

Feature 
set

B1 433 20 60 -

B2 490 65 10 +

B3 560 35 10 +

B4 665 30 10 +

B5 705 15 20 +

B6 740 15 20 +

B7 783 20 20 +

B8 842 115 10 +

B8A 865 20 20 +

B9 945 20 60 -

B0 1375 30 60 -

B11 1610 90 20 +

B12 2190 180 20 +

TABLE 1. Descriptive statistics of dataset of forest attributes (n=609).

Statistic Basal area
(m2·ha-1)

Stand diameter
(cm)

Total volume
(m3·ha-1)

Growing stock
(m3·ha-1)

Mean 20.0 18.7 203.9 149.0

Standard Deviation 9.8 10.1 116.9 95.4

Minimum 1.6 2.2 18.4 0.00

Maximum 50.2 52.8 566.9 437.2
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RESULTS AND DISCUSSION

Correlations
Spearman’s rank correlation between forest attributes, 

spectral data, vegetation indices, biophysical variables 
and altitude is shown in Table 3. All forest attributes are 
correlated significantly to the most auxiliary variables. All 
forest variables are correlated significantly to B2 (blue), B3 
(green), B5, B6, B7 (three vegetation red edges), B8 (near 
infrared), B8A (narrow near-infrared band), all vegetation 
indices (DVI, NDVI and RVI) and a set of four biophysical 
variables (LAI, fapar, FCOVER and CWC). Shortwave infra-red 
bands B11 and B12 have low but significant correlation with 
the total volume and growing stock only. 

Growing stock was correlated significantly to all auxiliary 
variables achieving highest correlation with vegetation red 
edge B6 (-0.24). All correlations were very low, pointing out 
to weak correlations in general. Astola et al. [18] reported 
higher correlations between V0, Dg, BA in boreal broadleaved 
forests and Sentinel S2A digital numbers (-0.74, -0.75 and 
-0.69, respectively). 

Feature Selection
Predictor selection based on wrapping method resulted 

in subsets presented in Figure 2. The number of selected 
predictors varied between four and ten per forest attributes. 
Vegetation indices and biophysical variables were selected 
more frequently then the original spectral data. 

Original spectral bands participated in smaller numbers 
than in similar research related to regression tree modelling 
for boreal broadleaved forests [19]. 

Model Evaluation
The differences of sample and modelled forest attribute 

means were not significant, while modelled variability for 
all forest attributes was significantly lower (p<0.01). Model 
evaluations for reference and validation subsets are presented 
in Table 4. Relative RMSEs for M5P in reference sets ranged 
from 47.4% for G to 63.1% for GS, while values for RF 
varied from 17.9% to 23.6% for the same forest attributes 
respectively. Higher relative RMSEs for both algorithms 
were obtained for validations sets and ranged between 51% 
and 68% approximately. Higher relative RMSEs related to 
regression tree modelling were found for G, Dg and V0 in boreal 
broadleaved forests [19].

The RF performed better in a reference set for all forest 
attributes related to correlations between the observed and 
predicted values, while correlations in validation subsets were 
higher for M5P for all attributes (Figure 2). 

The presence of systematic errors was obtained for 
both algorithms for all attributes in a consistent way. Figure 
3 presents the relationships between the observed and 
predicted values in reference and validation sets for basal 
area that are similar for other forest attributes. The better 
performance of RF predictions is visible for RF in the reference 
set, while predictions in validation sets were biased and weak 

Forest Attribute BA Dg V0 V7

Algorithm M5P RF M5P RF M5P RF M5P RF

B2 + + +

B3 + +

B4 +

B5 + +

B6 + + +

B7 + +

B8 + +

B8A + +

B11 + + +

B12 + + +

DVI +

NDVI + + + +

RVI + + + + +

LAI + + + + +

fapar + +

FCOVER + +

CHC + + +

CWC + + +

Altitude + + + + + +

TABLE 3. Feature selection.
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for both algorithms in the range of observed basal area values. 
The over-fitting in reference sets was obtained in all 

models with weak adjustment in validation sets. The RF 
predictions on the measured location achieved reliable 
values, while surrounding pixel-based estimates deviated 
from ground truth. It seems that the chosen feature 
selection method and the algorithm’s specifications express 
low performances in validation sets, so further research 
related to reliable estimates on the pixel-level is needed.

Mapping of Basal Area for Beech Coppice Stands 
The mapping of forest attributes has become a 

contributing part for forest management on all forested areas 
[23, 34]. Recent research of coppice forests [12-14, 35] pointed 
out the importance of spatial distribution of forest production 
attributes for the planning of ameliorative measures 
(restoration, reforestation) especially in beech stands.  

We found that the applied machine learning-based 
estimation mapping could give insight into spatial distribution 
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Figure 2. Correlations in reference (a) and validation (b) subsets for different forest attributes and machine learning 
algorithms.

of forest attributes with better preservation of ranges of 
ground and RF estimated values. 

Here is a visualized spatial distribution modelled by RF 
for basal area as an example and two details with stands from 
Google Satellite (above) and estimated basal area (below) 
(Figure 4).

Estimate of spatial distribution of highly correlated forest 
attributes is consistent over the forested area. This consistency 
could contribute to the coppice forests’ function analysis 
considering their productive and protective roles. Related to 
productivity, RF spatial estimates better indicate areas with low 
values of forest attributes pointing out to the adequacy of stand 
potentials usage. Also, machine learning-based estimates near 
stand boundaries indicate forest quantity coverage related to 
the preservation of forest soil and protection from erosion 
and drying. We found that these indications could contribute 
to forest planning considering management and silvicultural 
measures aiming to improve coppice forest quantity and 
quality potentials.

a) b)

Forest Variable Data Set Method MAE RMSE RMSE%

G

RS
M5P 7.2 9.1 47.4

RF 2.7 3.4 17.9

VS
M5P 7.8 9.8 51.2

RF 8.2 10.4 54.1

Dg

RS
M5P 7.8 10.0 54.4

RF 3.0 3.9 21.0

VS
M5P 7.4 9.6 52.0

RF 7.3 9.5 51.6

V

RS
M5P 87.8 111.4 56.8

RF 33.0 42.1 21.5

VS
M5P 87.8 112.5 57.4

RF 96.0 122.0 62.2

GS

RS
M5P 72.0 89.6 63.1

RF 26.7 33.5 23.6

VS
M5P 73.3 92.8 65.3

RF 75.3 95.6 67.3

TABLE 4. Evaluation results (MAE, RMSE, RMSE%).
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CONCLUSIONS

Conclusions that can be drawn from this study are: 
•	 There are significant rank correlations between 

spectral Sentinel S2A data, vegetation indices, 
biophysical variables, altitude and the main beech 
coppice forest attributes (G, Dg, V0, GS).

•	 NDVI, LAI and altitude participated most frequently 
in selected variable subsets.

•	 Machine learning modelling based on M5P and RF 
resulted in different efficiency for all forest attributes. 
RF estimates in reference sets (RMSE% below 24%) 

Figure 3. Relationship between the observed and estimated values for growing stock in (a) the reference dataset and (b) the 
validation dataset.

Figure 4. Thematic maps of estimated spatial distribution for basal area in coppice stands (a) RF; (b) stands on Google - 
above, stands with basal area RF estimates - bellow).
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were better than M5P estimates (RMSE% below 
63%). In both modelling processes over fitting in 
reference sets were obtained, while estimates 
achieved high relative RMSEs in validation sets. 

•	 The machine learning approach compiled with 
Sentinel S2A spectral data is promising for the 
estimation and mapping of spatial distribution of 
forest attributes in beech coppice stands. 

Further research is needed related to machine learning 
algorithm specifications, more intensive and representative 
ground sample, spatial correlations and other scientific and 
technical possibilities.

a) b)
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