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The main issue of this paper is the design of a class of SISO robust control law for
the regulation of dissolved oxygen (DO) of an industrial Activated Sludge Wastewater
Plant via the air flow rate (non-affine control input). The control design is related with an
uncertainty estimator (reduced order observer) based Generic Model Control (GMC).
The desired dissolved oxygen trajectory is proposed as a Proportional-Integral (PI) form
of the regulation error and the modeling error related with the respiration rate and the
oxygen mass transfer coefficient are on-line estimated with a reduced order observer,
these structures produce a feedback/feed forward regulator which is robust against model
uncertainties and disturbances. The system’s closed-loop behavior is analyzed via the es-
timation error and regulation error dynamics. The performance of the proposed control
law is illustrated with numerical simulations, comparing the proposed controller with a
well-tuned PI controller.
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Introduction

Operating a wastewater treatment plant is not a
simple task: raw wastewater varies continuously in
quantity and composition and the heart of the pro-
cess, the biomass, also changes under the influence
of internal and external factors. To achieve ade-
quate plant performance, the operational parameters
can be adapted in any given situation to meet actual
requirements; these changes are based on measur-
ing relevant process parameters using grab or com-
posite samples for further monitoring and control
tasks.

The control of non-linear systems has been
widely studied over the last 20 years, where several
control methodologies have been proposed and em-
ployed1–3 particularly for activated sludge process
non-linear predictive control, optimal control,
linearizing control, and so on. The model based
controllers such as I/O linearizing, and Generic
Model Control (GMC) acts by canceling the non-
linearities of the processes and imposing determi-
nate closed-loop behavior to the system, assuming
perfect knowledge of the mathematical model, and
producing global asymptotic stability.4 A drawback
of exact model based techniques is that they rely on
exact cancellation of nonlinearities. In practice, ex-
act knowledge of system dynamics is not possible.
A more realistic situation is to know some nominal

functions of the corresponding nonlinearities,
which are employed in the control design. How-
ever, the use of nominal model nonlinearities
can lead to performance degradation and even
closed-loop instability. In fact, when the systems
possess strong nonlinearities, the standard model
based controllers (I/O and GMC) cannot cancel
completely such nonlinearities and instabilities can
be induced. The worst case is when the knowledge
of the nonlinearities is very poor or null. Therefore,
these conventional techniques are inadequate. In the
face of these events, the robust stability problem for
uncertain systems arises as a necessary control de-
sign approach to supply the controller with the cor-
responding on-line information and try to realize a
satisfactory closed-loop performance. Research on
robust control design for linearizable nonlinear sys-
tems has been done considering observed-based
controllers5,6 where peaking phenomena, stability
issues and robust performance are still topics that
deserve further study. To deal with these topics,
several control schemes have been proposed.
Among them are the neural control strategies,
which have been successfully applied, but their
main drawback is the over-parameterization when a
multiplayer neural-network is employed.

Classical adaptive controllers have shown an
adequate performance for a class of uncertain sys-
tems, where the parameters appear in a linear way
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in the model of the plant,7 but for high non-linear
systems (such as the biochemical process) this ap-
proach seems inadequate.

In recent papers,8,9 we have used Luenber-
ger-type observer structures to obtain on-line esti-
mates of uncertain signals. However, the resulting
controllers become very sensitive to measurement
noise. Since measurement noise is propagated
through the control loop, high frequency chattering
can induce premature degradation of the actuator
(e.g. valves, pumps and compressors) components.
To avoid some of the drawbacks mentioned above,
a Generic Model Control is proposed, in order to
add an integral contribution to the controller struc-
ture in the effort to compensate disturbances, be-
sides the controller is feed with an estimate of the
uncertain signal of the plant (respiration rate and
oxygen mass transfer coefficient) related with the
corresponding modeling errors; this is estimated by
employing a proportional reduced order observer.
The proposed methodology is applied to the mathe-
matical model of an activated sludge wastewater
plant, which corroborates with COD (Chemical Ox-
ygen Demand) industrial data and industrial opera-
tion conditions, with satisfactory results.

The industrial activated sludge
wastewater plant

The petrochemical industry under study pro-
duces wastewater generated from different chemical
processes. The wastewater flow produced is about
Q = 7000 m3 d–1 and contains volatile organic car-
bon substances classified as toxics10 like 1,2
dichloroethane, chloroform, benzene, among oth-
ers, and volatile compounds, (VOC’s). To comply
with the effluent quality required by the Mexican
environmental legislation11 the wastewater is pro-
cessed in the treatment plant before being dis-
charged into the river. The treatment process com-
prises oil removal, using a corrugated plates inter-
ceptor (CPI), equalization basin, and activated
sludge process composed of three independent
bioreactors with a V = 5000 m3 volume each. The
residence time in each is about 2 days. The biologi-
cal sludge produced is concentrated by centri-
fugation and the treated effluent is subsequently
chlorinated. The petrochemical wastewater treat-
ment plant is located near the Mexican coast, where
the mean weather temperature in the hottest months
(April to August) is nearly T = 35 °C and in ex-
treme conditions it reaches up to T = 38 °C. Such
high temperatures affect the air temperature at the
compressor exit producing a significant air temper-
ature rise at the diffusers of up to T = 82 °C or
more. This provokes an increase in the bioreactor

wastewater temperature within the biological reac-
tor. The actual temperature conditions within the
bioreactor are T = 32 °C in October-November
reaching up to T = 41 °C in August-September. Due
to this effect, the microorganism’s activity is af-
fected and this must be considered in the dynamic
modeling of the system. Some models have been
developed to describe the effect of temperature on
bacterial growth.12–14 The authors showed that at
high temperatures the maximum specific growth
rate (%max) is reduced.

One of the purposes of this study was to model
the sludge activated treatment plant at different
temperatures applying a simple carbon removal
model. The temperature effects on the maximum
specific growth rate, mass transfer coefficient for
oxygen (kLa) and death coefficient (kd), were incor-
porated into the mass balance equations of the pro-
cess.

Experimental methodology

Experimental data were obtained from the pet-
rochemical biological wastewater plant. Different
samples were taken daily (after 8 h), from the influ-
ent and bioreactors during the period from October
2002 to September 2003. The bioreactor capacity
was V = 5000 m3 each. The flow was about Qr =
2300 to 2600 m3 d–1 and the mean residence time in
each bioreactor was about �R = 2.0 d. The bio-
reactors operate with bubble fine diffusers equip-
ment (FBD). The volumetric power level in the
chambers with the FBD system is about 0.0298 kW
m–3. It was considered that all the bioreactors were
mixed flow reactors. The Chemical Oxygen De-
mand (COD) was measured15 in the laboratory
plant. The mean of three analyses was taken as the
daily mean analysis per chamber. In order to obtain
the results reported in the figures, the mean of the
daily mean analysis was obtained. The kinetic pa-
rameters were obtained in laboratory bioreactors
following the method by Ramalho.16 The tempera-
ture effect on the maximum specific growth rate
was evaluated with eq. (8) where b = 0.05 K–1 h–0.5

and c = 0.005 K–1 (which is a parameter to fit the
experimental data to the model),10 the mass transfer
coefficient for the oxygen (kLa) with eq. (10) which
is an empirical function of the air flow,17 the death
coefficient (kd) with eq. (9), the evaporation flux of
VOC’s (Kev �S) is also considered in the COD bal-
ance, together with the inactive biomass (1 – fn) �X
this term is the biomass part which depends on the
metabolic products of other bacteria and cellular
lyses, which acts as available organic matter and
are quantified as substrate (�COD mg L–1), the term
f fn n( [ , ])4 0 1 is an effective factor for this inacti-
vate biomass, which is empirically evaluated. The
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complete description of the parameter estimation
methods is giving in.17

The activated sludge petrochemical wastewater
treatment process is shown in Fig. 1.

The process is described by the following mass
balance equations.19 As a first modeling approach,
the temperature effect on different quantities is con-
sidered introducing an energy balance considering
that the metabolic heat generation due to the respi-
ration rate can be neglected in comparison with the
other energy flows, the quantities of the energy bal-
ance are considered as the same as water. The
bioreactor behavior was assumed as a completely
mixed flow reactor.

In the reactor:
Substrate ( )� S concentration mass balance:
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Energy Balance (T):
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It was assumed that there was no biomass in
the overflow of the settler.15

In the settler:
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The mathematical model of the wastewater
plant and its open loop behavior was previously
presented in17,20 where a local analysis based on
Lyapunov criteria showed that all the state variables
(substrate, biomass, dissolved oxygen, temperature
and biomass of the settler) are stable over a wide
range of operation conditions.

Robust control law design

Problem statement

The DO mass concentration in the mixed li-
quor in biological treatment systems has proved to
be an important process parameter. The proper DO
control can improve the process performance and
give an economic incentive which minimizes ex-
cess oxygenation by supplying only the amount of
necessary air. An adequate DO mass concentration
in the bioreactor must lead to satisfactory biomass
growth and a desired consumption of substrate,
which is the pollutant of the wastewater to be
treated and the real control objective of the plant.

Consider the following dynamic subsystem:
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Note that the oxygen mass transfer coefficient
is a nonlinear function of the control input Qair and
the reactor temperature T;18 therefore, the subsys-
tem given by both above equations is non-affine in
the control input, this situation leads to a problem
for the design and the operation performance of the
proposed control methodology. To avoid this situa-
tion an alternative representation is proposed of the
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oxygen mass transfer coefficient via Taylor’s series,
as follows:
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where G(Qair, T) are higher order terms. From the
above equation, a linear representation of the oxy-
gen mass transfer coefficient as a function of the air
flow rate can be obtained as follows:

k a KQ F Q TL air air� � ( , ) (11)

here:
F Q T( , )air is the modeling error of the mass

transfer coefficient.
On the other hand, the respiration rate is se-

lected as a meaningful biological indicator, as it
yields the rate at which the microorganisms utilize
oxygen in carrying out their metabolic activities.
This variable provides information about the cur-
rent stage of the biological reactions and can be em-
ployed with a number of control strategies, and
characterize the DO process and the associate re-
moval and degradation of biodegradable load. Fur-
thermore, a rapid decrease of the respiration rate
can be used as a warning that toxic matter has en-
tered the plant. This variable together with the oxy-
gen transfer rate, is needed to monitor the biologi-
cal activity and assess the performance of the pro-
cess control system.

The respiration rate (D) is generally difficult to
evaluate and consequently constitute other model-
ing error terms for modeling the mass balance of
the dissolved oxygen (DO), and can be represented
as:
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Therefore, the subsystem related with the DO
mass balance is now represented by:
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defining � � �� � �F( )
,O Osat2 2

D as the whole mod-
eling error, the DO mass balance is represented as:
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Note that the uncertain term, �( , , )T Q air etc is
considered as a new state and F( , , )T Q air etc is a
non-linear unknown function that describes the
�-dynamics and the measured system output (y) is
the dissolved oxygen concentration.

Robust Generic Model Control law

Generic Model Control is employed to utilize
the nonlinear dynamics of the system under study
in the control algorithm. In GMC, nonlinear process
models can be embedded directly into the controller
without linearization. GMC is a very simple and
robust nonlinear control algorithm in SISO pro-
cess.20,21

Now, considering the following DO state equa-
tion:
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Where the desired closed-loop trajectory of the DO
(yd) in the bioreactor is proposed as:
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where ysp is the corresponding set point and g1, g2
are the corresponding proportional and integral
controller gains; combining the two above equa-
tions, the following expression for the control law
is generated:
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In an ideal case with non-modeling errors in
the state equation (i. e. � known), the corresponding
dynamic equation of the regulation error (8 = y – ysp)
is:
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which provides a stable exponential convergence to
zero, as it is well known.

The proposed controller is related with the reg-
ulation of the DO levels in the bioreactor (control
output) employing the air flow from the compressor
system (control input) to develop a single input –
single output (SISO) control scheme. Therefore,
some other state variables, such as temperature, are
not explicitly considered in the controller design,
primarly because this kind of bioreactor lacks heat
transfer devices; however the temperature affects
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the dissolved oxygen mass balance, because the ox-
ygen mass transfer coefficient (kLa) and the maxi-
mum specific growth rate �max are explicit functions
of the bioreactor temperature.

As it can be noticed, the synthesis of the nomi-
nal control law needs accurate knowledge of the
mathematical model of the process to be realizable,
in order to cancel completely the nonlinear charac-
teristics of the system. However, a perfect model is
impossible to be obtained and, consequently, for
uncertain systems a conventional GMC controller
design is inadequate.

Nevertheless, there is another way to develop a
GMC-type controller that is robust against uncer-
tainties. The procedure shown below defines,
firstly, a method to estimate the uncertainty term,
�( , , ).T Q air etc This approach is based on a reduced
order estimator design that can provide the corre-
sponding information to the controller to be realiz-
able.

Uncertainty estimator design

One of the major bottlenecks in the application
of computer monitoring and control for biological
process is the lack of reliable, sterilizable and ro-
bust sensors for the on-line measurements of pro-
cess key variables, such as biomass, precursors,
product concentrations and consumption rates. Sev-
eral attempts to quantify the above variables have
been employed, some of them are optical tech-
niques, electrochemical detection and by viscosity,
filtration and fluorescence methods,22 but these ap-
proaches frequently do not properly address the
most important industrial problems and necessities.

To tackle the problem mentioned above, sev-
eral state estimation techniques for bioprocess have
been developed. These techniques are often named
soft-sensors and are based on the balancing tech-
nique. Such an approach is adequate for steady-state
operation, however it becomes unstable when dy-
namic and corrupted measurements are presents;23

and filtering (observing) theory where extended
Kalman filters, nonlinear Luenberger observers,
sliding-mode, high gain and so on; observers have
been successfully employed.24 Considering our par-
ticular case, the state variable to be regulated is di-
rectly the measured output of the system, i. e. the
DO mass concentration. Therefore, a reduced order
observer to infer the uncertain term is proposed. For
control purposes, the kinetic terms and the oxygen
convective mass transfer are considered as un-
known terms which are estimated by the corre-
sponding uncertainty estimator, to feed this infor-
mation to the control law, consequently the effect of
the temperature and other variables are compen-
sated for the proposed controller.

Proposition 1: The following dynamic system
is an asymptotic-type reduced order observer for
the estimation of the uncertainty defined in the sys-
tem (14):
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where the observed uncertainty � is obtained by
solving the mass balance equation, in accordance
with the next equation:
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As can be seen, the structure of the proposed
observer includes the derivative of the DO mass
concentration, which must be calculated in order to
obtain estimates of the reaction rate. However, the
synthesis of derivators is a difficult task; moreover,
if the concentration measurements are noisy the
synthesis could be impossible. In order to avoid this
situation, the following change of variable is pro-
posed:

Q� ��� &y (20)

Producing an uncertainty observer with the fol-
lowing structure:
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Note that with eqs. (20) and (21) the uncertain
term can be expressed finally as:
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As can be seen, this estimation methodology
only depends on measured variables, and is conse-
quently completely realizable. Now, for the realiza-
tion of the robust (non-ideal) GMC the estimate of
the uncertain term determinate above is coupled to
the ideal GCM to produce:
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Closed-loop stability analysis

Stability observer comments

First let us consider the convergence analysis
of the proposed observer, in accordance with Prop-
osition 1:
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it is an asymptotic proportional reduced observer
for system given by (7), where & > 0, determines the
desired convergence rate of the observer, if the fol-
lowing assumptions are satisfied:
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where e10 is the initial condition of the estimation
error. Taking norms of the eq. (27) the following in-
equality arises:
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The above equation means that the((/ case of
uniform L’hôpital’s rule can be applied as follows:
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Besides, the above inequality implies that the
estimation error can be as small as desired, if the
observer gain � is chosen large enough.

Note that if the system output is corrupted by
additive noise i. e. y y� �O2

, and the noise is con-
sidered bounded so that || || ,, �P a similar method-
ology used to analyze the estimation error e1 can be
applied in order to prove that the steady-state esti-

mation error becomes
( )N �P

&
which proves ro-

bustness against noisy measurements.

Dissolved oxygen stability comments

The performance of the DO mass concentration
trajectory can be done via the analysis of the corre-
sponding closed-loop state equation:
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Note that matrix A is Hurwitz stable with an
adequate choosing of the control gains, therefore
the solution of eq. (31), renders:
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Here, E0 is the initial condition of the regula-
tion error.

Assuming two positive constants j > 0 and + > 0,
which satisfy:
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Considering the above assumption and taking
norms for both sides of eq. (32), the following
equation is generated:

|| || exp( ) || ||E j t E
j N j N

� � �
-

.
/

0

1
2�+

+ & + &0 (33)

76 R. AGUILAR-LÓPEZ, Robust Generic Model Control for Dissolved Oxygen in …, Chem. Biochem. Eng. Q. 22 (1) 71–79 (2008)



Taking the limit, when t�(:

|| ||E
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Note that the proportional feedback part of the
controller provides closed-loop stability to the
plant, whereas the integral feedback acts as com-
pensator for disturbances and probable noisy mea-
surements, finally the uncertainty estimator pro-
vides a feed forward compensation for modeling er-
rors.

Results and discussion

The model was validated with COD data ob-
tained from the wastewater treatment plant, which
was in operation for a year, from October 2002 to
September 2003. Table 1 shows the different indus-
trial scenarios used to validate the dynamic model-
ing:

As may be discerned from Fig. 2, the perfor-
mance of the model to predict the COD (�S sub-
strate) concentration from industrial data seems
satisfactory. The model tracks the corresponding
trajectory under several operational and environ-
mental conditions. On other hand, as mentioned
above, for the simulation study, the plant was sub-
ject to several disturbances, at day 35 the substrate
input mass concentration changed from � = 3400
mg L–1 to 5400 mg L–1 and the environmental tem-
perature changed from T = 38 °C to T = 36 °C;
at day 36 the substrate input mass concentration

changed again to � = 4850 mg L–1; at day 125 the
environmental temperature changed again to T =
38 °C, at day 190 the corresponding environmental
temperature changed to T = 41 °C and finally at day
270 changed to T = 33 °C.

An optimal operating region was previously
determinated in order to fix the corresponding set
point of the DO mass concentration via steady state
analysis, so that ysp = 2.0 mg L–1 was chosen be-
cause this DO steady state value corresponds to a
biomass concentration of �X = 2450 mg L–1, tem-
perature of T = 36 °C and the most important to the
substrate concentration �S = 105 mg L–1, which
complies with Mexican regulation; some of these
results are presented in Fig. 3. The controller is
tuned with a proportional gain g1 = 20 d–1 and the
integral gain g2 = 10 d–1, the observer gain is � =
1 d–1, with these parameters, the controller is acti-
vated and Fig. 4 shows the closed-loop behavior of
the DO mass concentration, when the disturbances
arrive to the process the controller is able to reject
them keeping the DO mass concentration on the de-
sired set point (�O2 ~ 2 mg L–1) without great effort
as is shown in Fig. 5. The Fig. 6 refers to the
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T a b l e 1 – Scenarios presented during the wastewater
treatment plant operation to validate the
dynamic modeling

Quantity
Scenario

1
Scenario

2
Scenario

3
Scenario

4
Scenario

5

�S,f

mg L–1
2500 2800 3100 2000 2600

T

°C
32.5 38 36 39 41

Qf

m3 d–1
7300 7200 7600 7300 7400

Qr

m3 d–1
1500 2000 1500 2600 2600

Qw

m3 d–1
900 700 800 800 750

F i g . 2 – Dynamic model validation with �S mass concen-
tration data

F i g . 3 – Closed-loop steady-state phase portrait (�S, �X, �O2)



closed-loop performance of the uncertainty ob-
server, the performance seems satisfactory and ade-
quate estimation of the uncertainty is reached. The

proposed controller is compared with a commercial
linear PI controller considering the same control
gains, i. e. g1 = 20 d–1 and g2 = 10 d–1 Fig. 4 and 5
contain the corresponding controller performance;
note that the standard PI controller has a much
slower response than the robust GMC.

Conclusions

A mathematical model of an Activated Sludge
Wastewater Plant is developed and corroborates
with industrial COD and operating data with good
results. This model is employed as a virtual process
where the respiration and oxygen transfer rates are
supposed uncertain. To avoid the problem of mod-
eling errors a reduced order observer is proposed,
the information generated by the observer is cou-
pled with a Generic Model Control law, thus
achieving a robust structure against modeling error
and disturbances. The closed-loop performance of
the plant is analyzed with the dynamic equations of
the estimation and regulation errors, showing the
properties of the proposed methodology. Numerical
simulations illustrate the satisfactory performance
of the observer based Generic Model Control law,
where the plant is led to an optimum operating re-
gion and the DO set point chosen (� = 2 mg L–1)
produce a very satisfactory level of COD (�S ~ 105
mg L–1) at the plant output which is the main objec-
tive for this process.
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N o m e n c l a t u r e

A – transport area, m2

b – 0.05 K–1 d–0.5

c – 0.005 K–1

Cp – specific heat capacity, kJ g–1 K–1

e1 – estimation error

F – mass transfer coefficient modeling error

fn – effectiveness factor for the inactivate biomass

g1,2 – control gains, d–1

hc – heat transfer coefficient, kW m–2 K–1

K – number density, m–3

Ks – substrate saturation constant, 30 mg L–1

KOH – substrate saturation constant, 0.2 mg L–1

kd – death coefficient, d–1 = kd 20 1.05(T – 293)
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F i g . 4 – Closed-loop performance of the �O2 mass concen-
tration with the proposed controller

F i g . 5 – Closed-loop performance of the system input (air
flow rate, Qair) with proposed controller

F i g . 6 – Closed-loop uncertainty observer performance



kd 20 – death coefficient at 293 K = 0.03 d–1

kLa – mass transfer coefficient, d–1 = kLa,20 1.02
(T – 293)

kLa,20– 166 1
23040

�
��

�
�

�

�
 

�

�
��

�

�
  exp

Qair mass transfer coefficient at

293 K d–1

N – uncertainty quota

Qf – influent flow rate, m3 d–1

Qr – recycle flow rate, m3 d–1

QW – waste flow rate, m3 d–1

Qair – air flow rate, m3 d–1

Tww – wastewater temperature in the bioreactor °C or K

t – time, d–1

Yx/s – 0.67, yield, mg biomass produced mg–1 COD
consumed

YO2
– 2.03, yield oxygen mg biomass produced mg–1

O2 consumed

V – reactor volume = 15000 m3

VS – settler volume = 750 m3

G r e e k l e t t e r s

�O2f – dissolved oxygen mass concentration in the in-
fluent, mg L–1

�O2 – dissolved oxygen mass concentration in the reac-
tor, mg L–1

�O2sat – dissolved oxygen saturation mass concentration,
mg L–1

� – measurement noise, mg L–1

D – respiration rate modeling error, mg L–1d–1

� – regulation error

�Sf – COD mass concentration in the influent, mg L–1

�S – COD mass concentration in the reactor, mg L–1

�X – biomass concentration in the reactor, mg L–1

�Xr – biomass concentration in the settler, mg L–1

� – uncertain term, mg L–1d–1

�� – uncertain term estimated, mg L–1d–1

% – specific growth rate, d–1�
�

% �

�
max S

s SK

%max – maximum specific growth rate, d–1

= b2 (T – 285)2 {1 – exp [c(T – 330.5)]}2

5 – density, mg L–1

& – observer’s gain, d–1

&R – residence time, d
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