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Abstract

The Traveling salesman problem (TSP) defines the problem of finding the optimal path between 
multiple points, connected by paths of a certain cost. This paper applies that problem formulation in 
the maritime environment, specifically a path planning problem for a tour boat visiting popular tourist 
locations in Medulin, Croatia. The problem is solved using two evolutionary computing methods – the 
genetic algorithm (GA) and the simulated annealing (SA) - and comparing the results (are compared) 
by an extensive search of the solution space. The results show that evolutionary computing algorithms 
provide comparable results to an extensive search in a shorter amount of time, with SA providing 
better results of the two.

Keywords: evolutionary computing, genetic algorithm, simulated annealing, tourism, traveling 
salesman problem
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1. Introduction

TSP is a well known problem in theoretical computer science [1]. It is described 
as follows “If there is a list of cities, along with distances between them, what is the 
best (shortest, cheapest) route that can be taken which visits all cities and returns to 
the starting city (circular path)” [2]. TSP is a non-deterministic polynomial-time (NP) 
type of problem which has equivalent difficulty to the NP problem. NP problems are 
computational problems for which a solution can be verified in polynomial time – 
given a “yes” answer it can be determined, with relative ease, whether that solution 
is correct – but determining the correct solution cannot be done in the same time - 
that is referred to as the non deterministic polynomial time [3]. In the case of TSP it 
means that for a given route it is easy to check if it is the best one by using a given 
condition (e.g. distance). But to find the best route can be a time intensive task. Since 
TSP and similar problems can have a large number of solutions, solving them using 
classical deterministic methods such as the extensive search can be a time consuming 
task. This is why applying a heuristic search method, such as evolutionary computing 
optimization algorithms, could prove to be a better solution [4]. Evolutionary computing 
algorithms are a part of the family of artificial intelligence methods [5-7]. Those 
methods, including genetic algorithms [8], neural networks [9] and others [10] have 
been applied in maritime environments with great success [11-13]. The same methods 
have wide possibilities of usage: in the analysis of entire plants or its elements [14, 
15], in improving operation of the elements used in marine applications [16-18], for 
optimization purposes of marine power plant components [19-22], in comparison of 
several solutions for choosing the optimal propulsion system [23], for estimation of 
power output of complex plants [24], etc. Evolutionary computing methods are methods 
that search the solution space using different techniques. Solution space is defined as the 
mathematical space containing all possible solutions to a given problem. Evolutionary 
computing algorithms do not search the entire solution space, but instead they search 
sections of it or check different parts of it, in an attempt to find a better solution [25]. 
Obtaining a better solution can also depend on the complexity of a component, a system 
or a problem for which the solution space is searched [26-28]. As these are heuristic 
methods they do not guarantee that the best solution will be found, but rather that a 
satisfying solution will be found faster than using a deterministic method [5, 29]. This 
paper uses two different evolutionary computing algorithms:

•	 GA which is an algorithm that is based on the biological evolution, attempting 
to find a better solution recombining and mutating the existing solutions and

•	 SA which is an algorithm based on metal annealing solution, moving to a 
neighboring solution if it is better, with a possibility of selecting a worse solution 
based on the system temperature.

In the problem observed in this paper, the vertices are representing islands and 
the edges are paths between them. The problem defined as TSP is the problem of 
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traversing all the islands by the shortest distance. The islands picked are popular 
tourist destinations in the Medulin region located in the south of the Istrian peninsula, 
Croatia. As these are popular visiting destinations for tour boats, finding the optimal 
path between them is useful for tour boaters, as a shorter travel path will enable them 
to perform more tours due to the shorter time needed to complete the route, and will 
reduce the cost due to less fuel used. The starting and ending points of the path observed 
in this paper are the same, thus making the path circular as followed through the graph 
it returns back to the starting vertex. This means that the choice of the starting vertex, 
or the direction of the path taken, is irrelevant to the path length, as the generated sub-
graph describing the path with the chosen starting point is equivalent to the sub-graphs 
of the same path with different starting points.  

1.1 Background

Pessôa et al. [30] (2015) showed the application of TSP in the oceanographic and 
hydrographic survey planning, where the path of a platform across targeted geographic 
positions must be optimized. Authors successfully apply the dynamic programming 
solution to solve the problem. Neumann [31] (2017) showed the application of TSP 
in the maritime transport routing. The application of a TSP formulation, even where 
an uncertain route information is used, is shown as a successful one. Arnesen et al. 
[32] (2017) showed the application of TSP on an in-port ship routing and scheduling. 
The results show that TSP can be applied to a problem in which consideration must be 
given to pickups, deliveries, time windows and draft limits. Zhong et al. [33] (2017) 
proposed the application of a different artificial intelligence method in solving the TSP 
- a continuous hopfield neural network used in their paper. The continuous hopfield 
neural network is shown as a good way of solving even complex TSP problems. Chlàdek 
and Smetanovà [34] (2018) showed the application of TSP on Black Sea Ports in an 
attempt to find the best route for shipping purposes to the ports used by Czech ocean 
shipping companies. The application of TSP was shown to be successful, and with the 
application of deterministic search methods the best route between determined ports 
has been found. Elgesem et al. [35] (2018) showed the application of the traveling 
salesman problem in a chemical shipping application, with non firmly determined 
travel times. The TSP formulation was shown to be successful again, and authors 
show that the shortest path can be found even when stochastic travel times are used 
as edge weights. Juneja et al. [36] (2019) showed the application of GA in TSP. The 
results show a successful application of the algorithm to the given problem. Chaudari 
and Thakkar [37] (2019.) gave an empirical comparison between multiple algorithms 
(ant colony optimization, particle swarm optimization, artificial bee colony, firefly 
algorithm and genetic algorithm) for solving the TSP. Results show that the GA and ant 
colony optimization outperform the other algorithms used in most TSP problems where 
algorithms were used. We can see that there is a lack of papers that both apply the TSP 
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formulation to the nautical environment (especially relating to tourism) and attempt 
to solve the problem in the given environment using artificial intelligence or, more 
precisely, evolutionary computing methods. Three hypotheses are being determined:

•	 It is possible to apply the TSP formulation in path planning for a nautical route,
•	 it is possible to find a satisfying solution to the presented problem using 

evolutionary computing methods and
•	 evolutionary computing methods provide a benefit compared to the deterministic 

search method for solution of TSP in the given problem.
This paper uses a simple weight to graph connections – the distance between 

nodes, as it tries to prove the possibility to use this formulation and solution using 
evolutionary computing algorithms in the described environment. While a more 
complex metric could be used to evaluate the connection weights, a simple metric has 
been decided to be used in this paper. This was done in order to eliminate the complexity 
brought in by using a different metric, so the application of heuristic methods to the 
given problem could be tested more directly. In this way, it is simple to observe the 
results of the algorithms – and if those results are satisfactory, a future work can include 
more complex models of the cost function used to determine the connection weights.

2. Methodology

2.1. Data collection

First, the locations to be visited are chosen. For this paper nine locations were 
selected: Bodulaš, Ceja, Fenoliga, Finera, Golumbera, Levan, Porat, Porer and Portić. 
These locations can be seen in Figure 1. The harbor Porat (furthest north in Figure 1) 
was chosen as the starting and ending point of the graph traversal. 

Figure 1 - Locations used in the path shown on the map of the area [38]
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The distances between chosen locations need to be measured to determine the 
weights of the edges in the graph. This was done by measuring the shortest possible 
distance between two locations – often a straight line path, provided that the path does 
not cross land. The distances to all locations were measured from the same point on 
the coast of each location. After the measurement the distances between locations were 
stored in a CSV file to be loaded into a path finding algorithm.  The distances between 
locations, in nautical miles, are shown in Table 1. 

Table 1 - Table of distances, in nautical miles, between locations chosen to be on the 
path

 
Porat Ceja Bodulas Levan Fenera Portić Golumbera Fenoliga Porer

Porat 0.0 1.90 1.79 3.14 2.65 2.70 3.66 4.80 5.24

Ceja 1.90 0.0 0.58 2.24 0.70 0.91 1.73 2.50 2.74

Bodulas 1.79 0.58 0.0 1.39 0.89 1.75 2.21 2.76 3.27

Levan 3.14 2.24 1.39 0.0 2.04 3.23 3.63 4.16 4.70

Fenera 2.65 0.70 0.89 2.04 0.0 1.39 1.51 1.92 2.41

Portić 2.70 0.91 1.75 3.23 1.39 0.0 1.89 1.87 2.29

Golumbera 3.66 1.73 2.21 3.63 1.51 1.89 0.0 0.93 1.21

Fenoliga 4.80 2.50 2.76 4.16 1.92 1.87 0.93 0.0 0.62

Porer 5.24 2.74 3.27 4.70 2.41 2.29 1.21 0.62 0.0

2.2 Problem formulation

To define the TSP mathematically, geographical relations between locations are 
converted in a graph presentation 

	 G=(V,E),	 (1)
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where locations are presented with a set of vertices (V) of a graph and roads between 
cities are presented with a set of edges (E) [39, 40]. The graphs in TSP are usually 
undirected, which means that it is possible to travel in any direction between two 
vertices, as well as fully connected [41]. Fully connected graph means that it is possible 
to directly travel from any vertex in set V to any other vertex in that set by only traveling 
along a single edge. In other words, this means that each vertex in set V has an edge 
in set E connecting it directly to any other vertex in set V [42]. Edges of graph G can 
have weights (w(Ei)) assigned to them [39]. This is useful for such problems as the TSP, 
because of the cost of travel along an edge (e.g. distance). Since a problem formulation 
requires a fully connected graph, the distances between each and every two locations 
are measured. The graph used is undirected, which means that the cost of travel between 
two vertices is the same no matter the direction of the travel – in reality this means that 
the same path is taken between two locations, hence the same distance between them 
[43,44]. It is also important to note that the path taken between the starting and ending 
point is the so-called Hamiltonian cycle - a cycle within a graph that visits each vertex 
exactly once, before returning to the starting vertex [45].

Once the locations are decided and the distances are measured the graph can be 
defined. The graph representing the situation observed in this paper is shown in Figure 
2. It must be noted that the positioning of a vertex in a graph and length of edges have 
no relations to the actual geographical positioning and distances. The weights of the 
edges (distances between locations) are not displayed on the graph for simplicity. 
Locations have been assigned a numerical identifier, with the starting and ending node 
being marked “0”, for a more simple notation during the algorithm implementation.

Figure 2 - Graphic representation of the observed problem
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To calculate paths the data need to be represented in an appropriate way. To 
achieve that, distances from Table 1 are stored in a two-dimensional array – with array 
indices being equal to the numerical identifiers of the node which enables the distance 
between nodes to be accessed as the array location whose indices are equal to numerical 
identifiers of nodes. The path is stored in a sequential linked list. 

2.2. Path determination

To determine the quality of the path a fitness function needs to be determined. 
Fitness function is a function which determines the quality of each agent, where agent 
is defined as an instance of a path. In the observed case the path is determined as a sum 
of distances between each of the points of the path. Or, in the graph theory terminology, 
a sum of all weights of the edges between vertices on the path, defined per

	 	 (2)

where  is the edge between vertices on indices i and i+1 in the path list.

To determine the optimal path, we can use the extensive search. Extensive search 
is a method that calculates the fitness function for each possible solution, i.e. for every 
point in the solution space. To calculate what this number is, the number of permutations 
possible within our paths must be calculated [46], using

	 	 (3)

where n is the number of elements in the set, and r is the size of the sample taken – the 
length of the path. In our case our path length is ten, but as we now that the first and last 
points in our path will be “0” we don’t need to include that in our calculation, making 
r=8. In the same manner, there are nine possibilities in total for each point in the path, 
but we also don’t need to include “0” as we know that the vertex will be visited as it is 
the starting point, making n=8 in our case. With this values known, we can calculate 
the total number of points in the solution space as

	 	 (4)

The extensive search will calculate the fitness function for each point and return 
the one with the lowest value. As this is a deterministic method, it is guaranteed that 
the optimal solution will be returned. Extensive search is used to determine the length 
of paths, the shortest and longest paths possible, as well as to determine the time it 
takes to search all possible solutions. 
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2.3. Genetic algorithm

The GA is an algorithm based on the evolution [47,48]. GA starts by generating a 
starting population – a group of agents. Each agent contains the solution to a problem 
in a representation that is favorable to the programmatic representation (so called 
genotype) and the value, or the means to calculate the value, of fitness function.  GA 
is based on mechanisms of crossover and mutation [5]. Crossover is a mechanism 
that creates a new agent from two already existing ones picked from the population 
and inserts it into the population if it is better than an existing agent. Two agents 
picked from the population and used to generate a new one are commonly referred to 
as “parents”, while the resulting agent after recombination is known as “child” [49]. 
This mechanism that replaces current agents with better ones, allows the algorithm 
to search for better solutions in the solution space [49,50]. Parents are picked from 
the population at random, although techniques that change the random distribution 
of probability are often used to increase the probability of better parents (those with 
better value of the fitness function) to be chosen,  as in theory this will lead to better 
children to be produced. In this paper the so called “roulette wheel” selection is used. 
In this type of parent selection the probability of an agent from the population being 
picked to become a parent is directly proportional to their fitness function, so it is more 
likely for a better fitting agent to produce children [50]. This algorithm is an iterative 
method – it repeats the used mechanisms on the current population through iterations 
known as generations [5].

There are multiple ways a crossover can be performed between agents [52, 53]. 
The crossover method is usually picked to conform to the shape of the genotype. In 
this paper a random recombination technique has been used [52]. In this technique, a 
value of a child parent is randomly picked between values of two parent agents. This 
means that, in the observed case, a path will be constructed in a way that for each of 
the eight points of the path (ignoring the starting and ending point, which are both 
“0”) the vertex will be randomly selected from one of the chosen parents, with equal 
probability (i.e. a coin toss). In the observed case there is an additional constraint – a 
point cannot be repeated throughout the path. Consecutively, due to the length of the 
path being equal to the number of vertices in a graph, all vertices must be included 
in the path. Because of this, in the case where a point of the path that has been newly 
selected already exists in the path, it is to be selected from the other parent. If that point 
also exists in the path, then the new point of the path is randomly selected among the 
vertices that haven’t been chosen yet. This type of crossover is appropriate for situations 
where values going into a genotype are fixed and selected from a set, and cannot be 
calculated by using something like a mean of parents’ values.
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Figure 3 - Illustration of used crossover method

Another important function in the genetic algorithm is mutation. Mutation happens 
in a rare number of iterations. In this mechanism, a selected agent from the population 
is replaced with a randomly generated agent [54]. Mutation differs from crossover 
in another way – the newly randomly generated agent’s fitness isn’t checked before 
replacement, so even a worse agent can be introduced in the population through this 
mechanism. A question arises – what is the benefit of introducing randomly generated, 
possibly worse agents into the population? Research has shown that, when mutation 
isn’t applied in the GA, solutions have a tendency to converge into local minima of the 
solution space, due to the fact that the solutions generated through crossover tend to 
end up close to the first generated solutions. Mutation mechanism allows GA to have 
a wider search area across the solution space and enables it to find the better minima 
(possibly even the global minima) [54, 55]. The process of GA is shown in Figure 4. 

Figure 4 - Illustration of genetic algorithm

The end condition is the condition that determines whether the algorithm is a 
finished iterating. Because of the fast execution times, in this paper the end condition is 
simply set to detect that the predefined number of generations has elapsed. This means 
that the algorithm will always run for the same number of generations [57]. 

In direct application to the problem discussed in this paper, the starting population 
is generated by creating a set of 20 random valid paths, where a valid path is a path 
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in which a location is not repeated. The fitness value of each path is calculated as the 
length of the path. Then, the process of iterating through generations is started. In 
each of 50 generations a new path is generated by randomly selecting locations from 
each path and creating a new path, as previously described. This process is repeated 
for each of the existing paths. Fitness of the new path and the current existing path 
are compared and if the new path has a shorter length it is inserted into the generation 
replacing the current path. In a small number of cases (1%), due to the mutation 
process, a random path is generated (keeping restrictions making it valid in mind) and 
the current path is replaced with no regards to their lengths. With this we get multiple 
solutions, representing paths in the solution space. With each generation current paths 
are replaced with better paths moving towards a better (in this case shorter) solution. 
New solutions in the solution space will be located in an area between two parent paths 
that were used to generate them. At the end the best solution, i.e. the shortest path, is 
selected and presented as the final solution. 

2.4. Simulated annealing

SA is an evolutionary search algorithm based on the process of the metal annealing 
[56]. The algorithm generates a random solution and finds its quality using a fitness 
function. In addition to that, a starting temperature is set. Then, the algorithm iteratively 
finds a neighboring solution. In our case this is performed by randomly selecting 
two locations in the current path and switching their places in the path. Then the 
fitness function of the neighboring solution is determined and if it is better than the 
current solution, the current solution is replaced. What differentiates this solution 
from a simple gradient search is the ability to select a worse solution. [58] After the 
neighboring solution has been generated and it has been determined that it is worse 
than the current solution, a new random value is generated in the range from zero to 
the starting system temperature [5]. If that randomly generated value is lower than the 
current system temperature, the current value is replaced by the worse neighboring 
solution. This mechanism has the same goal as the mutation mechanism in GA [5,56]. 
Without this mechanism applied, SA would find the local minima close to its initial, 
randomly selected, solution. With this mechanism applied, SA has the capability of 
selecting a different solution, which could lead it to find a better solution that is more 
distant from the initial one in the solution space. The current temperature of the system 
is calculated per 

	 	 (5)

where Tc represents the current system temperature, Tinit the initial system temperature, 
k is the current iteration of the algorithm and ɑ is the cooling factor – a small value 
which determines how quickly the system temperature drops [5]. As the likelihood of 
selecting a worse agent is dependent on the system temperature, it is obvious that it 
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is more likely the worse solution will be selected near the beginning of the algorithm 
when the system temperature is higher and the search for a solution has just begun. In 
later iterations, when the algorithm is nearing the minima, the solution is less likely 
to change to a worse one, allowing the algorithm to go deeper into the solution space 
minima [56,58]. The process of SA algorithm is shown in Figure 5.

Figure 5 - Illustration of simulated annealing algorithm

When applying this method to the problem at hand, we start by generating a 
group of solutions and calculating their fitness values, as we do when using GA. 
Then, for each solution a neighboring solution is selected. In this case a neighboring 
path is the path that has the smallest possible change from the original path. This is 
accomplished by a random selection of two locations in the path and switching them. 
If we observe a path “Fenoliga” ”Bodulaš””Ceja””Portić””Fenera”, one of 
its neighboring solutions will be “Fenoliga” ”Portić””Ceja””Bodulaš””Fen
era”, with Portić and Bodulaš switching positions in the path. If that solution is better, 
it replaces a currently held path in the population and, if worse, it is either discarded 
or kept in a small number of cases (depending on the system temperature). This means 
that in the solution space solutions SA checks will not be located somewhere between 
other solutions like paths generated by GA are, but rather directly next to the previous 
solution. This causes the area SA checks for solutions to be comparatively smaller than 
the GA ones, but in cases of relatively small search spaces this approach can provide 
better results [56].

3. Research results

In this chapter the results are presented. First, the results of the extensive search are 
given, providing the shortest route and its length. Then, the results of used evolutionary 
algorithms are presented. 

3.1. Extensive search

After the execution of the extensive search, the best path found has the length 
of 13.23 [NM] and is shown in Figure 6. It is important to note that, due to the graph 
being undirected, the exact path taken in the opposite direction has the shortest possible 
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length as well. The best and worst paths among all paths as well as the execution time 
are shown in Table 2. 

       

Figure 6 – The best path that includes all the nodes in the graph, shown in the graph 
representation and on the map, with points on the map being numbered in order of 

visit by the best path

Table 2 - Extensive search data

Best Solution 13.23 [NM]
Worst Solution 26.98 [NM]
Mean solution length 20.84 [NM]
Time needed for 
extensive search 0.25207 [s]

3.2. Evolutionary algorithms

Evolutionary algorithms are run with the following parameters: GA is run with 
the population size of 20 and 50 generations. Crossover and mutations possibilities 
are set to 0.95 and 0.01 respectively. SA is run with the starting temperature of 100 
and a cooling factor of 0.01. Both algorithms are run 100 times and the results and 
execution times are recorded. The achieved results (the mean result over a hundred 
runs with standard deviation, best and worst result in 100 runs and the mean execution 
time along with the standard deviation) are given in Table 3.
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Table 3 - Results gained from evolutionary computing algorithms over a n=100 runs

Algorithm Mean 
result 
[NM]

σ Best 
achieved 

result [NM]

Worst 
achieved 

result [NM]

Mean 
Execution 
time [s]

σ

GA 15.5 1.61668 13.58 17.72 0.12131 0.01317

SA 15.38 1.43992 13.23 17.19 0.12737 0.01233

Figure 7 shows all path lengths, sorted by length, with the mean length of the path 
shown and mean result achieved for GA and SA. This figure illustrates the length of 
paths that can be traveled in the defined graph and how well the values achieved by 
evolutionary algorithms compare.

Figure 7 - Comparison of all path lengths and the mean path length with mean 
results achieved by GA and SA

3.3. Discussion

The outcome shows that best results are achieved using the SA algorithm. The GA 
has slightly shorter execution times, but provides slightly weaker results. Both the worst 
and best achieved results are good in terms of optimization, as they are significantly 
lower than the worst possible path, and lower than the mean value of path length. Both 
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algorithms come close to the best solution with their mean results achieved, but the 
SA manages to achieve the lowest possible value, while the GA does not – although 
the best achieved result comes close to the best possible solution. Important to note 
here are the execution times. Both algorithms perform the search twice as fast as the 
extensive search. While this does not seem important to note in this particular instance, 
as execution times of all methods used are relatively short, this would matter more 
when performing optimization in graphs with a larger number of vertices. 

4. Conclusion

The paper shows a method of applying the TSP formulation in a nautical 
environment. It also displays the application of evolutionary computing algorithms in 
solving the TSP problem in the observed environment. The best path found is Porat → 
Bodulaš → Levan → Fenera → Golumbera → Porer →

Fenoliga → Portić → Ceja → Porat, with the length of 13.53 [NM]. Due to the 
undirected nature of graph, the path containing the same points in the reverse order 
also satisfies this condition.  Out of the two algorithms compared, better results are 
provided by the SA algorithm. Results show that the evolutionary algorithms used in 
the comparison with the extensive search for the solution space provide satisfactory 
results with shorter execution times. As it is shown that evolutionary computing 
methods can be applied to this type of problems in the maritime environment, future 
work may include the use of different weights that better describe path costs in such an 
environment. Metrics such as fuel use or traffic resistance could provide a more realistic 
application of the TSP formulation in maritime environments. The use of stochastic 
weights could also be applied with a more appropriate measure to more realistically 
simulate the situation. Finally, more complex problems, with a higher number of nodes 
in the graph, could be considered in the future work. 
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