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Aim To determine in vitro susceptibility of multiresistant 
bacterial isolates to fosfomycin.

Methods In this prospective in vitro study (local non-ran-
dom sample, level of evidence 3), 288 consecutively col-
lected multiresistant bacterial isolates from seven medical 
centers in Croatia were tested from February 2014 until Oc-
tober 2016 for susceptibility to fosfomycin and other an-
tibiotics according to Clinical and Laboratory Standards 
Institute methodology. Susceptibility to fosfomycin was 
determined by agar dilution method, while disc diffusion 
was performed for in vitro testing of other antibiotics. Poly-
merase chain reaction and sequencing were performed 
for the majority of extended spectrum β-lactamase (ESBL)-
producing Klebsiella pneumoniae (K. pneumoniae) and car-
bapenem-resistant isolates.

Results The majority of 288 multiresistant bacterial isolates 
(82.6%) were susceptible to fosfomycin. The 236 multire-
sistant Gram-negative isolates showed excellent suscep-
tibility to fosfomycin. Susceptibility rates were as follows: 
Escherichia coli ESBL 97%, K. pneumoniae ESBL 80%, En-
terobacter species 85.7%, Citrobacter freundii 100%, Proteus 
mirabilis 93%, and Pseudomonas aeruginosa 60%. Of the 52 
multiresistant Gram-positive isolates, methicillin-resistant 
Staphylococcus aureus showed excellent susceptibility to 
fosfomycin (94.4%) and vancomycin-resistant enterococcus 
showed low susceptibility to fosfomycin (31%). Polymerase 
chain reaction analysis of 36/50 ESBL-producing K. pneu-
moniae isolates showed that majority of isolates had CTX-
M-15 beta lactamase (27/36) preceded by ISEcp insertion 
sequence. All carbapenem-resistant Enterobacter and Cit-
robacter isolates had blaVIM-1 metallo-beta-lactamase gene.

Conclusion With the best in vitro activity among the tested 
antibiotics, fosfomycin could be an effective treatment op-
tion for infections caused by multiresistant Gram-negative 
and Gram-positive bacterial strains in the hospital setting.
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Fosfomycin is a phosphonic acid derivative with a broad-
spectrum antibacterial activity. It inhibits peptidoglycan 
assembly, thereby disrupting bacterial cell wall synthesis 
(1). It has been clinically available for decades and a single 
dose of fosfomycin has been widely accepted as the first 
line treatment for uncomplicated urinary tract infections 
(UTIs) (2). In the form of its trometamol salt, approximate-
ly 40% of the drug is absorbed following oral administra-
tion. After being released from trometamol by hydrolysis, 
fosfomycin is rapidly excreted unchanged by glomerular 
filtration and reaches high-peak urinary concentration of 
approximately 4000 mg/L. Fosfomycin treatment achieves 
comparable clinical and microbiological cure rates to lon-
ger courses of antibiotic alternatives (quinolones, beta lac-
tams, aminoglycosides, nitrofurantoin, and sulfonamides) 
(3). Moreover, a number of in vitro studies have demon-
strated that fosfomycin has an excellent activity against 
many multiresistant bacteria, including extended spec-
trum β-lactamase (ESBL) and plasmid-mediated ampicillin 
class C (AmpC)-producing Gram-negative bacilli and car-
bapenem-resistant Enterobacteriaceae (4,5). Based on the 
results of previous in vitro studies, we hypothesized that 
the majority of multiresistant Gram-negative and Gram-
positive bacteria, including carbapenem-resistant isolates, 
would exhibit susceptibility to fosfomycin. Compared to 
the previous studies, we included a larger proportion of 
carbapenem-resistant isolates, which present a consider-
able challenge for clinicians. Since the literature data about 
multiresistant Citrobacter freundii (C. freundii) susceptibil-
ity to fosfomycin is scarce, we also tested a relatively large 
number of C. freundii isolates. Therefore, we tested fosfomy-
cin’s in vitro activity against multidrug resistant pathogens 
for which very limited antibiotic options are available.

Materials and methods

In this prospective in vitro study, with the level of evidence 
3, 288 multiresistant bacterial clinical isolates were test-
ed from February 2014 until October 2016 in the Clinical 
Hospital Center Zagreb for in vitro susceptibility to fosfo-
mycin and other antibiotics. Multiresistance was defined 
as resistance to at least three members of different anti-
biotic groups (6). Isolates were collected from six medical 
centers in Zagreb and one in Split (Clinical Hospital Center 
Zagreb, Croatian National Institute of Public Health, Clinic 
for Infectious Diseases “Dr. Fran Mihaljević,” Clinical Hospital 
“Sveti Duh,” “Andrija Štampar” Teaching Institute of Public 
Health, Polyclinic Breyer for Medical Biochemistry and Mi-
crobiology, Clinical Hospital Center Split). The majority of 
isolates (75%) originated from the University Hospital Cen-

ter Zagreb. Non-copy clinical isolates were consecutively 
collected during the period from February 2014 until Octo-
ber 2016. While the vast majority of Gram-negative isolates 
were from urine, Gram-positive isolates were also collected 
from other clinical specimens such as blood cultures, stool, 
ascites, central venous catheters, tracheostomy, throat, 
and wound swabs. The following number of isolates were 
tested, all having multiresistant phenotype: Escherichia 
coli (E. coli) (n = 72), Klebsiella pneumoniae (K. pneumoniae) 
(n = 62), methicillin-resistant Staphylococcus aureus (MRSA) 
(n = 36), Enterobacter species (spp) (n = 35), Proteus mirabilis 
(P. mirabilis) (n = 28), C. freundii (n = 23), Pseudomonas aerug-
inosa (P. aeruginosa) (n = 16), and vancomycin-resistant en-
terococcus (VRE) (n = 16). All E. coli and K. pneumoniae iso-
lates were ESBL producers, and some of the K. pneumoniae 
isolates were also carbapenem-resistant. The isolates were 
identified to the species level by conventional biochemi-
cal testing and matrix-assisted laser desorption/ionization 
time-of-flight.

Extended spectrum beta-lactamase production was con-
firmed by a double disk synergy test according to Jarlier (7). 
Deformation of the inhibition zones around cephalosporin 
disks toward central disk containing clavulanic acid rep-
resented a positive result. In vitro sensitivity of multiresis-
tant bacterial strains to fosfomycin was tested according to 
Clinical and Laboratory Standards Institute methodology 
(8). Thus, minimum inhibitory concentration (MIC) suscep-
tibility breakpoint for fosfomycin was defined as 64 mg/L. 
Intermediate susceptibility was defined as MIC 128 mg/L 
and resistance as MIC≥256 mg/L. Fosfomycin MIC break-
points were determined by agar dilution method, as this 
is the reference method for in vitro sensitivity testing to 
fosfomycin. Antimicrobial susceptibility testing to other 
routinely used antibiotics for UTI was performed by disk 
diffusion method using commercially-prepared, fixed con-
centration, paper antibiotic disks, in accordance with Clini-
cal and Laboratory Standards Institute criteria (8).

Extended-spectrum beta-lactamases in K. pneumoniae 
were characterized by polymerase chain reaction and se-
quencing of beta-lactamase genes as described previous-
ly (9-12). Carbapenemase-producing Enterobacteriaceae 
were characterized in the previous studies (13-15).

We determined our sample size based on similar in vitro 
susceptibility studies (16-18). Statistical processing was 
carried out using the statistical package IBM SPSS Statis-
tics, version 23 (IBM, Armonk, NY, USA, license owned 
by the Croatian Institute of Public Health). χ2 test 
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was used to determine whether there was a significant dif-
ference between the susceptibility rates of multiresistant 
bacterial isolates to fosfomycin and other antibiotics. The 
level of significance was set at P < 0.05.

Results

Susceptibility to fosfomycin, along with susceptibility to 
other antibiotics, was tested in 288 multiresistant bacterial 
isolates (236 Gram-negative and 52 Gram-positive). Out of 
288 isolates, 238 (82.6%) were susceptible to fosfomycin. 
High susceptibility rates were found in both Gram-nega-
tive (199/236, 84.3%) and Gram-positive (39/52, 75%) iso-
lates.

All of the 72 E. coli isolates were ESBL producers. Of those, 
70 (97.2%) were susceptible to fosfomycin, with the remain-
ing two intermediately susceptible (Table 1). No resistance 
to carbapenems was observed. The difference in suscep-
tibility rates between fosfomycin and all other antibiotics, 
except carbapenems, was significant (χ2 test, P = 0.001).

The majority of 50 K. pneumoniae isolates were suscepti-
ble (40/50; 80%) or intermediately susceptible (4/50; 8%) 
to fosfomycin (Table 1). When compared to E. coli ESBL, K. 
pneumoniae isolates exhibited a much lower susceptibil-
ity to gentamicin (12% vs 58.3%), amoxicillin/clavulanic 
acid (14% vs 45.8%), and piperacillin/tazobactam (18% vs 
58.3%). Susceptibility of K. pneumoniae to fosfomycin was 
also much lower, but still rather high, and the difference 
in susceptibility rates between fosfomycin and all other 
antibiotics, except carbapenems, was significant (χ2 test, 
P = 0.001). Six out of 50 (11.1%) ESBL-producing K. pneumo-
niae isolates were resistant to fosfomycin.

Among the Enterobacter spp. isolates, the susceptibility 
rate to fosfomycin was very high (30/35, 85.7%). Since the 
majority of isolates were carbapenem-resistant, they were 
susceptible only to colistin and fosfomycin (Table 1). Fos-
fomycin showed significantly better rates of in vitro activ-
ity than amikacin and all other antibiotics except colistin 
(χ2 test, P = 0.001). Resistance to amoxicillin/clavulanic acid, 
cefazolin, and cefuroxime observed in all isolates is due to 

Table 1. In vitro susceptibility rates to different antibiotics in different species of Enterobacteriaceae (n = 224)*

Extended spectrum 
β-lactamase 
producing 

Escherichia coli 
(n = 72)

Extended spectrum 
β-lactamase 
producing 

Klebsiella pneumoniae 
(n = 50)

Enterobacter 
cloacae 
(n = 35)

Proteus 
mirabilis 
(n = 28)

Citrobacter 
freundii 
(n = 23)

Pseudomonas 
aeruginosa 

(n = 16)
Antibiotic R I S R I S R I S R I S R I S R I S

Amoxicillin 72 0 0 50 0 0 35 0 0 28 0 0 23 0 0 NT NT NT
Amoxicillin/clavulanic acid 33 6 33 36 7 7 34 0 1 26 0 2 23 0 0 NT NT NT
Piperacillin/tazobactam 15 15 42 29 12 9 28 4 3 0 10 18 21 2 0 13 0 3
Cefazolin 72 0 0 50 0 0 35 0 0 28 0 0 23 0 0 NT NT NT
Cefuroxime 72 0 0 50 0 0 35 0 0 28 0 0 23 0 0 NT NT NT
Ceftazidime 61 5 6 50 0 0 34 0 1 26 1 1 23 0 0 13 0 3
Ceftriaxone 70 0 2 50 0 0 35 0 0 27 1 0 22 1 0 NT NT NT
Cefotaxime NT NT NT 50 0 0 35 0 0 NT NT NT 23 0 0 NT NT NT
Cefoxitin NT NT NT NT NT NT 35 0 0 NT NT NT NT NT NT NT NT NT
Cefepime 43 11 18 23 14 13 24 8 3 1 2 25 19 3 1 11 0 5
Imipenem/cilastatin 0 0 72 0 0 50 26 2 7 0 0 28 14 4 5 13 2 1
Meropenem 0 0 72 0 0 50 28 0 7 0 0 28 14 4 5 15 1 0
Ertapenem 1 1 70 3 0 47 28 0 7 NT NT NT 17 1 5 NT NT NT
Gentamicin 30 0 42 44 0 6 32 1 2 26 1 1 16 2 5 15 1 0
Amikacin NT NT NT NT NT NT 10 8 17 NT NT NT 3 4 16 NT NT NT
Ciprofloxacin 64 0 8 41 1 8 32 3 0 27 1 0 16 0 7 14 2 0
Norfloxacin 64 0 8 42 0 8 NT NT NT NT NT NT NT NT NT NT NT NT
Cotrimoxazole 61 0 11 31 3 16 NT NT NT NT NT NT NT NT NT NT NT NT
Nitrofurantoin 22 1 49 NT NT NT NT NT NT NT NT NT NT NT NT NT NT NT
Colistin NT NT NT NT NT NT 0 0 35 NT NT NT 0 0 23 0 0 16
Fosfomycin 0 2 70 6 4 40 3 2 30 1 1 26 0 1 22 7 3 6
*R – resistant; I – intermediately susceptible; S – sensitive; NT – not tested.
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the production of intrinsic, chromosomal AmpC beta-lac-
tamase of Enterobacter spp.

Of the 23 extensively resistant C. freundii isolates, all were 
susceptible to colistin and all but one to fosfomycin (Table 
1). The difference in susceptibility rate between fosfomy-
cin (22/23) and amikacin (16/23) was significant (χ2 test, 
P = 0.021).

The great majority of multiresistant P. mirabilis isolates was 
susceptible to fosfomycin (26/28), carbapenems (28/28), 
and cefepime (25/28) (Table 1). This is because of the 
production of plasmid mediated-AmpC beta-lactamase, 
which hydrolyzes all beta lactams except fourth genera-
tion cephalosporins and carbapenems. The strains resis-
tant to the third-generation cephalosporins were positive 
for CMY-16 (19).

More than 70% of carbapenem-resistant isolates demon-
strated resistance against all commonly used antibiotics 
except fosfomycin (17.8%) and colistin (0%) (Table 2). The 
prevalence of fosfomycin resistance was significantly low-
er than the prevalence of resistance to all other antibiotics 
except colistin (χ2 test, P < 0.001). Resistance to colistin was 
significantly lower than resistance to fosfomycin (χ2 test, 
P < 0.001).

Methicillin-resistant Staphylococcus aureus isolates were 
susceptible to linezolide (36/36), tigecycline (36/36), van-
comycin (36/36), teicoplanine (36/36), trimethoprim-sul-
famethoxazole (35/36), fosfomycin (34/36), and rifampi-
cin (34/36). Only two of 36 isolates showed intermediate 
susceptibility to fosfomycin, while all other were sensitive 

Table 2. In vitro susceptibility rates to different antibiotics in carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa 
(n = 73)*

Enterobacter cloacae 
(n = 28)

Citrobacter freundii 
(n = 17)

Pseudomonas aeruginosa 
(n = 16)

Klebsiella pneumoniae 
(n = 12)

All isolates 
(%)

Antibiotic R I S R I S R I S R I S R

Amoxicillin 28 0 0 17 0   0 NT NT NT 12 0   0 57/57 (100)
Amoxicillin/clavulanic acid 28 0 0 17 0   0 NT NT NT 12 0   0 57/57 (100)
Piperacillin/tazobactam 26 2 0 17 0   0 13 0   3 12 0   0 68/73 (93.1)
Cefazolin 28 0 0 17 0   0 NT NT NT 12 0   0 57/57 (100)
Cefuroxime 28 0 0 17 0   0 NT NT NT 12 0   0 57/57 (100)
Ceftazidime 28 0 0 17 0   0 13 0   3 12 0   0 70/73 (95.9)
Ceftriaxone 28 0 0 17 0   0 NT NT NT 12 0   0 57/57 (100)
Cefotaxime 28 0 0 17 0   0 NT NT NT 12 0   0 57/57 (100)
Cefepime 22 6 0 15 2   0 11 0   5 12 0   0 60/73 (82.2)
Imipenem/cilastatin 26 2 0 13 4   0 13 2   1   9 1   2 61/73 (83.6)
Meropenem 28 0 0 13 4   0 15 1   0 11 0   1 67/73 (91.8)
Ertapenem 28 0 0 16 1   0 NT NT NT 12 0   0 56/57 (98.2)
Gentamicin 25 1 2 11 2   4 15 1   0   4 0   7 56/73 (76.7)
Ciprofloxacin 27 1 0 12 0   5 14 2   0 11 0   1 64/73 (87.7)
Colistin   0 0 28   0 0 17   0 0 16 0 0 12   0/73 (0)
Fosfomycin   2 1 25   0 1 16   7 3   6   4 3   5 13/73 (17.8)
*R – resistant; I – intermediately susceptible; S – sensitive; NT – not tested.

Table 3. In vitro susceptibility rates to different antibiotics in 
methicillin-resistant Staphylococcus aureus (n = 36)

No. of isolates

Antibiotic resistant intermediate susceptible

Penicillin 36 0   0
Oxacillin 36 0   0 
Gentamicin   8 0 28
Ciprofloxacin 31 0   5
Azithromycin 28 0   8
Clarithromycin 28 0   8
Clindamycin 25 0 11
Trimethoprim- 
sulfamethoxazole

  1 0 35

Vancomycin   0 0 36
Teicoplanine   0 0 36
Rifampicin   2 0 34
Linezolide   0 0 36
Tigecycline   0 0 36
Fosfomycin   0 2 34
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(Table 3). The difference in the prevalence of resistance be-
tween fosfomycin (2/36) and all of the following antibiotics 
was significant: ciprofloxacin (31/36), azithromycin (28/36), 
clarithromycin (28/36), clindamycin (25/36), and gentami-
cin (8/36) (χ2 test, P < 0.01 for all).

Only 5 of 16 VRE isolates tested demonstrated susceptibil-
ity to fosfomycin and all of these isolates had MIC 64 mg/L 
(Table 4).

Multiresistant P. mirabilis, C. freundii, and ESBL producing E. 
coli isolates had low, and multiresistant P. aeruginosa and 
VRE isolates had high MIC50 and MIC90 of fosfomycin (Table 
5). Rather unexpected findings were high MIC50 and MIC90 
of fosfomycin in carbapenem-resistant K. pneumoniae iso-
lates (128 and 512 mg/L, respectively). Extended spectrum 
β-lactamase-producing K. pneumoniae had significantly 
higher susceptibility to fosfomycin than carbapenem-re-
sistant K. pneumoniae (χ2 test, P = 0.008).

Eighty four percent of multiresistant Gram-negative iso-
lates were in vitro susceptible to fosfomycin and 69% were 
susceptible to carbapenems. Susceptibility rates to other 
antibiotic groups were much lower (Table 6). The differ-

ence between susceptibility rates to fosfomycin and car-
bapenems was significant (χ2 test, P = 0.001).

We performed a polymerase chain reaction analysis of 
36/50 ESBL producing K. pneumoniae isolates. The majority 
of isolates had CTX-M-15 beta lactamases and ISEcp inser-
tion (27/36) sequence, which enhances gene expression 
and level of resistance, and is important for the gene mo-
bilization (20). All of the carbapenem-resistant Enterobacter 
and Citrobacter isolates were carrying blaVIM-1 metallo-beta-
lactamase gene, while Citrobacter isolates also had chro-
mosomaly-encoded CMY AmpC-type beta-lactamase. Of 
the 8 carbapenem-resistant K. pneumoniae isolates, one 
was oxacillinase-48 positive and the other had Verona inte-
gron-encoded metallo-β-lactamase-1 (Table 7).

Table 4. In vitro susceptibility rates to different antibiotics in 
vancomycin-resistant Enterococcus (n = 16)

No. of isolates

Antibiotic resistant intermediate susceptible

Ampicillin 16 0   0
Vancomycin 16 0   0
Teicoplanine 16 0   0
Linezolide   0 0 16
Fosfomycin   5 6   5

Table 5. Minimum inhibitory concentration (MIC)50, MIC90, and in vitro susceptibility rates to fosfomycin in different multiresistant 
bacterial species

MIC50 (mg/L) MIC90 (mg/L)
No. (%) of 

susceptible isolates
Proteus mirabilis     2   16 26/28 (93)
Citrobacter freundii     4   16 22/23 (96)
Extended spectrum β-lactamase producing Escherichia coli     4   32 70/72 (97)
Methicillin-resistant Staphylococcus aureus     8   32 34/36 (94)
Enterobacter species   16 128 30/35 (86)
Extended spectrum β-lactamase producing Klebsiella pneumoniae   32 256 40/50 (80)
Pseudomonas aeruginosa 128 256   6/16 (38)
Vancomycin-resistant Enterococcus 128 256   5/16 (31)
Carbapenem-resistant Klebsiella pneumoniae 128 512   5/12(42)

Table 6. In vitro susceptibility rates for different antibiotics in 
Gram-negative multiresistant isolates (n = 236)

Antibiotic No. of susceptible isolates (%)

Amoxicillin*     0/220 (0)
Amoxicillin/clavulanic acid*   43/220 (19.5)
Piperacillin/tazobactam   75/236 (31.8)
Cefazolin*     0/220 (0)
Cefuroxime*     0/220 (0)
Ceftazidime   11/236 (4.7)
Ceftriaxone*     0/220 (0)
Cefepime*   65/236 (27.5)
Imipenem/cilastatin 165/236 (69.9)
Meropenem 163/236 (69.1)
Ertapenem† 129/192 (67.2)
Gentamicin   63/236 (26.7)
Ciprofloxacin   24/236 (10.2)
Fosfomycin 199/236 (84.3)
*Pseudomonas aeruginosa isolates were not tested.
†Pseudomonas aeruginosa and Proteus mirabilis isolates were not 
tested.
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Discussion

The main finding of our study is high susceptibility rate 
to fosfomycin (82.6%) among 288 multiresistant isolates, 
which affirmed our hypothesis. Both the Gram-positive and 
Gram-negative isolates showed high rates of sensitivity to 
fosfomycin. An important finding of our study is that fosfo-
mycin had significantly better in vitro activity against multi-
resistant Gram-negative isolates than carbapenems. Since 
Gram-negative pathogens are the most common caus-
ative agents of nosocomial bacterial infections, the results 
of our study have implications for empirical treatment of 
suspected bacterial infections in the hospital setting. This 
is in accordance with recent trends of the revival of old an-
tibiotics such as colistin, fosfomycin, and nitrofurantoin, as 
these drugs still exhibit high in vitro activity against evolving 
multiresistant Gram-negative pathogens (21,22). While ni-
trofurantoin is only used clinically for the treatment of UTIs, 
both fosfomycin and colistin are also used in the treatment 
of other infections, with the advantages of fosfomycin be-
ing the additional coverage of Gram-positive pathogens 
and lack of nephrotoxicity (4). The more common use of 
fosfomycin and colistin in appropriate clinical setting repre-
sents one of the carbapenem-sparing strategies and is pro-
moted by the leading experts in the field (23).

Both ESBL-producing E. coli and K. pneumoniae exhibit-
ed high susceptibility rates to fosfomycin, with the main 

difference being higher MICs in K. pneumoniae isolates. 
Among ESBL-producing E. coli isolates, fosfomycin demon-
strated similar in vitro activity as carbapenems, which rep-
resent the first-line group of antibiotics for the treatment 
of infections caused by these pathogens (23). An accept-
able alternative was nitrofurantoin, which, however, has 
more limited antibacterial spectrum than fosfomycin and 
carbapenems. Based on our results, the use of other an-
tibiotics could not be routinely recommended. It needs 
to be emphasized that the two isolates with intermediate 
susceptibility to fosfomycin were obtained from patients 
previously treated with prolonged courses of fosfomycin 
owing to complicated UTIs. The emergence of fosfomycin 
resistance during prolonged treatment courses has been 
reported in the literature and is quoted as one of the main 
concerns regarding the clinical utility of fosfomycin (24). 
The susceptibility rate of ESBL-producing isolates to qui-
nolones and trimethoprim-sulfamethoxazole was espe-
cially low, as expected since plasmids encoding ESBLs usu-
ally carry genes responsible for resistance to quinolones, 
sulphonamides, and aminoglycosides. The percentage of 
ESBL production is considerable, not only in hospitalized 
patients but also in outpatients. Based on the surveillance 
data from the Reference Centre for Antibiotic Resistance 
Surveillance of the Croatian Ministry of Health, 47% of K. 
pneumoniae and 13% of E. coli invasive isolates were ESBL 
producers in 2015, with a rise of ESBL production in E. 
coli compared to earlier years (25). Fosfomycin has 

Table 7. Beta-lactamase content of various multiresistant clinical isolates according to bacterial species*

ESBL-producing 
K. pneumoniae 
(n = 36)

No. of 
isolates

Carbapenem-resistant 
Enterobacter species 

(n = 28)
No. of 

isolates

Carbapenem-resistant 
Citrobacter freundii 

(n = 17)

 
No. of 

isolates

Carbapenem-resistant 
Klebsiella pneumoniae 

(n = 8)

 
No. of 

isolates
SHV-11, IS26CTX-M-3 1 VIM-1, TEM-1, CTX-M-15 18 VIM-1, TEM-1, CMY-4 13 VIM-1, SHV-1, CTX-M-15 1
SHV-11, ISEcpCTX-M-15 1 VIM-1, TEM-1, SHV-1, 

CTX-M-15
1 VIM-1, TEM-1, CMY-2 1 VIM-1, SHV-1, TEM-1, 

CTX-M-15
2

ISEcpCTX-M-15, TEM-1 1 VIM-1, TEM-1 3 VIM-1, TEM-1, CMY-4, 
CTX-M-15

3 VIM-1, CTX-M-15 1

SHV-1 3 VIM-1, NDM-1, TEM-1 1 VIM-1, TEM-1 1
SHV-1, TEM-1 3 VIM-1, NDM-1, TEM-1, 

CTX-M-15
1 VIM-1, NDM-1, SHV-1, 

TEM-1
3

SHV-1, IS26CTX-M-3 1 VIM-1, OXA-48, TEM-1, 
CTX-M-15

1 OXA-48, CTX-M-15, TEM-1 1

SHV-1, ISEcpCTX-M-15 17 VIM-1, DHA 1
SHV-1, ISEcpCTX-M-15, 
TEM-1

6 VIM-1, CMY, TEM-1, 
CTX-M-15

1

SHV-11, TEM-1 1 VIM-1, TEM-1, CMY-4 1
SHV-11, ISEcpCTX-M-15, 
TEM-1

2

*ESBL – extended spectrum β-lactamase; CMY – cephamycinase; CTX-M – cefotaximase-Munich; DHA – a type of AmpC beta-lactamase; IS – inser-
tion sequence; NDM – New Delhi metallo-beta-lactamase; OXA – oxacillinase; SHV – sulfhydryl variable; ST – sequence type; TEM – Temoniera; VIM 
– Verona integron-encoded metallo-β-lactamase.
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been widely accepted as the first-line antibiotic treatment 
of uncomplicated UTIs (1). The current Croatian national 
guidelines also recommend the use of fosfomycin as one 
of the treatment options for acute uncomplicated lower 
UTIs in women and for UTIs in pregnant women (26). Since 
the resistance to trimethoprim-sulfamethoxazole is high in 
E. coli and K. pneumoniae with and without ESBL produc-
tion, fosfomycin and nitrofurantoin could be taken into the 
consideration as the first-line therapy for the UTIs caused 
by multiresistant pathogens.

Falagas et al (4) systematically reviewed 17 studies evalu-
ating the antimicrobial activity of fosfomycin. Using a MIC 
susceptibility breakpoint of 64 mg/L, they found 1604 
(96.8%) of 1657 ESBL-producing E. coli isolates and 608 
(81.3%) of 748 ESBL-producing K. pneumoniae isolates to 
be susceptible to fosfomycin. We obtained similar results, 
with 97.2% and 80% of ESBL-producing E.coli and K. pneu-
moniae being susceptible to fosfomycin, respectively.

An unexpected finding is a high resistance to fosfomycin 
in carbapenem-resistant K. pneumoniae isolates (MIC50 and 
MIC90 128 and 512 mg/L, respectively). Although only 12 
isolates were tested, MICs were higher than in VRE or P. 
aeruginosa isolates, which are expected to be more resis-
tant. These isolates also had significantly lower susceptibil-
ity rate than ESBL-producing K. pneumoniae isolates. Since 
fosfomycin has a unique mechanism of action, it does 
not display cross-resistance with other antibiotics. Hence, 
this finding is not in concordance with the literature and 
should be confirmed on a larger number of isolates (27).

Our results show excellent fosfomycin activity against C. 
freundii isolates and are similar to those by Samonis et al 
(28), who found all 29 C. freundii isolates to be susceptible 
to fosfomycin. However, in the latter study, the majority of 
isolates were susceptible to cephalosporins and fluoroqui-
nolones, and all but one isolate were susceptible to imi-
penem, while most of our isolates were resistant to carbap-
enems (28). Our results are similar to those by Hammerum 
et al (29), who tested 13 New Delhi metallo-beta-lactama-
se 1-producing C. freundii isolates, all of which were sus-
ceptible to fosfomycin.

Fifty-two of 73 isolates (71.2%) of carbapenem-resistant En-
terobacteriaceae were susceptible to fosfomycin. The rate 
of susceptibility was higher than that reported by Liver-
more et al (30), who found 49/81 isolates (60.5%) to be 

in vitro sensitive to fosfomycin. The difference could 
be explained by the fact that their sample included 

more Klebsiella spp. isolates (64.2% of the whole sample), 
while ours included more Enterobacter spp. and C. freundii 
isolates, with lower MICs for fosfomycin (Enterobacter spp. 
and C. freundii accounted for 62% of all carbapenem-resis-
tant isolates).

Fosfomycin activity against Enterobacter spp. was compa-
rable to the results by Kaase et al (5). Pseudomonas isolates 
are known to have high MICs of fosfomycin. Fosfomycin 
had similar activity as amikacin and better activity than car-
bapenems, but the number of tested isolates was small.

Among Gram-positive isolates, we found excellent suscep-
tibility rates for MRSA and low for VRE, which is in accor-
dance with the data published earlier (3).

The main limitation of our study is the fact that, owing to fi-
nancial restrictions, not all isolates were analyzed by pulsed-
field gel electrophoresis. Hence, it cannot be excluded that 
some of the isolates were genetically identical and hence 
represent a clone. Moreover, the susceptibility of some iso-
lates was not tested to all antibiotics. For example, suscepti-
bility to amikacin was not tested in P. mirabilis, P. aeruginosa, 
and ESBL-producing E. coli and K. pneumoniae isolates.

According to our results, fosfomycin is a potentially effec-
tive treatment option for infections caused by multiresis-
tant Gram-negative and Gram-positive bacterial isolates, 
with the exception of VRE. Fosfomycin demonstrated the 
best in vitro activity of all antibiotics tested against 288 mul-
tiresistant bacterial isolates. Hence, it is a valuable addition 
to antibiotic armamentarium in the hospital setting, espe-
cially for Gram-negative infections, in which antimicrobial 
resistance rates are rising and effective antibiotic options 
are scarce. In the context of the worrisome high rates of 
carbapenem-resistance among multiresistant Gram-nega-
tive isolates, fosfomycin represents a potentially valuable 
treatment option, both clinically and as a carbapenem-
sparing strategy.
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