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Abstract 

Nanogels are submicron-size aqueous dispersions of water-swollen particles, composed of nano-sized 
three-dimensional highly cross-linked networks of hydrophilic polymers. An active pharmaceutical agent or 
therapeutic agent with high or low molecular weight can be easily encapsulated into nanogels that can be 
delivered to the site of action via various routes, including oral, pulmonary, nasal, parenteral and 
intraocular routes, among others. Therapeutic agents encapsulated into nanogels improve the therapeutic 
activity in the biological environment. The application of different nanogels in drug delivery and recent 
clinical trial studies has been described concisely in this review. 

©2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction  

Nanogels are commonly used in sensing, diagnostics, and bioengineering, but they are also often used in 

drug delivery [1,2]. Nanogels have benefits over conventional and macro-sized delivery systems because of 

their higher drug loading capacity, high stability, and improved contact time with the skin surface, which 

makes it more convenient as a transdermal drug delivery system. Water-soluble non-ionic polymers like 

hydroxylpropyl methylcellulose as well as ethylcellulose are commonly used to stabilise nanogel dispersions 

[3-7]. Phase separation of drug-loaded nanogels could occur due to interactions (electrostatic, hydrophobic, 

van der Waals) between the polymeric matrix and the active agent, which could be prevented by dispersing 

hydrophilic polymers. The dispersed hydrophilic polymer becomes exposed to the skin surface by forming a 

protective layer around the nanogel, allowing drug particles to remain dispersed in the gel matrix [8-10]. 

Modified natural biopolymers possess a high degree of functional groups with additional functional cross-

linkers used for the formulation of biopolymer-based nanogels. Innovative techniques such as 

photopolymerisation, chemical cross-linking, click chemistry-based cross-linking etc., are used to derive the 

self-assembly and cross-linking of hydrophilic block copolymers. Between internal and external layers of 

nanogels, block polymers permit the control of drug release from a polymer matrix [11-13]. For target-

specific or cell-specific drug delivery, nanogels are modified with ligands to permit receptor-

mediated drug release at the site of action [14-15]. Drug- or biologically-loaded nanogels cross biological 

barriers and release the therapeutic agent inside cells [16-18]. In recent years, nanogels were effectively 
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utilised in the field of biotechnology to deal with genetics, enzyme immobilisation and protein synthesis, 

thus providing an efficient tool to cater for novel therapeutic systems in medicine (Table 1). A novel core-

shell magnetic nanogel was prepared using poly(acrylamide) for cancer therapy. Pluronic 

poly(ethyleneimine) was used to prepare a thermoresponsive nanogel for the transdermal delivery of an 

active agent. Nanogel-based drug delivery formulations increase the effectiveness and safety of certain 

anti-cancer drugs as well as many other drugs due to their chemical composition, which has been 

confirmed by in vivo studies in animal models. Nanogels are a favourable and innovative drug delivery 

system that can play a vital role by addressing the problems associated with old and modern therapeutics 

such as nonspecific effects and poor stability [19-23]. 

Table 1. Applications and types of nanogel in drug delivery [21-23] 

Polymer Type of Nanogel Uses 

Pullulan/folate-pheophorbide 
Self-quenching 

polysaccharide-based 
Minimal phototoxicity of pheophorbide 

Cross-linked branched network 
of poly(ethyleneimine) and PEG 

Polyplex nanogel 
Elevated activity and reduced cytotoxicity 

of fludarabine 

Acetylated chondroitin sulphate Self-organising nanogel Doxorubicin loaded 

Heparin pluronic nanogel Self-assembled nanogel RNA enzyme delivery internalized in cells 

Poly(ethyleneimine) nanogels 
Size-dependent property 

nanogel 
Suicide gene hTERT –CD-TK delivered for 

lung cancer 

Poly(N-isopropylacrylamide) 
and chitosan 

Thermosensitive 
magnetically modalised 

Hyperthermia cancer treatment and 
targeted drug delivery 

Poly(acrylamide) 
Novel core shell magnetic 

nanogel 
Radiopharmaceutical carrier for cancer 

radiotherapy 

Methylacrylic acid and N,N’-
methylene-bis-(acrylamide) 

Supermagnetic nanogel 
functionalised with carboxyl 

group 

α-chymotrypsin immobilized on aminated 
nanogel 

Methylacrylic acid and N,N’-
methylene-bis-(acrylamide) 

Magnetic nanogel 
hydrophilic polymers 

α-chymotrypsin immobilized on carboxyl 
group 

Poly(ethyleneimine) nanogels 
Size-dependent property 

nanogel 
Suicide gene hTERT –CD-TK delivered for 

lung cancer 

Acylate group modified 
cholesterol bearing pullulan 

Cross-linked raspberry-like 
assembly nanogel 

Efficient interleukin-12 encapsulation and 
plasma levels 

Poly(N-isopropylacrylamide-co-
acrylamide) 

In situ gelatinised thermo-
sensitive nanogel 

Drug loading capacity, bovine serum 
albumin 

Glycol chitosan grafted with 3-
diethylaminopropyl groups 

pH-responsive Doxorubicin uptake accelerated 

Acetylated hylauronic acid Specific targeting nanogel Doxorubicin loaded nanogel 

Pluronic poly(ethyleneimine) 
Temperature responsive and 
volume transition nanogels 

Thermo responsive endosomal rupture by 
nanogel and drug release 

Methods used for the preparation of nanogels  

I) Preparation of nanogel using polymeric precursors  

II) Synthesis of nanogel network by heterogeneous polymerisation of monomers  

Polymers and monomers having different nanoscopic structures formed by amphiphilic copolymers are 

used for the preparation of nanogels. Amphiphilic copolymers are able to self-assemble in solution, hence 
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they form nanogels [24-25].  

I) Preparation of nanogels from polymeric precursors  

Disulphide-based cross-linking  

Disulphide linkages were prepared by inverse mini-emulsion atom transfer radical polymerisation 

(ATRP). In this process, water-soluble monomer oligo(ethylene glycol) monomethyl ether methacrylate 

(OEOMA) with different molecular weights were cross-linked in the ATRP reaction with the disulphide-

functionalised cross-linker. The nanogels formed are considered to have a uniformly cross-linked network, 

which is supposed to improve aqueous solubility and control the release of encapsulated agents; the 

nanogels are shown to be biodegradable into water-soluble polymers in the presence of a biocompatible 

glutathione tripeptide which is commonly found in cells. The biodegradation of nanogels could trigger the 

release of drugs from the nanogels. Amphiphilic random copolymers are used to prepare a nanogel system 

by self-cross-linking [26-27]. A nanosized product in aqueous solution is formed by hydrophilic 

poly(ethylene glycol) and pyridyl disulphide. Thiol disulfide exchange reaction is depending primarily on the 

concentration of thiol exchangers like dithiothreitol (DTT). The size of the nanogel would be reduced by 

using cross-linking monomer or polymer chains. A lower critical solution temperature (LCST) of polymers 

also affects the size of the nanogel. Lipoic acid-encapsulated dextran was prepared by thiol-exchange using 

the same method. A catalytic amount of DTT freely cross-linked with doxorubicin was synthesised from the 

assembly of the polymer [28-29]. 

Poly(ε-caprolactone) (PCL) and hydrophilic poly(ethylethylenephosphate) (PEEP) were used as drug 

carriers for the development of a micellar nanoparticle system for intracellular drug release which is 

triggered by glutathione in tumour cells. Tang et al. synthesised a disulphide-linked di-block copolymer of 

PCL and PEEP (PCL-SS-PEEP), which forms biocompatible micelles in aqueous solution and detaches the 

shell material under glutathione stimulus, resulting in rapid drug release with the destruction of the 

micellar structure shown in Figure 1 [30]. 

 

Figure 1. Synthesis pathway of the disulphide-linked PCL-SS-PEEP and schematic illustration of intracellular 
drug release (reprinted with the permission from [30]. Copyright (2016) American Chemical Society). 
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Amine group is more common in amine-based cross-linked nanogel development because the amine 

group has higher reactivity against carboxylic acids, isocyanates, and iodides. Cross-linked knedel-

resembling structures using amine cross-linkers were prepared by the Wooley group. Hydrophilic, 

amphiphilic di-block copolymers were prepared by reversible addition fragmentation chain transfer 

polymerisation. Amidation of carboxyl group-containing self-assembled block copolymers with a diamine 

cross-linking agent leads to the cross-linking of micellar assemblies; the remaining carboxylic group was 

altered for orthogonal surface modifications in the form of other functional moieties to form a cross-linked 

nanogel. Furthermore, reaction with isocyanate carriers is an alternative cross-linking approach to prepare 

nanogels. pH-responsive cross-linked micelles were prepared by the addition of 1,8-diaminooctane to a 

micellar combination of 3-isopropenyl-α,α-dimethyl benzyl isocyanate bearing copolymers [31-32].  

We prepared poly(acrylic acid) (PAA) and sodium carboxymethylcellulose (NaCMC)-based luliconazole 

loaded nanogels. Luliconazole was encapsulated in PAA and Na-CMC by free radical polymerisation. 

Luliconazole is an azole antifungal that works by preventing the growth of the fungus [33] and is used to 

treat skin infections such as athlete's foot, jock itch, and ringworm. Figure 2 shows particle size analysis for 

the optimised nanogel containing luliconazole. The average particle size of nanogel was 259 nm at the 

count rate of 360 kcps with polydispersity index (PDI) of 0.2 showed narrow particle size distribution. 

 

Figure 2. Average particle size of luli-
conazole loaded poly(acrylic acid) nanogel 

 

The formation of nanogel (NaCMC-g-PAA) from NaCMC and acrylic acid/sodium acrylate in the presence 

of N,N’-methylene bisacrylamide (MBA) was carried out using potassium persulphate as a free radical 

initiator [34-35]. Figure 3 shows the FESEM micrograph of the optimised nanogel formulation. From the 

figure, it can be observed that the formed nanogel is spherical in nature. 

Click chemistry-based cross-linking  

This method is discovered by Wooley and Hawker group for the synthesis of nanogels [36]. In this 

method, alkynyl groups were restrained to the corona of assembled micelles prepared from amphiphilic di-

block copolymers of poly(acrylic acid)-b-polystyrene via the amidation of acrylic acid groups. Azido 

dendrimers and micelles are generally prepared by click reactions. Covalently cross-linked micelles are 

entrapped into the nanogel assemblies. Cross-linked polyion nanogel micelles were prepared by Liu et al. 

using a click chemistry approach. Core cross-linked polyion complex micelles had thermosensitive coronas 

with high stability against salt and pH [36-37]. 
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Figure 3. FESEM image of luliconazole loaded poly(acrylic acid) nanogel 

Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) represents an attractive candidate to 

introduce physical cross-linking via the association of hydrophobic domains because it has a gelling 

temperature below body temperature and good biocompatibility. PNIPAM is a non-biodegradable, thermo-

reversible hyaluronan-poly (N-isopropylacrylamide) (HA-PNIPAM) hydrogel with a well-defined molecular 

architecture and properties; this hydrogel can be synthesised through reversible addition fragmentation 

chain transfer (RAFT) polymerisation and “click” chemistry polymerisation method [38]. 

 

The effect of PNIPAM grafting length and density on HA-PNIPAM properties was evaluated by methods 

relevant for cell therapy. It was found that the reversibility of the PNIPAM gelling process was improved in 

the presence of HA. The efficiency of the “click” reaction facilitates the control of the DS of PNIPAM chains. 

RAFT polymerisation allows the preparation of PNIPAM of controlled molecular weight and low PDI. This 

control of the critical parameters of PNIPAM molecular weight and grafting density allowed the gel to be 

Figure 4. N-(3-dimethylaminopropyl)-N-ethylcarbo-
diimide hydrochloride (EDC), N-hydroxy-succin-
imide (NHS) synthesis of hyaluronanpropargyl-
amide (hapa), followed by copper-catalysed azide-
alkyne cycloaddition of hapa with azido-terminated 
poly(N-isopropylacrylamide) N3-PNIPAM (reprinted 
with the permission from [38]. Copyright (2010) 
American Chemical Society). 
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optimised for regenerative medicinal applications. The two synthetic steps of HA-PNIPAM are shown in 

Figure 4. The EDC/NHS mediated coupling of PPA to carboxylic acid groups on the hyaluronan salt and the 

copper-catalysed azide-alkyne cycloaddition of the N3-PNIPAM to the hyaluronan-propargylamide [38-40]. 

Photo-induced cross-linking  

This is an alternative method for nanogel preparations. In this method, the polymer chain is stabilised 

using cross-linking and is functionalised with dimerisable or polymerisable units. Double hydrophilic block 

copolymers can be encapsulated into the coumarin dimer. Coumarin dimers, when cured with UV 

light >310 nm, are assembled into micelles and then photo-cross-linked to form nanogels (Figure 5). 

 
Figure 5. Scheme for UV photopolymerisation 

This nanogel shows interaction between lower critical solution temperature (LCST) and upper critical 

solution temperature (UCST) behaviours. UCST is the critical temperature above which the contents of a 

mixture are miscible. The light penetrating capability has been incorporated into dendrimer structures 

to increase drug release in response to light stimulation. Dendrimers of coumarin act as alternative cross-

linkers to control the accessibility of substrate in the nanogel networks. When the solution of coumarin was 

cured in UV light, the ester groups were confined in the interior assembly of nanogel. Enzymatic 

degradation of the substrate was very much inhibited. Curing the cross-linked assembly by UV light 

improves the enzymatic action due to the de-cross-linking of the coumarin dimer, which exposes the 

substrate to enzymes [41-43]. A stimuli-responsive nanogel prepared in water by a core cross-linking 

technique using diblock copolymer micelles by photo-cross-linking of the micelle core [44]. The preparation 

of poly(ethylene glycol)-b-poly(2-(diethylamino) ethyl methacrylate-co-2-cinnamoyloxyethyl acrylate) (PEG-

b-P(DEAEMA/CEA)), a pH-responsive block copolymer, by reversible addition-fragmentation chain transfer 

(RAFT)-controlled radical polymerisation using poly(ethylene glycol)-based chain transfer agent (PEG-CTA). 

The poly(ethylene glycol) (PEG) block in PEG-b-P(DEAEMA/CEA) is soluble in water, independent of pH, 

while the solubility of DEAEMA depends on pH (Figure 6) [44-45]. 

We have formulated poly(acrylamide) (PAA) nanogel using UV polymerisation. PAA gels are mainly 

polymerised using catalysts such as tetramethylenediamine (TEMED) and ammonium persulphate (APS), 

which are highly toxic and lead to slow polymerisation, which is time-consuming and takes 45 min to 1 h for 

lower gel precursor concentrations. Photo-crosslinking with various photoinitiators, such as Irgacure 2959, 

has been more recently used for the synthesis of PAA hydrogels with a stiffness gradient and used for the 

quick preparation of large PAA hydrogel arrays for applications such as drug screening. Photo-crosslinking 

circumvent the use of toxic catalysts and is characteristically much faster than chemical cross-linking 

method. Final properties of UV-polymerized gels are depending on the UV wavelength, consistency, light 

intensity, and interaction time [46]. Figure 7 shows the average particle size of thymol loaded PAA nanogel 

and Figure 8 shows the FESEM micrograph of thymol loaded PAA. It is clear from the figure that the nanogel 
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prepared by UV-polymerisation is spherical in nature. 

 

Figure 6. Synthetic route for poly (ethylene glycol)-b-poly(2-(diethylamino) ethyl methacrylate-co-2-
cinnamoyloxyethyl acrylate) (reprinted with permission from [45]. Copyright (2009) American Chemical 

Society).                                                                                                                                                                                                                                                      

 

Figure 7. Average particle size of thymol 
loaded polyacrylamide nanogel prepared 
by photopolymerisation 

 

Physical cross-linking  

Physically cross-linked gels are also known as pseudo gels which have weaker van der Waals linkages, 

hydrogen bonding, hydrophobic or electrostatic interactions that are involved in the synthesis of pseudo 

gels. The physicochemical properties of gels depend on properties of the polymer, temperature, ionic 

strength, concentration of polymer and the cross-linking agent. Combination of amphiphilic block 

copolymers and complexation of oppositely charged polymeric chains is used for the formulation of pseudo 

gels [43,47]. 
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Figure 8. FESEM image of thymol loaded poly(acrylamide) acid nanogel prepared by photopolymerisation 

II) Synthesis of nanogel networks by heterogeneous polymerisation of monomers 

Bi-functional monomers are chemically entrapped into nanogels. Heterogeneous colloidal systems are 

responsible for the activation of polymerisation. Emulsion polymerisation and ATRP are used for the 

preparation of biodegradable nanogel. Disulphide-linked bi-functional monomers are used in the 

stimulation of polymerisation. Protein nanogel hybrids using ATRP in water/oil mini emulsions or inverse 

mini-emulsion are useful for the entrapment of covalently bonded proteins into nanogel. In the inverse 

mini-emulsion, a co-initiator was used to initiate the polymerisation of monomers which are firmly 

dispersed in the system [48-49]. 

Drug release mechanism of nanogel 

pH-responsive mechanism  

pH-responsive, nanosized nanogels have received significant attention because of their biological 

relevance and due to their potential applications in drug delivery systems. Drug release is affected by the 

different pH values throughout the human body physiological conditions. pH-responsive block copolymer 

micelles are suitable for controlled delivery applications. In such applications, however, the polymer 

micelles may experience dilutions below the critical micelle concentration (cmc), leading to dissociation 

into monomers. In contrast, nanogels with a cross-linked structure are robust at a diluted concentration. 

Insoluble 3D structures and staying alive at low pH are the main characteristics of methacrylic acid ethyl 

acrylate. The polymeric chain repulsions begin and lead to the precise release profile in procaine 

hydrochloride due to the cumulative pH ranges of acidic group ionisation. Suitable pH at the site of action 

helps with the diffusion of nanogels. pH-responsive monomers play an important role in the preparation of 

nanogels; these are commonly pH-responsive functional groups that deionise in the polymeric assemblies. 

A nanogel containing platinum nanoparticles exhibited on and off catalytic activity for shifting reactive 

oxygen types. In the acidic pH of skin, the protonation of pendant amine of cross-linked poly(2-(N,N-

diethylamino) methacrylate) core as well as PEG group in the polymer greatly enhances the solubilisation of 

drug [43,50-51].  
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Thermosensitive and volume transition mechanism 

Variations in the capacity of nanogels according to temperature are known as the volume phase 

transition temperature (VPTT). Polymers become quenched and hydrated when the surrounding medium is 

below the VPTT. A shrunken and hydrated polymer swells and releases the loaded therapeutic agent. 

Thermo-responsive nanogels rupture in cells and the biological environment when they swell and rise in 

volume. N-isopropyl acrylamide synthesised nanogels have thermoresponsive properties. These nanogels 

have important characteristics, such as rapid contraction in gel volume and the efflux of indomethacin due 

to the maintenance of heat beyond the lower critical solution temperature (LCST). The poly(N-

isopropylacrylamide-co-acrylamide)-loaded 5-fluorouracil gel has been tested on rats in ex vivo studies.  

The loading of the therapeutic agent at lower temperatures and the release from nanogels at body 

temperature makes this suitable for drug delivery. Pluronic acid-modified thermoresponsive 

poly(ethyleneimine) nanogels were effectively used as gene delivery systems. Thermoresponsive nanogels 

with PNIPAM have very exciting and promising applications in the biomedical field, such as the treatment of 

certain cancers through hyperthermia. They can be loaded with an anticancer drug and, at the target 

location, by moderately increasing the temperature above the LCST, the nanogel can change with volume 

and the drug release can be increased [52]. 

Photoisomerisation and photochemical internalization  

Stimulation of photosensitiser-loaded nanogels leads to the synthesis of singlet oxygen and reactive 

oxygen species which causes oxidation of cellular compartment walls such as endosomal barrier walls; this 

affects the release of therapeutics into the cytoplasm. An azo dextran nanogel loaded with aspirin showed 

the e-configuration of the azole group rather than the z-configuration at 365 nm; cis-trans isomerisation of 

azobenzene by photo-regulation in an azo-dextran nanogel loaded with aspirin as a model drug exhibited 

that the e-configuration of the azo group leads to a better release profile of the drug than the z-

configuration at 365 nm radiation [12,43,53].  

Miscellaneous examples 

Degradation of disulphide linkages in cross-linked hyaluronic acid nanogels causes the degradation of 

the nanogel assembly due to the action of reducing agents; in this way, doxorubicin is released by the 

simple diffusive process. The size of the nanogel increases and the layer by layer release of an active 

ingredient is possible without a rapid burst of the drug. The release can be sustained by simple diffusion 

and controlled following initial release mediated by a coating with anionic and cationic polyelectrolytes 

[54].  

The application of nanogels 

Nanogel-based drug delivery formulations improve the effectiveness and safety of anti-cancer drugs, 

antifungal drugs, and anti-diabetic drugs, due to their physicochemical properties, as well as improving the 

ease of administration, as confirmed by in vivo studies. Nanogels have minimum toxicity to nearby tissues 

and high healing effects in cancer treatment at the site of action [55].  

Transdermal drug delivery of an antipyretic drug  

The nanosized dispersion of aceclofenac was formulated by emulsion-solvent diffusion methods and 

then incorporated into a Carbopol 940. The formulation showed optimal permeability properties and 

stability, and achieved a sustained drug release. A nanogel formulation containing diclofenac sodium was 

prepared by the emulsion-solvent diffusion method and then incorporated into a Carbopol 940 [56].  
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Ophthalmic applications 

Curcumin-loaded cationic nanostructured lipid carriers (CNLC) were prepared by film-ultrasonic 

techniques and thermosensitive gelling agents were used to improve pre-ocular retention and the ocular 

permeation capacity of curcumin. Muscone has maximum drug loading in the hydrogel, and the rheology 

results showed that the phase transition temperature was 34°C. Blinking of eyes was resisted due to the 

thixotropy; the recovery time indicated that hydrogel was effective [43,57]. 

Diabetic applications  

In diabetic patients, insulin is injected into muscles every day, which is a very painful process. To 

overcome this problem Lee et al. (2012) developed a chitosan-loaded inhalable deoxycholic acid altered 

glycol chitosan (DOCA-GC) nanogel. Nanogels are self-assembled due to hydrophobic attractions with 

deoxycholic acid; these nanogels formed constant hypoglycaemia over a period of 2 days comparatively at 

the low dose [58]. 

Carrier for antifungal agents  

In fungal infections, physicians and patients prefer the transdermal route. A fluconazole-chitin nanogel 

was formulated by using regeneration chemistry and the wet milling method. Chitin nanogels were 

redeveloped from chitin solution. Fluconazole-chitin has a controlled release pattern which is perfect for 

the continuous availability of fluconazole over a longer period for effective fungal treatment [59]. The 

synthesis of a vitamin E nanoemulsion-based nanogel consisting of the high molecular weight active agent 

amphotericin B has been effectively used for cutaneous fungal infections; the nanogel showed a nearly 4-

fold higher skin deposition through porcine ear skin [60].  

Nanogels in diagnostics and imaging  

Nanogels have properties like structural flexibility, high water content, fluid-like transport, 

biodegradability, and biocompatibility. Gadolinium-assembled nanogels were synthesised by the cross-

linking of branched polyethyleneimines with gadolinium ions. Inverse microemulsion followed by surface-

functionalisation with polyethylene glycol chains was performed to increase the blood circulation time [61]. 

Properties of nanogels 

High water content/swellability  

Nanogels have rapid swelling and de-swelling properties. Water-soluble nanogels show the benefits of 

hydrogels with certain advantages that are necessary for their nanoscale size. Like microgels, nanogels can 

contain and protect drugs and regulate their release by integrating high-affinity functional groups 

containing polymers [43,62].  

Softness  

The softness of nanogels is a very important parameter in the biomedical field and alters their 

biodistribution properties. Softness can be adjusted by changing the chemical structure of the nanogel [63].  

Colloidal stability  

The surface charge of polymers inhibits the development of aggregates in the bloodstream, along with 

their associated problems. This can be altered by increasing the zeta potential that results in higher 

repulsive forces between particles which electrostatically stabilise nanogels. Another method includes the 

integration of surfactants like polyethylene glycol which produce a steric effect and hydration forces to give 

a stable nanosuspension [43,64].  
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Biocompatibility and degradability  

Natural or synthetic polymers are used to synthesise nanogels. These are biocompatible and 

biodegradable, thereby preventing their accumulation in the systemic circulation. Chitosan, poly-acrylic 

acid, methyl cellulose, sodium alginate, and several polysaccharide-based polymers like dextran, pullulan, 

and cyclodextrin can be used to formulate  nanogels. Polysaccharides are typically carbohydrate-based 

polymers formed of repeating monosaccharide units linked by glycosidic bonds. These polymers are stable, 

non-toxic, hydrophilic and biodegradable in nature [65]. 

 Particle size  

Nanogels are able to diffuse through the skin, tissues or compromised areas of the endothelium and in 

some cases through a specific transport system. Some routes of administration face the challenge of 

crossing the blood-brain barrier (BBB) due to their particle size. So, to overcome this issue, nanogels were 

developed which have a size in the diameter range from 20-200 nm. Nanogels have smaller sizes, so cross 

the BBB while inhibiting rapid clearance mechanisms at the same time [43,66]. 

Concluding Remarks 

Nanogels are advanced pharmaceutical nanocarriers for pharmaceutical agents as well as therapeutic 

agents. Nanogel systems could be easily prepared with biomacromolecules with the maximum entrapment 

ability and stability of the resulting formulation in dispersion. Nanogel systems control pharmaceutically-

active compounds with different drug structures. Biopolymers and low molecular mass hydrophobes can 

also be encapsulated in nanogels. The discovery of a new polymeric system is very important for the 

development of nanogels. Advanced polymerisation or cross-linking approaches have a promising role in 

therapies. This is a new approach in the synthesis of nanogel assemblies. Hence, we can expect that these 

advanced nanocarrier systems will be focused upon in future pharmaceutical developments. 
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