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Abstract. Using the Penrose transform, we construct analogues of the BGG (Bernstein-
Gelfand-Gelfand) resolutions in certain singular infinitesimal characters in the holomorphic
geometric setting over the Lagrangian Grassmannian. We prove the exactness of the con-
structed complex over the big affine cell.
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1. Introduction and preliminaries

The BGG complexes were introduced in [2] by Bernstein, Gelfand and Gelfand. For
a semisimple Lie algebra g (complex, finite-dimensional), they constructed for each
finite-dimensional irreducible g-module F' a resolution consisting of direct sums of
Verma modules. This construction was generalized by Lepowsky in [15], from the
Borel case to the case of generalized Verma modules for any parabolic subalgebra p.

It is well known that homomorphisms of generalized Verma modules correspond
to invariant differential operators acting between sheaves of sections of homogeneous
vector bundles over the generalized flag manifold G/P. On the geometric side, BGG
complexes were studied by Cap, Slovak and Soucek in [5]. They constructed BGG
complexes in the more general theory of parabolic geometries, for which our G/P is
a special case — the flat model. In the flat model, their construction yields a locally
exact resolution of the constant sheaf over G/P defined by F, by direct sums of
homogeneous vector bundles and invariant differential operators. In the case when
the parabolic p is |1]-graded, which is equivalent to G/P having a structure of a
Hermitian symmetric space, the BGG resolution in trivial infinitesimal character
coincides with the holomorphic de Rham complex.

The BGG complexes are special cases of Cousin complexes of D-modules, which
follows from an unpublished result by Milic¢ic.
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Many important operators live in singular infinitesimal character (e.g. the scalar
wave operator on the Minkowski space, Dirac-Weyl operators on conformal mani-
folds, Dirac-Feuter operators on quaternionic manifolds, etc.), and there are no gen-
eral constructions of resolutions as above in these cases. Several problems emerge
here, one of which is a lack of the so-called standard operators. So, in order to
make a resolution out of the singular orbit, one must construct many non-standard
operators. Non-standard operators have not yet been classified in general. It turned
out that the Penrose transform is a particularly useful tool for the construction of
such operators. In [18], Pandzi¢ and Soucek constructed singular BGG resolutions
over the big affine cell in type A, for all maximal parabolics. It is visible there that
singular BGG resolutions cover the whole singular orbit, and moreover, they have
the same shape as certain regular resolutions in a lower rank.

This paper deals with type C. Here, G is the symplectic group Sp(2n,C). There
is just one |1|-graded standard parabolic subgroup P, and G/P is the Lagrangian
Grassmannian. The difference here is that we have two types of singularities: sin-
gularity of the first kind, involving only short simple roots, and of the second kind,
involving also the long simple root. Moreover, the Weyl group here has a more
complicated structure. It also contains the sign changes of the coordinates, rather
that just permutations, as in type A. In the construction, we assume that the in-
finitesimal character is semi-regular, i.e., orthogonal to only one simple root. In
the first kind, the constructed BGG complex (Theorem 3 and Definition 1) covers
the whole singular orbit. But in the second kind, the orbit decomposes into two
complexes (Theorem 5 and Definition 2), in agreement with Enright-Shelton’s the-
ory [9]. This feature was not present in type A. In case of singularity of the second
kind, construction of non-standard operators is technically more involved. The main
property of our singular BGG complexes, exactness over the big affine cell, is proved
in Theorem 7.

For some results in a higher grading, see [12, 14, 19, 20]. Recent algebraic
constructions in singular blocks for the Borel case are available in [16].

This paper presents the material from the author’s PhD thesis [17]. T am grateful
to my advisors Pavle Pandzi¢ and Vladimir Soucek for their guidance and ideas.
Thanks to Toméas Sala¢ for helpful discussions.

1.1. Parabolic subalgebras

Let G be a semisimple complex Lie group, connected and simply connected, g its
Lie algebra, b its fixed Cartan subalgebra, and AT (g, ) a fixed set of positive roots.
The half sum of all positive roots will be denoted by p. For an element w € Wy in
the Weyl group, denote by [(w) the minimal number of simple reflections required to
obtain w as a product. Denote also ®,, := {a € At(g,h) : wla< O}. A subset
S C A™(g,b) is said to be saturated if for any «, 3 € S such that o + 3 is a root,
we have o+ 8 € S. A subset S C AT (g,h) is said to be admissible if both S and
A*(g,h)\ S are saturated. For w,w’ € W, we write w —— w’ if l[(w') = l(w) + 1
and w’ = o, 0w, for some o € AT (g, h), not necessarily simple. We often write only
w — w’. In this way, Wy becomes a directed graph. Besides the standard action
of Wy on bh*, we also use the affine action: w- A =w(A+ p) — p.
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Fix a standard parabolic subalgebra p = [®u of g. It will be denoted by crossing
the nodes in the Dynkin diagram for g that are not in the Levi factor [. Denote by
A(u) the set of positive roots whose root subspaces lie in the nilpotent radial u. We
write u~ for the opposite nilpotent radical. The (regular) Hasse diagram of p is the
full subgraph of Wy with the following nodes:

WP ={weW,: &, CAu)}.

It consists of all elements in Wy that map g-dominant weights to p-dominant ones.
We will mostly be interested in parabolics with abelian nilpotent radical. These are
said to be |1|-graded (and also of Hermitian type).

For a weight A € h* integral and dominant for g, we write F(\) for the finite-
dimensional, irreducible representation of g with highest weight A, and E(\) for
its dual. If X is p-dominant, we write F},(A) for the finite-dimensional, irreducible
representation of [ with highest weight A, and with u acting by 0. We write E,()\)
for its dual. The same notation will be used for the group representations. In a
|1|-graded case, the one-dimensional center of [ acts by the scalar A(E) = 2<<a/\”:>>,
where F is the grading element (the unique element from the center of [ acting as
1 on u), « is the crossed simple root, and w the corresponding fundamental weight.
This scalar is called the generalized conformal weight.

1.2. Geometric setup

The Dynkin notation for p will also denote the corresponding parabolic subgroup
P C @, and the (complex) generalized flag manifold G/P. For two standard
parabolic subgroups Q C P, the relative Hasse diagram W,ﬂ of the fibration G/Q —
G/P is the Hasse diagram of the parabolic [ss N q in g, where lg is the semisimple
part of the Levi factor of p.

Given a finite-dimensional holomorphic representation 7: P — End(V'), we can
form the homogeneous holomorphic vector bundle G x p V' — G/P. Its holomorphic
sections correspond to V-valued holomorphic functions that are defined on open
subsets of G and are P-equivariant. For V = E}()), this sheaf is denoted by O, ().

Remark 1. Recall the relative Bott-Borel- Weil theorem. Let T: G/Q — G/ P be the
obvious fibration, and let A € h* be a g-integral and p-dominant weight. If A+ p is
p-singular, all the higher direct images T!Oq(\) are 0. Otherwise, there is a unique
w € Wy, C Wy, such that w - X is p-dominant (and necessarily w=* € W,). Then,

Ti(w)Oq (A) =2 Op(w - A), and all other higher direct images are 0. See [1, 5.3.].

By an invariant differential operator we will mean a C-linear differential operator
Op(X) = Oy (1), equivariant with respect to the left translation of sections.

Remark 2. Peetre’s theorem states that any local map between the sections (where
“local” means that the support of a section is not increased) of vector bundles is
necessarily a differential operator. See [13, V.19.].

Remark 3. In the |1|-graded situation, the order of a non-zero invariant differential
operator is equal to the difference between the generalized conformal weights in the
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domain and the codomain. Such an operator is unique up to a non-zero scalar. See
e.g. [10].

Consider the Borel subgroup B C P. If there exists a non-zero invariant differ-
ential operator Op(A) — Op(u), then it is unique up to a scalar (see [1, 11.]). The
direct image of such a map via G/B — G/P is again an invariant differential oper-
ator called the standard operator Op(A) — Op(n). It may be zero, and there may
exist invariant differential operators which are non-standard, for P # B. Standard
operators are in principle completely known, but non-standard ones have not yet
been classified. Here is the theorem that we want to find analogues of:

Theorem 1 (Bernstein-Gelfand-Gelfand-Lepowsky [15, 2], Cap-Slovak-Soucek [5]).
For any g-integral and g-dominant weight X, there is a locally exact sequence on G /P
resolving the constant sheaf defined by E()N), called the (reqular) BGG resolution

0= E(\) = A%(\), where AFN) = @ Op(w-N). (1)
weW?P, l(w)=k

The morphisms are the direct sums of the standard operators Op(w-A) = Op(w' - N)
for w — w' in WP, all of which are non-zero.

1.3. Duality

There is a contravariant correspondence between the sheaves O, () and the gener-
alized Verma modules M, (\) = U(g) ®u(p) Fp()). See [1, 11.] or [5, the appendix
of preprint|:

Diff(Op(A), Op(p)) = Homg (My (1), My (X))

1.4. Algebraic setup

Recall the decomposition OF = @Aeh*/wg C’)f\ of the parabolic category OF, where

(9'; denotes the full subcategory of OP consisting of the modules with generalized
infinitesimal character A\. These subcategories are called the (infinitesimal) blocks
(even though they may be decomposable, as we will see later). Any two blocks
with regular generalized infinitesimal characters are mutually equivalent (Jantzen-
Zuckerman translation functors), so one usually works only with the so-called prin-
cipal block (’)2. The Hasse diagram WP parametrizes the p-dominant elements of
the affine Wy-orbit of a dominant weight. So, W¥ parametrizes both the generalized
Verma modules and the simple modules in OF. For details, see [11].

One can do similarly in singular blocks. Take an integral weight A € b* such that
A+ p is dominant, and denote by ¥ the set of simple singular roots for A:

S={aell: (A +p,d&) =0}.

The subgroup of Wy generated by {o,: a € X}, denoted by Wy, is equal to the
stabilizer {z € Wy: z- A = A}. So, A + p is regular if and only if ¥ = (). In general,
one can define the singular Hasse diagram of the pair (p, X) by the following formula:

WPE = {w e WP: wo, € WP and w < wo,, for all a € X} . (2)
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The set WP*> is precisely the set of unique minimal length representatives of the
left cosets wWy that are contained in WP. It parametrizes simple modules and
generalized Verma modules in the singular block (9‘;\ +pr For more details and proofs,
see [3].

In the |1|-graded case, there are certain equivalences of categories between a
singular block and some regular blocks of some other type, called the Enright-Shelton
equivalences. See [9] and [8, 5.5].

1.5. The Penrose transform

A standard reference is the book [1]. Choose standard parabolic subgroups P, R C G.
Their intersection Q = PN R is also a standard parabolic subgroup. Denote by n and
7 the canonical surjections G/Q — G/R and G/Q — G/ P, respectively. Choose an
open subset X C G/P, and define Y := 771(X) and Z := n(Y). The subsets Y’
and Z are open submanifolds of G/Q and G/R, respectively. We have the double
fibration and the restricted double fibration:

G/Q e
RN VRN
G/R G/P, Z X.

The spaces G/R and Z are usually called the twistor spaces of G/P and X, respec-
tively. Start with a weight A, g-integral and t-dominant, and form the sheaf O,(\)
on Z C G/R. Consider the topological inverse image sheaf n710,.(\) on Y, whose
sections correspond to the sections of the pull-back bundle that are constant on the
fibers of 1. The weight A remains dominant on the fibers of 7, which themselves are
generalized flag manifolds. By resolving n~1O,.(\) l—1(z) over each fiber, one obtains
an exact sequence of sheaves on G/Q and standard invariant differential operators,
called the relative BGG resolution:

0= 7 '0(A) = A3(N), where A¥N) = P Og(w-N). (3)
weWd, l(w)=k

For a full treatment of the relative BGG sequences, see [6, 7]. The hypercohomology
spectral sequence applied to the exact sequence (3) has the form

EYY = HP (Y, A1(N) = H'F(Y, 07 O(\)). @)

Consider the higher direct images along 7 of the sequence (3). Let us assume that
X C G/P is an open Stein subset, for example the big affine cell, an open ball or
a polydisc inside the big affine cell. By the Bott-Borel-Weil theorem, the sheaves
7 Af,()\) are locally free, and therefore coherent. Cartan’s theorem B implies that
for each k > 0 the Leray spectral sequence for 7 collapses, and gives isomorphisms
HI(Y,AL(X) = D(X,7Ak(N)), for k > 0. This settles the left-hand side of (4).
For the right-hand side, if the fibers of 77: Y — Z are smoothly contractible, then
there are isomorphims H”(Y,n71O.()\)) & H"(Z,O(())) for r > 0. In conclusion,
we have:
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Theorem 2 (Baston-Eastwood). If X C G/P is an open Stein subset, and the fibers
of n:' Y — Z are smoothly contractible, there is a first quadrant spectral sequence:

BV =T(X,79AP(\) = HM9(Z,0,()). ()

On the first page, the differentials are standard operators (induced from the relative
BGG), but on the other pages, we have non-standard invariant differential operators.

2. Structure of the Hasse diagrams

2.1. Type C

We specialize to G = Sp(2n,C) = o o o $=o  the complex sym-

Qg a2 Qp—2 Qp—1 Qn
plectic group. Choose the Cartan subalgebra consisting of diagonal matrices ) C
g = sp(2n,C). The positive roots are:

A+(g7b):{aij =€ — €5, b; = 2¢;, cij =€ +e€ 11 §z<]§n},

where €; denotes the projection to the i-th coordinate. The simple roots are «; =
a;i+1 fori=1,...,n—1, and o, = b,,. A weight A = [A1, A2,..., \,] € b* is integral
if all \; € Z, and dominant if Ay > Ay > ... > X, > 0. A weight is regular if and
only if it does not have two coordinates with the same absolute value, and if all the
coordinates are non-zero. The half sum of all positive roots is p = [n,n — 1,...,1].
The fundamental weights are w; = €1 + ...+ ¢;, 1 <i < n. The Weyl group acts by
permutations and sign changes of the coordinates.

Weights for the Levi subalgebra of a standard parabolic subalgebra can be written
as m-tuples again, but for every crossed node «; in the Dynkin diagram for the
parabolic subalgebra, we will put a bar after the i-th coordinate of the weight.

2.2. |1|-graded parabolic subalgebra
Fix p =160 u=o0—o0 o——o==x, which has

A+([, [’)) = {aij: 1< j}, A(u) = {bl} U {Ciji 7 < j}

Moreover, [ 2 gl(n,C), and u consists of the matrices of the form <8 €>’ where C
is an n x n symmetric matrix. The grading element is %diag(l, =100 =),
——

n
A weight A = [A, Mg, ..., A\p] € b* is p-dominant if A; > Ay > ... > )\, and strictly
p-dominant if all the inequalities are strict.

The generalized flag manifold corresponding to this parabolic subalgebra is known
as the (complex) Lagrangian Grassmannian, denoted by iGr(n,2n). It can be re-
alized as the space of all maximal isotropic (Lagrangian) subspaces in a fixed 2n-
dimensional symplectic vector space.
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2.3. Generalized Young diagrams

Elements of the Hasse diagram WP will be represented using the map ® from Sub-
section 1.1 as admissible subsets of A(u). The point of this identification is to get a
simple criterion for the arrow relation.

+on_1 +an—2  4as +aq

Cin >Clpn—1 "> ... "> C12 > by
+OtlA A A
Con >Cop—1 "> ... > by
A
+a2 A
A
+an—2
Cn—1,n > bn—l
+an—1A
bn = Qp

Figure 1: A(u) for p =o0—o0 o——o==x

Proposition 1. Denote b; = ¢;;. A subset S C A(u) is admissible if and only if
ci; €8,1<j, = cm€S forall k>4, 1>j k<I<n. (6)
Proof. Direct checking. O

An admissible subset S will be represented in the following way: for each element
cij € S, we put a box O on the position ¢;; in Figure 1. The diagram obtained
in this way will be called the generalized Young diagram of the corresponding Hasse
diagram element (see [8]).

The maximal admissible subset is A(u), and we denote it by the
| figure on the left. Condition (6) translated into the generalized

Young diagram setting is: for each box in S, all possible boxes

bellow, and left of it are again contained in S. The notion of the
‘ length and the arrow relation transfer very nicely to the generalized
Young diagram setting. Namely, the length of an element in WP
is equal to the number of boxes in the generalized Young diagram.
Furthermore, an arrow between elements in WP corresponds to the “adding one boz”
operation on the generalized Young diagrams; the label of the arrow is the same as
the label of the added box (follows from [4, 3.2.]). See Figure 2.

2.4. Lascoux-Schiitzenberger (LS) notation

Note that a generalized Young diagram is completely determined by a zig-zag line
from the top left point to the diagonal. We can easily reconstruct the generalized
Young diagram from the zig-zag line, by removing the part above this line from the
maximal generalized Young diagram. For each move to the right along this line, we
write 1, and for each move down, we write 0. This way we get a binary sequence of
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length n, called the LS notation of the generalized Young diagram (see [8]), written
with overline. See Figure 2. This way of denoting elements in W* does not follow
usual conventions in [1], but it turns out to be very convenient for describing singular
orbits, and the Penrose transform in our case. The reason is that the LS notation
fits well with the inductive structure of WP.

Proposition 2. As directed graphs,
WP = {didy...dy : dj =0 or1}, (7)

with the following arrows on the right-hand side:

dloldn—>d110dn and dl...dn_10—>d1...dn_11.

Proof. Bijection (7) follows from the definition of the LS notation. Obviously, the
“adding one box” operation has the effect of switching a pair of consecutive digits
01 to 10 (if the added box is not the last possible in a row), or changing the last

digit 0 to 1 (if the added box is the last possible in a row). O
D0 0000 —— 0001

caa¥
5 o

caa Y

aﬂaz 4
/ bzgaﬂ T

/ 1000 —— 1001 0110 —— 0111
i .
1010 —— 1011

Hﬂ i i !
@ . v v
yeis | L

b
— 1110 — 1111

Figure 2: WP for p = o——o0———0c==xX both in terms of generalized Young diagrams (on the left),
and using the LS notation (on the right)

Proposition 3. Let A = [A1,da, ..., \y] € b* and w € WP, Let iy < is < ... < i
denote the positions of digit 1 in the LS notation for w. Then

—

WA= (A, A2 Nirs ooy Mmoo s N e A =i —Aip e =i ] (8)

The coordinates with hat are omitted. In other words, the positions of digit 1 are
precisely the positions of the coordinates of p that become negative in wp.
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Proof. Suppose first that K = 1. Then w = 0...010...0, and the corresponding
generalized Young diagram has just one column of n + 1 — ¢; boxes. It follows that

n*

w=0¢ ,0...00¢, ,,00

Applying this composition to A gives [Aq,. .., X;? cey Ay —Ag -
In general, the same principle is applicable. One can decompose w into columns,
and calculate the action of each column from the left to the right. More precisely,

w = Ck 9] Ck—l 0...0 Cl, where C]' = Ucij-i-l—j,n-i-l—j 0...00Ch—jn+1—50° O'bn+1_j.
Applying this to A gives (8). O

One can use Proposition 3 to translate between the right-hand side of Figure 2
and Figure 3.

4,3,2,1]] — [4,3,2,—1]]
\
[4,3,1,-2|] —[4,3,—-1,—-2]]
\ \
[4,2,1,-3]] — [4,2,—1, -3]]
— \
[372a17_4|}>[3’27_17_4|] [471a_27_3|]%[47_1a_27_3‘]
3,1, -2, -4]] = [3,-1,-2,—4]]
\ \
[2a17_37 _4|] > [27_1a_37 _4‘]

y
[1,-2,-3,—4|] = [-1,-2, -3, —4]]

Figure 3: W?p for p = o——o0——c==x, compare with Figure 2

2.5. Description of the singular Hasse diagrams

Take an integral weight A such that A 4+ p is dominant and denote by X its set of
simple singular roots. Consider the WP-orbit of A + p (which is the same as the
affine WP-orbit of A, up to the shift of coordinates by p), and look for the elements
that are strictly p-dominant. The results that are not strictly p-dominant do not
correspond to a homogeneous vector bundle over G/P. The remaining part is what
is called the singular orbit attached to the pair (p,X) or (p, A). In the identification
(7), we can recognize those LS words that belong to the singular Hasse diagram (2):

Proposition 4. Suppose ¥ = {ay,,...,a;_ }. If the long simple root oy, € 3, then
weE = {dldg coidy ¢ dydi 41 =01 fork= 1,...,5}. Otherwise o, = «;,, and
Wp,E = {dldz .. .dn_10 . dikdik-i-l = m for k= 1, ceey S — 1}.

Proof. Easily follows from definitions and (8). O
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Two different cases, depending on whether a,, € 3 or a,, € %, will be referred to
as the singularity of the first kind, and the singularity of the second kind, respectively.
In Figure 4, we give an example of a singular orbit of each kind in rank 4. In the

x - [3,2,1,—1]] 3:2,1,0]]=13,2,1,0]]
Il
(3,2,1,-1]] X (3,2,0,-1|]=3,2,0,—1]]
v v
x 3.1,-1,-2]] [3,1,0,~2|] —[3,1,0,~2]]
P Il =
X [2,1,-1, =311 [3,1,-1,-2[] - x [2,1,0,-3[] =1[2,1,0,-3[]  [3,0,-1,-2|] = 3,0, -1, -2]]
Il P —
2.1,-1,-3]] x 2,0,-1,-3[] = [2,0,~1,-3]]
Y ]
X (1,-1,-2,-3]] (1,0,-2,-3|]=[1,0,-2,-3]]
Il
[1,-1,-2,-3]] - x [0,-1,-2,-3|] =[0,-1,-2,-3]]

Figure 4: Singular orbit for [3,2,1,1] and [3,2,1,0]

right-hand side orbit, there are some dotted lines between non-zero objects. These
represent the standard morphisms that turn out to be zero (for a direct proof, see
[17, p. 69], but it also follows from a much stronger result, namely Lemma 1).

In both of these orbits there are some non-standard operators, which are not
visible in the figures. These missing operators will be constructed using the Penrose
transform from an appropriately chosen twistor space. They will be (together with
the standard operators) the differentials in the singular BGG complex. The con-
struction of non-standard operators will be more complicated for the singularity of
the second kind.

3. Construction of non-standard operators

From now on, we will work with a fixed weight A such that A + p is orthogonal to
only one simple root. In this case, we say that A\ + p is semi-regular. So, ¥ = {ay}
for some k < n. In case of a singularity of the first kind (k < n), the minimal choice
for A+ pis

At p=m-1,n-2,....n—k+1ln—-kn-kn—FkF—1,...,2/1]. (9)
k k+1

In case of the singularity of the second kind (k = n), the minimal choice for A+ p is
Af+p=n-1,n-2,...,2,1,0].

We will work with this minimal choice for A 4+ p, but we want to note that in the
construction of non-standard operators that follows, the minimality is not important,
only the order among the coordinates of A 4+ p plays a role. Equivalently, one can
apply the Jantzen-Zuckerman translation functors to obtain non-minimal cases from
the minimal ones. Of course, for a non-minimal A+ p, the orders of the constructed
operators will increase (see Remark 3).
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3.1. Double fibration

Consider the following double fibration:

G/Q:x—o o—o==x (1())
A"/ —~I
G/R = x—o  o—o0=%=0 G/P =o——o0  o—oc==x.

Recall that G/P can be realized as the Lagrangian Grassmannian iGr(n,2n), G/R
as the isotropic Grassmannian iGr(1,2n) (biholomorphic to P?"~1), and G/Q as
the space of isotropic flags of the type (1,n). More precisely, double fibration (10)
becomes:

LW): dimL =1, dimW =n, L <W isotropic
{(
n T
/ \
{L: dimL =1} {W: dim W =n, W isotropic},

where 1 and 7 are the projections to the components. Take X C G/P to be the big
affine cell. It consists of subspaces spanned by the columns of the matrix (é) (w.r.t

a fixed symplectic basis), where I is an identity n x n matrix, and C' a symmetric
n X n matrix. The symmetric matrices Sym,, (C) = u~ give the cannonical affine
coordinates on X. Put Y := 771(X) and Z := n(Y). A general element in the
fiber 7=1(W), W € X, is a pair (L, W), where any non-zero vector in L is a linear

combination of the columns of ( o The coefficients in this linear combination are

uniquely determined by L up to a non-zero scalar, so they define a point in the
projective space P"~!. From this, it follows that we have a biholomorphic bijection

Y1
n—1 ~v : Yy 1 _ .
Sym,, (C) x P ~Y given by (C,y) — ((C’y) , (C))’ where y = | : | are
the projective coordinates. Now, the restricted double fibration is:
LY. L (C) ()
YN NS
Z X,
4 c
(C ' y)
n
Proposition 5. We have Z = Z” € P21 . at least one y; # 0
1
Zn
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Proof. The condition in the curly brackets is necessary because y are projective
coordinates. For the converse, assume y; = 1, and observe:

Zl_Z?:zzi'yi\Zz---Zn 1 21
29 0...0 Y2 %)
Zn 0...0 Yn Zn
The proof is analogous if some other y; = 1. O

Proposition 6. The fibers of n: Y — Z are smoothly contractible.

Proof. Given <Z> € Z, the condition C' -y = z is given by linear equations in the

entries of the matrix C. So, the fiber n~1 (Z) C Sym,,(C) x y is a certain affine

subspace of Y, and therefore smoothly contractible.

Suppose X’ C X is a convex open subset, and put Y’ := 7-}(X’), Z’ := n(Y").
In this new restricted double fibration, the fibers of n: Y/ — Z’ are equal to the
intersection of an affine set (the fibers of 7 in Y) and a convex set (a copy of X’ in
Y'), and are therefore also smoothly contractible. So, we have a valid setup for the
Penrose transform locally, around any point in the Lagrangian Grassmannian.

3.2. Relative Hasse diagrams

Fix k € {1,...,n}, and consider the homogeneous sheaf O.(A) on G/R, where
Ap=n—kln—1,n-2,...,21]. (12)

The weight A = [—k]0,0,...,0,0] is obviously t-dominant, so the sheaf O.(\) is
indeed well defined. To calculate the relative BGG resolution (3) of the inverse
image 71O.(\) on G/Q, we need the relative Hasse diagram W. The fiber of n
is R/IQ = g—o o= . So, W (and so the relative BGG resolution) has the

same shape as the regular Hasse diagram in rank n — 1. As a subset of Wy, W/
operates on the last n — 1 coordinates and ignores the first coordinate of a weight.
Therefore, W can be identified with the following subgraph of W¥:

Wtq:{wGWp : w:0d1d2...dn71}. (13)
To apply the Bott-Borel-Weil theorem for calculating the higher direct images

along 7, it is convenient to understand the relative Hasse diagram W,. The fiber of
Tis P/Q& x—oo—(o X P*~1 also |1]-graded, so by an easy calculation:

Qn—1

W;':{Idﬂnﬂo%...ﬂn}gwg. (14)
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Example 1. Take A + p = [3,2,1,1], so A+p=1[1/3,2,1]. The relative BGG
resolution of the sheaf O(\) on G/Q is obtained by applying (13) to A + p:

7 O(N) = [113,2,1]] = [1]3,2,-1]]
v

v V
(112,1,-3]=[1]2,-1,-3]]
V
M)1,-2,-3|]=[1] —1,-2,-3|] 0.

To calculate higher direct images, remove the first bar in each weight in the reso-
lution. If a weight has two coordinates equal, it is p-singular, and so all its higher
direct images are 0. Otherwise, the surviving higher direct image is obtained by ar-
ranging the coordinates in the strictly decreasing order, and the degree is equal to
the number of the transpositions of adjacent coordinates needed to move the first
coordinate to its correct position (follows from (14)). We organize this data on the
first page of the spectral sequence (5), which is in this example

0 [3,2,1,-1]] © 0 0 0 0
0 0 0 [3,1,-1,-2]]=[2,1,—-1,-3]] 0 0
0 0 0 0 0 0 [1,-1,-2,-3]].

Compare this to Figure 4. Two non-standard operators to be constructed in this
case are [3,2,1,—1|] = [3,1,—1,—-2]] and [2,1,-1,-3]|] — [1,—1,—2,-3]|]. Note
that the objects in the spectral sequence are mot really homogeneous sheaves, but
rather their sections over X. We will omit T'(X,—) from the notation, and write
only sheaves, or the defining (p-shifted) weights, or their LS codes. Also note that
a standard operator between two adjacent objects in the relative BGG resolution
survives the higher direct image and appears in the spectral sequence as a standard
operator, only if both these adjacent objects survive in the same degree. This follows
from the functoriality of the direct images.

Example 2. Toke A+ p = [3,2,1,0], so A+ p = [0|3,2,1]. This is the singularity
of the second kind. The relative BGG resolution is the same as in Example 1, except
that instead of 1 there is 0 before the first bar. Note that now every weight survives
a higher direct image. The first page of spectral sequence (5) is:

3,2,1,0]] 0 0 0 0 0 0
0 (3,2,0,~1]]~[3,1,0,-2|] — [2,1,0,-3]] 0 0 0
0 0 0 3,0,—1,—2|] = [2,0,—1,-3|] = [1,0, -2, —3]] 0
0 0 0 0 0 0 [0,-1,-2,-3]].

Compare this to Figure 4. Two non-standard operators will be construted here:
(3,2,1,0|] — [3,0,—1,-2]] and [2,1,0,—-3|] — [0,—1,—2,-3|]. Namely, the
Enright-Shelton equivalence says that this orbit should decompose into two disjoint
blocks with respect to the parity, each of the shapec @ — o — o — .
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Example 3. In Figure 5, we give the degrees of the surviving higher direct images
in rank 5 in all semi-reqular cases, from ¥ = {1} to ¥ = {as}, respectively. The
non-standard operators to be constructed are indicated by dashed arrows.

X o X X o X X o X X 3 L3
\ N
) b
X o X X o X 2—>2 X e 2 3
| } }
_ | 2 3\
. N\

- - ‘L R : / N / / N
0>-0 X=X X=x 11 X=-x 1=>1 %x..2 x.1 3.2 1
/e . >
b o s WY v S
0—=0 XX, 1-1 X o 1 21
Vo v oy | v v
0—=0 0=0 XX X o 1 21
v v \ N \$
00 0>0 0=0 X 0 10

Figure 5: Degrees of higher direct images in rank 5

The main technical difference between the two kinds of singularities is the fol-
lowing: In the first kind, all non-standard operators to be constructed go across zero
columns in the first page of the spectral sequence; in the second kind, the wanted
non-standard operators go across columns with non-zero entries. We will deal with
the two kinds separately.

3.3. Construction for the first kind

Suppose A+ p is orthogonal to only one short simple root. We work with the minimal
choice for A + p, which is given in (9), so A is as in (12) for some fixed k < n.

Proposition 7. In case of singularity of the first kind, the objects in the relative
BGG resolution that survive a higher direct image are parametrized by the LS words
of the form 0dy...dg—11dgy1...dn—1. The surviving degree is equal to the num-
ber of the digits 0 among di,...,dx—1. The result in this degree corresponds to
dy...dp_101 dk+1 c.o.dy_q € W,

Moreover, the first page of spectral sequence (5) agrees with the singular orbit,
including both the objects and the standard operators.

Proof. This is just a translation of the Bott-Borel-Weil theorem in our notation (see
Remark 1). An element w = 0d; . ..dp_; € W will make A+ p p-regular if and only
if it makes the coordinate entry n — k (after the bar) negative. This will happen if
and only if di = 1. The number of the transpositions of adjacent coordinates needed
to make w(\ + p) p-dominant is equal to the number of the coordinates in w(X + p)
greater than n— k (which can occur only on positions 2 to k); this equals the number
of digits 0 among dy,...,d,_1. The last two statements are obvious. O
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We have an obvious bijection from the singular Hasse diagram (and the surviving
part of the relative BGG) to the regular Hasse diagram of rank n — 2, given by:

dy...dp_101 dk+1 coildp_ 1 dy ... dkfldlﬁ,l codp_q. (15)

However, this is not a directed-graph isomorphism. We need to “add” more arrows to
the left-hand side. Those arrows are the missing non-standard operators, constructed
in the following theorem.

Theorem 3. There are non-standard invariant differential operators
D: Oy(v) = O, (V") (16)

for all pairs v, V"' in the singular orbit of the first kind, given by

l/Zdl...dk_20011dk+3...dn-)\, Z/HZdl...dk_g 1010dk+3...dn-/\

fork=2,....n—2, orbyv=d;...d,_3001-X and v =d;...d,_3101 -\ for
k=n-—1.
If X\ is minimal as in (9), operator (16) is of order 2.

Proof. Take X’ to be an open ball inside the big affine cell in G/P, and consider

the Penrose transform over the corresponding restricted double fibration. In the
relative BGG resolution, we find and fix the following sequence:

,U,:Odl...dk_g()lldk+2...dn_1')\
v

(W =0dy ... dg—2101dprg.. . dyq-A—p" =0dy...dp—2110dps2 ... dp_1 -\

Denote ¢ = 1+the number of the digits 0 among dy, ..., dr_2. Consider the (part of
the) Cech bi-complex that calculates the higher direct images, described in Figure 6.
Here the horizontal morphisms dj, are induced from the differentials of the relative
BGG. The vertical morphisms d, are the usual differentials in the Cech resolution.
We have d? = 0, di = 0, and for each square, dpd, = —d,d,. By definition, the
vertical cohomologies are equal to the higher direct images of the corresponding
sheaves. By Proposition 7,

HY(Ch,dy) = 104(1) = Op(v), HIHClody) =71 Og(1") = Op (v").

The cochain spaces with nontrivial cohomology will be denoted in bold font below.
All other vertical cohomologies are trivial, including the complete middle column.
We will define operator (16) on the representatives of the cohomology classes in
H q(é’;, d,). We want this operator to agree with a certain higher differential in the
spectral sequence (5). This will be used in the proof of Theorem 7.
Take a cocycle z € ég From dydp(x) = —dpd,(x) = 0 it follows that dp, (x) € C’Z,

is a cocycle. Since Hq(CV'I’L,,dU) = 0, it follows that dj(z) € Imd,. So, there is
y € C'Zfl such that d,(y) = dp(x). Then, dy(y) € ég;l, in the correct cochain

space. The element dj,(y) is a cocycle: d,dy(y) = —dpd,(y) = —dz(x) = 0.
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ég%éz;%c\/’gu xeéq;:)dh(m) ey,

f 4 $ i
Mg — —1 ~gq—1 X 1 ~q—1
Z 1 — CZ/ e Cz// Yy € OZ/ — dh (y) S CE//

Figure 6: Diagram chasing over the Cech bi-complex (1)

Next, we check that we have a well-defined map [z] — [d;,(y)] on the cohomology
classes. Take another cocycle 2 in the same cohomology class [7], and find y' so
that d,(y') = dn(z'). Since x — 2’ = d,(t) for some t € C1~", observe that

dy(y =y + dn(t)) = du(x — 2') = dnd, (t) =0, (17)

so we conclude that y — ' + dj,(t) = d, (') for some ¢’ € Cv’z,_2. Finally,

do(=dn (1)) = dn(dy(t')) = dn(y) — dn(y) + d},(t) = dn(y) — dn(y’) € I d,.

Therefore, we have a well-defined map (16), given by D([x]) = [dx(y)], which is
by construction local and G-invariant. By Remark 2, it is a differential operator. By
Remark 3, its order is given by the difference of the generalized conformal weights,
which is easily seen to be 2 in the minimal case. O

Definition 1. In case of singularity of the first kind, the singular orbit with all non-
standard operators constructed in Theorem 3 included therein, is called the singular
BGG complex of infinitesimal character A + p.

Theorem 4. In case of singularity of the first kind:

1. The singular BGG complexes of rank n are directed-graph isomorphic to the
reqular one of rank n — 2.

2. Every square in the singular BGG complex anticommutes.

8. If we add up all objects of the singular BGG complex of the same degree, we
get a cochain complez.

Proof. It is easy to check 1: now (15) is a directed-graph isomorphism. Statement
3 follows from 2: (Z dz)2 = Zi;ﬁj dzd] = Zi<j(didj + djdi) =0.

To prove 2, observe that the standard operators anticommute since this was
already true in the relative BGG resolution. There are no squares with all operators
non-standard. Therefore, we only need to check a combination of a standard and
a non-standard operator. A typical situation in the relative BGG resolution that
induces such a square is (the k-th coordinate is denoted in the bold font):

0...01...011...—0...01...101... —0...01...110...

i v i

0...10...011...—-0...10...101... —-0...10...110....
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(Other possible situations start with 0...011...01...,0or 0...011...0). Denote by
i, i, 1" the objects in the first row, and by 6, 6, 8” the objects in the second row,
and consider the Cech bi-complex above it, with the same notation as in the proof
of Theorem 3. Denote by d all standard operators pu — 6, p/ — ¢’ and p” — 6” in
the relative BGG resolution. These are just horizontal differentials, but they go in
a different direction than those we denoted by dj, in the definition of D. The maps
d anticommute with both d; and d,. This is the part of the Cech bi-complex that is
mapped to a square in the singular orbit with two parallel standard and two parallel
non-standard operators:

d(x) € ég ——dp(d(z))

7 i

z € Gl —> dy(2) Y ——dn(y) € C3
7
ﬁ . qfl\/ jd
y——dn(y) € C .
We need to show that [d(dp(y))] = —[dr(y’)]. First, for ¥’ we can take d(y) without
changing the class D([d(z)]) since d,(d(y)) = —d(d,(y)) = —d(dn(z)) = dp(d(z)).
Therefore, dn(y') = dp(d(y)) = —d(dn(y))- O

3.4. Construction for the second kind

Suppose A+ p is orthogonal only to the long simple root. We work with the minimal
choice for A+ p, whichis A+ p=[n—1,...,1,0|],s0 A+ p=[0|n—1,...,1].

Proposition 8. In case of singularity of the second kind, all objects in the relative
BGG resolution survive a higher direct image. The surviving degree of an object
parametrized by the LS word w = 0dy...dn—1 is equal to the number of digits O
among di,...,d,—1. The result of the direct image in this degree corresponds to
di...d,_10 € WP>. The first page of spectral sequence (5) agrees with the singular
orbit, including both the objects and the standard operators.

Proof. The same as for Proposition 7. O

We split the singular orbit into the even and the odd part, parametrized by the
following subsets of the singular Hasse diagram, respectively:

W¥* = {dy...d,—1 0 with the number of digits 1 of parity €}, ¢ € {even, odd}.

Recall again that the number of digits 1 in w € W¥*> is equal to the number of
negative coordinates in wA. Both WP are in bijection with the regular Hasse
diagram of rank n — 2; in each case, the bijection is:

d1 ...dn_gdn_loH dl...dn_g. (18)

Again, the idea is to add enough arrows on the left-hand side to make (18) a directed-
graph isomorphism. By inspection, the missing arrows should occur in these situ-
ations: ...000 — ...110. For constructing them, we need a crucial fact about the
singular orbit of the second kind (see [9, p. 63]):
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Lemma 1 (Enright-Shelton). There are no non-zero morphisms between subquo-
tients of objects from the blocks with different parities.

Theorem 5. There are non-standard invariant differential operators
D: Op(v) = O (V") (19)
for all pairs v, V""" in the singular orbit of the second kind given by
v=dy...d, 3000\, V" =dy...d, 3110\
If X is minimal, operator (19) is of order 3.

Proof. Take X’ to be an open ball inside the big affine cell in G/P, and consider
the Penrose transform over the corresponding restricted double fibration. In the
relative BGG resolution, we find and fix the following sequence:

p=0d...dyp300-X—p/ =0d;...dp_301-X

v

W' =0di ... dp310- A= p"" =0d; ...dp_311-\.

Let ¢ = 2+the number of digits 0 in d1,...,d,_3. Let alsov' =d; ...d,,_3010-)\ and
v'=d;...d,_3100- ). Consider again the Cech bi-complex described in Figure 7.
By Proposition 8, we have the following:

Hq( ;udv) = Tgoq(ﬂ) = OP(V)7
HI7NCs dy) = 7871 04(1) = Op(V),
HI7Y(Cr dy) = 87104 (1) = O, (vV"),

dy) (

and all other vertical cohomologies are trivial. Note that we also have a standard
operator Oq(p') = Oq (1) that survives on the (¢ — 1)-th cohomology,

d: H7HCS dy) — HTHC dy),  d([y]) = [da(y)]-

Again, we want to define operator (19) in such a way that it agrees with a
certain higher differential in the spectral sequence (5). This will be used in the
proof of Theorem 7.

As before, take a cocycle x € é:}, and find y € 5'571 such that d,(y) = dp(z).
Then, dj,(y) € C%, ' is also a cocycle. But since Hq_l(é;,,,dv) # 0, we cannot
conclude that dh@) € Imd, and proceed in the same way. To overcome this, we
claim that the map

HI(CYdy) = HTH O do) g, [2] = [dn(y)] + Imd (20)

is well-defined. Take 2’ = z + d,(t) and choose y’ so that dp(z') = dy(y’). The
equation (17) shows that [y —y' + du(t)] € H"'(C5,, d,). Moreover, observe that
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d(ly—y'+dpn(t)]) = [drn(y)] — [dr(y")] € Im d, which proves our claim. Since obviously
v and v are of different parity, Lemma 1 implies that the map in (20) is trivial.
Unwinding, this means that we can find a cocycle " € ézfl so that dp,(y)—dn(y") €
Imd,. Consequently, we can replace y by y — y” and continue our diagram chase
downwards since now:

Finally, dpn(z) € égf,,z is a cocycle. We want to define D([z]) = [dn(2)]. It still

~ v

" b x> dp ()

A L)

s y—y" =dnly —y")
t } t 1

z2—>dp(2).

Q)¢
]

!
[@%
h
|

Oq(1) = Oq (1) = Oq (1) = Oq (1)

Figure 7: Diagram chasing over the Cech bi-complex (2)

needs to be checked that D does not depend on various choices we made. For this,
we introduce another auxiliary map

d: Kerd — HQ_Q(C’;,,,, dy) (21)
defined as follows. For [y] € Kerd choose z € C’Z;Q such that d,(z) = dpn(y). We put

d([y]) := [dn(2)]. Tt is easy to check that d is well defined (in the same way as for D
in the proof of Theorem 3). Since v/ and v are of different parity, Lemma 1 implies
that the map d is trivial. Suppose we have z, 2’ € é;} such that z — 2’ = d,(t) for

some t € Cv'/‘j’l, and consider different choices for defining D:

x > dp(z) x' = dp ()
} }
y+—>dp(y) € Imd, Y —=dp(y') € Imd,
1
£|—>dh(z), 2 ———=dp(2').

Equation (17) again shows that [y — v + dp(¢)] € Hq’l(é;/,dv). Observe that
d(ly —y' +dn(®)]) = [dn(y) — dn(y)] = [dv(z = 2')] = 0. So, [y — ¢’ + dn(t)] € Kerd,
and therefore 0 = d([y — ¢’ + dn(t)]) = [dn(z — 2")] = [dn(2)] — [dr(%")]. The last
conclusions are analogous to the ones in case of singularity of the first kind. O
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Definition 2. In case of singularity of the second kind, the even (resp. the odd)
part of the singular orbit, with all non-standard operators constructed in Theorem
5 included therein, is called an even (resp. the odd) singular BGG complex of in-
finitesimal character \ + p.

Theorem 6. In case of singularity of the second kind:

1. The singular orbit of rank n consists of two singular BGG complexes, each of
which is directed-graph isomorphic to the reqular one of rank n — 2.

2. Every square in the singular BGG complex anticommutes.

8. If we add up all objects of the singular BGG complex of the same degree, we
get a cochain complex.

Proof. Analogous to the proof of Theorem 4. O

4. Exactness of the singular BGG complex

Lemma 2. Let Z be the twistor space of the restricted double fibration (11). For
any coherent sheaf F on Z we have:

H(Z,F)=0, forallk>n. (22)

Proof. From Proposition 5 it is obvious that Z is a union of n open subsets given
by the equations y; # 0, for i = 1,...,n. Each of those is isomorphic to C2*~1,
hence affine. Cartan’s theorem B and the Leray theorem imply (22). O

Theorem 7. Each singular BGG complex is exact (in positive degrees) over the big
affine cell X.

Proof. Observe that spectral sequence (5) has on the abutment E. the sections
over X of the cohomologies of our singular BGG complex. This follows from the con-
struction: non-standard operators were defined exactly as the induced differentials
in the hypercohomology spectral sequence, so they appear on the last page of the
spectral sequence before it stabilizes. Moreover, by Cartan’s theorem B, the functor
I'(X, —) is exact, so it commutes with taking cohomology of a cochain complex.
From Propositions 7 and 8, it follows that the non-trivial elements on the first
page of the spectral sequence with the smallest p + ¢ are 0...010...0 for the first
kind, and 0...0 and 0. ..01 for the second kind respectively, and each of them has
p+q=mn—1 So H(Z O¢\) measure the non-exactness of the singular BGG
complex, up to the shift in degree by n — 1. Because of Lemma 2, singular BGG
complexes are exact from the degree n — (n— 1) =1 on. O

Example 4. The even singular BGG complex for A+ p = [2,1,0] consists of one

-1 -3
non-standard operator D: Oy( oot ) = Op( 00— ), surjective over the
big cell. By finding the mazimal vector of the corresponding homomorphism, we can
find the formula for D in the local coordinates on the big cell given by u™:

D= 48171 8172 6173 - a171 8223 - 81728213 - 817380212 + a01280136023'
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4.1. Conjectures

The following conjecture would imply local exactness of the singular BGG complex,
that is, exactness in the category of sheaves:

Conjecture 1. The conclusion of Lemma 2 is true for the twistor space Z', where
X' is a suitably chosen, but arbitrarily small open subset.

If X is of a higher singularity, say |X| = s > 1, a reasonable thing to try would be
the Penrose transform over the same double fibration (10), but instead of the first,
the s-th nodes should be crossed. The needed vanishing result is:

Conjecture 2. In the above setting we have H*(Z, F) = 0, for any coherent sheaf

F on Z, andk>s(n—s)—@.
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