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Abstract. The structure of the extended Selberg class of degree one was completely re-
vealed by Kaczorowski and Perelli [10]. In this short paper, we give a new characterization
of the functions with periodic coefficients in that class by giving a simple relation that the
coefficients have to satisfy.
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1. Introduction and statement of results

1.1. The extended Selberg class

The extended Selberg class S♯ of functions introduced in [10] is the class of Dirichlet
series f(s) converging absolutely for Res > 1, possessing a meromorphic continuation
to the whole complex plane with the only possible pole at s = 1 and satisfying a
functional equation of the form

Φf (s) = ωfΦf (1− s), (1)

where

Φf (s) = f(s)Qs
f

r∏
j=1

Γ(λjs+ µj), (2)

with Qf > 0, r ≥ 0, λj > 0, |ωf | = 1, Reµj ≥ 0, j = 1, . . . , r. The numbers
λ1, . . . , λr in the functional equation are not unique; however, the numbers

df = 2

r∑
j=1

λj and qf = 2πQ2
f/βf , where βf =

r∏
j=1

λ
−2λj

j

are invariants (i.e. they depend only upon f ∈ S♯), called the degree and the

conductor of f , respectively, see, e.g. [14]. We denote by S♯
1 the subclass of the

extended Selberg class consisting of degree one elements of S♯.
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1.2. Dirichlet series with periodic coefficients

Let A = {a(n)}∞n=1 be a periodic sequence of complex numbers with period q > 1
(meaning that q is the smallest positive integer such that a(n+ q) = a(n) for every
n ≥ 1) and let

f(s) = f(A, s) =

∞∑
n=1

a(n)

ns
(3)

be the associated Dirichlet series, absolutely convergent for Res > 1.
In the sequel, we denote by A a q−periodic sequence with integral period q > 1.

We also identify A with the mapping A : Z/qZ → C and say that A is an even or
odd q−periodic sequence if the associated mapping is even/odd.

The series f(A, s) can be written as a linear combination of Hurwitz zeta func-
tions (see (8) below), thus it possesses an analytic continuation to the whole complex
plane except for a possible pole at s = 1, when a(1) + . . . + a(q) ̸= 0 (see e.g. [7],
[17]). Therefore, f(A, s) given by (3) belongs to S♯ if and only if it satisfies the
functional equation (1).

If the Dirichlet series f(A, s) associated to A belongs to S♯, then necessarily

df = 1, see [10]. Moreover, it is proved in [10] that f(A, s) ∈ S♯
1 if and only if qf ∈ N

and f(A, s) can be written as a linear combination

f(A, s) =
∑
χ

P (s, χ)L(s, χ) (4)

of Dirichlet L−functions L(s, χ) taken over the set of even/odd primitive Dirich-
let characters χ modulo q with coefficients equal to Dirichlet polynomials P (s, χ)
associated to character χ and satisfying certain conditions. (This representation is
unique, according to results of [9].)

1.3. Statement of results

The representation of q−periodic Dirichlet series (3) as a linear combination (4) is
rather complicated, especially for numerical implementations and experiments, in the
sense that it is rather difficult to determine for a given even/odd q−periodic sequence

A whether series (3) is in S♯
1. Moreover, there are many numerical methods related

to converse theorems (a la Hamburger), where numerical computations produce first
N coefficients in the Dirichlet series satisfying a certain functional equation with
gamma factors, see e.g. [2], [12] and [13]. A simple, computationally effective
criterion in terms of coefficients of the periodic series (3) which will give a necessary
and sufficient condition for the series with given coefficients to belong to the extended
Selberg class can be very useful in applications of such methods, see also [6].

The main purpose of this note is to give a new, simple characterization of func-
tions f(A, s) ∈ S♯

1 in terms of relations satisfied by the ”defining coefficients” a(n)
in the Dirichlet series representation (3). Our main theorem is the following.

Theorem 1. Let a Dirichlet series f(s) be defined by (3) and not identically zero.
We have f ∈ S♯ with periodic coefficients and conductor q, for some positive integer
q, if and only if f(s) = f(A, s) is associated to an even or odd q−periodic sequence



On a class of periodic Dirichlet series with functional equation 37

A = {a(n)}∞n=1 of coefficients in (3) such that the following system of equations
holds:

a(n)(FqA)(m) = (FqA)(n)a(m), for all 1 ≤ m ≤ q, (5)

where n ≥ 1 is the smallest integer such that a(n) ̸= 0 and

(FqA)(m) :=
1
√
q

q∑
j=1

a(j) exp

(
2πjm

q
i

)
(6)

is the finite Fourier transform of the function A on Z/qZ.

In other words, the subset of S♯
1 consisting of periodic functions of conductor q

coincides with the set of Dirichlet series f(A, s) associated to q−periodic even/odd
defining sequence A which satisfies system (5). Actually, as we will see below, it is
sufficient that system (5) is satisfied for indices m ∈ {δ, . . . , ⌊ q

2⌋}, where δ = 0 when
A is even, and δ = 1 when A is odd.

Let S̃♯ denote the subclass of S♯ consisting of Dirichlet series with periodic co-
efficients. Theorem 1 is quite useful in deeper understanding of the structure of the
vector space (over R) consisting of functions from S̃♯ with a fixed conductor qf and

the invariant ω∗
f given by (19). For example, we will show in Section 4 that S̃♯ is

invariant under the mapping A 7→ FqA, where A = {a(n)}∞n=1. Moreover, the main

result is useful in the construction of various examples of Dirichlet series from S̃♯

whose coefficients satisfy certain additional conditions (e.g. the series with first n
coefficients that are alternating or equal to zero).

The appearance of the finite Fourier transform of the sequence of defining co-
efficients in the characterization of the space S̃♯ seems natural, especially from the
point of view of modular forms, in the sense that system (5) can be viewed as some
type of modularity condition. Namely, in the modular forms setting it is natural to
associate an L−function to a modular form by taking the coefficients a(n) in the
Fourier expansion of a form to be ”defining coefficients” in the representation (3).

The invariance of S̃♯ under the mapping A 7→ FqA shows that the analogous con-

struction of functions from S̃♯ is possible, with modular forms replaced by even/odd

functions A : Z/qZ → C satisfying system (5). In other words, S̃♯ can be viewed as
the set of L−functions associated to even/odd functions A : Z/qZ → C satisfying
system (5) by taking the defining coefficients a(n) in the series representation (3) to
be the nth Fourier coefficient of A.

1.4. Related results

Our main theorem gives a necessary and sufficient condition for a q−periodic Dirich-
let series (3) to satisfy the functional equation (1) with df = 1.

Similar results, giving a necessary and sufficient condition that a certain Dirichlet
series satisfies a functional equation of a given type, are proved in e.g. [4], [17]. In
other words, starting from a functional equation with gamma factors satisfied by a
Dirichlet series (of some type), it is possible to deduce certain arithmetical identities
for coefficients of Dirichlet series satisfying this equation; for a detailed overview of
methods and results, see [11] and references therein.
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We find it important to notice that our equation (5) can not be deduced from
arithmetic identities derived in [4], [17], [18] and [11] by specializing to the case of
degree one functions in the Selberg class.

2. Finite Fourier transform

The finite Fourier transform FqA of the function A : Z/qZ → C is a mapping
Fq : Z/qZ → Z/qZ defined by (6), see e.g. [1, p. 850]. It is a unitary linear operator
on L2(Z/qZ), which is the Hermitian space of complex valued functions g on Z/qZ

with the norm defined as ||g||2 :=
q∑

j=1

g(j)g(j). We start with the following lemma.

Lemma 1. Let q ≥ 2 be an integer, and let A = {a(n)}∞n=1 define an even or odd
function on Z/qZ, not identically zero. Let n denote the smallest positive integer
such that a(n) ̸= 0, and put δ = 0 if A is even, and δ = 1 if A is odd. If the sequence
A = {a(n)}∞n=1 satisfies the system of equations

a(n)(FqA)(m) = (FqA)(n)a(m), for all δ ≤ m ≤
⌊q
2

⌋
, (7)

where in the case δ = 0 we define a(0) = a(q), then there exists a complex constant
ω0(A) of modulus one, such that (FqA)(n) = ω0(A)a(n) for all n = 1, . . . , q.

Proof. First, we prove that the equation a(n)(FqA)(m) = (FqA)(n)a(m) also holds
for all ⌊ q

2⌋ < m ≤ q as well. For a fixed δ ≤ l ≤ ⌊ q
2⌋ we have

(FqA)(q − l) =
1
√
q

q∑
j=1

a(j) exp

(
−2πjl

q
i

)

=
1
√
q

q−1∑
k=0

a(q − k) exp

(
2πkl

q
i

)
= (−1)δ(FqA)(l),

where the last equality was obtained by applying the equation a(q−k) = (−1)δa(k),
for δ ≤ k ≤ ⌊ q

2⌋. The same equation, together with (7), yields a(n)(FqA)(q −m) =

(FqA)(n)a(q −m), for all δ ≤ m ≤ ⌊ q
2⌋, meaning that (5) holds.

Now, the statement follows from equation (5) together with the fact that the
finite Fourier transform is a unitary linear operator on L2(Z/qZ) and hence ω0(A) =
(FqA)(n)/a(n) is a complex number of modulus one.

Remark 1. Let us mention here that throughout this paper, with a slight abuse
of notation, we will identify the periodic sequence {a(n)}∞n=1 of period q > 1 with
the function A : Z/qZ → C and write A = {a(n)}∞n=1. Moreover, for the sake
of notational simplicity, in the sequel, we also introduce the zeroth element of the
sequence A by a(0) = a(q) using periodicity. In case when A = {a(n)}∞n=1 is odd,
we also make note that a(q) = a(0) = a(q− q) = −a(q), which implies that a(q) = 0.

In the case when the sequence A consists of real or purely imaginary numbers,
we have the following corollary.
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Corollary 1. Let q ≥ 2 be an integer, and let A be an even or odd function on Z/qZ,
whose values are either all real or all purely imaginary numbers, not identically
zero. Let n denote the smallest positive integer such that a(n) ̸= 0. If the sequence
A = {a(n)}∞n=1 satisfies the system of equations (7), then there exists a complex
constant ω0(A) ∈ {−1, 1, i,−i} such that (FqA)(l) = ω0(A)a(l) for all l = 1, . . . , q.

Proof. The statement of Lemma 1 yields that ω0(A) is an eigenvalue of the operator
Fq associated to an eigenfunction A. According to [1, p. 850], the only possible
eigenvalues of Fq are 1, −1, i and −i. The proof is complete.

3. Properties of Dirichlet series with periodic coefficients

Our next theorem proves that an even/odd Dirichlet series with q−periodic coef-
ficients belongs to the extended Selberg class and has conductor q if and only if
its coefficients satisfy the system of equations (7). Namely, we have the following
theorem.

Theorem 2. Let q ≥ 2 be an integer, and assume that f(A, s) is a Dirichlet series
associated to the even or odd q−periodic sequence A = {a(m)}∞m=1, not identically
equal to zero. The function f(A, s) belongs to the extended Selberg class and has
conductor q if and only if the values a(m) satisfy the system of equations (7), where
n ≥ 1 is the smallest integer such that a(n) ̸= 0.

Proof. First, we prove that if system (7) is satisfied, then f(A, s) belongs to the
extended Selberg class.

We start with the representation of f(A, s) in terms of the linear combination of
Hurwitz zeta functions (see e.g. [17] and [18]):

f(A, s) =
1

qs

q∑
j=1

a(j)ζ

(
s,

j

q

)
, (8)

showing that axioms (i) and (ii) of the extended Selberg class are satisfied by f(A, s).
Now, we claim that the function

Λf (s) :=

(√
q

π

)s

Γ

(
s+ δ

2

)
f(A, s), (9)

where we put δ = 0 if A is even, and δ = 1 if A is odd, satisfies the functional
equation

Λf (s) = ωΛf (1− s), (10)

with the constant

ωf = ω(A) =
1

iδ
· (FqA)(n)

a(n)
(11)

of absolute value one (by Lemma 1).
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The representation (8) together with the functional equation for the Hurwitz
zeta function yields

f(A, s) =
2Γ(1− s)

qs(2πq)1−s

q∑
j=1

a(j)

q∑
k=1

sin

(
πs

2
+

2kπj

q

)
ζ

(
1− s,

k

q

)
. (12)

Using the relation (FqA)(q − k) = (−1)δ(FqA)(k), we obtain

f(A, s) =
2Γ(1− s)

qs−1/2(2πq)1−s

q∑
k=1

ζ

(
1− s,

k

q

)
(FqA)(k)

1

2i

(
exp(iπs/2)− (−1)δ exp(−iπs/2)

)
,

or, equivalently,

f(A, s) =
2Γ(1− s)

qs−1/2(2πq)1−s

1

iδ
sin

(
π(s+ δ)

2

) q∑
k=1

(FqA)(k)ζ

(
1− s,

k

q

)
. (13)

Therefore, equation (7) (or, equivalently (5)) yields

f(A, s) =
2Γ(1− s)

qs−1/2(2π)1−s

(FqA)(n)

a(n)

1

iδ
sin

(
π(s+ δ)

2

)
f(A, 1− s). (14)

The functional relation Γ(z)Γ(1−z) = π/ sin(πz) together with the doubling formula
for the gamma function gives

2Γ(1− s)

qs−1/2(2π)1−s
sin

(
π(s+ δ)

2

)
= q−s+1/2πs−1/2Γ

(
1−s
2 + δ

2

)
Γ
(
s
2 + δ

2

) . (15)

Substituting this into equation (14), we obtain

f(A, s) =
1

iδ
· (FqA)(n)

a(n)
· q−s+1/2πs−1/2Γ

(
1−s
2 + δ

2

)
Γ
(
s
2 + δ

2

) f(A, 1− s),

which proves the first part of our theorem. (From the functional equation, it is
obvious that the conductor of f is exactly q.)

Let us now prove that if f(A, s) ∈ S♯ is not identically zero with conductor q,
then equation (5) holds.

Functional equation (1) for the completed function (2) implies that

f(A, s) = cQ1−2s
f g(s) · f(A, 1− s), (16)

where c is a complex constant of modulus one, Qf > 0 and

g(s) =

∏r
j=1 Γ(λj(1− s) + µj)∏r

j=1 Γ(λjs+ µj)
.
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On the other hand, equation (13) is obtained from the definition of the function f ,
using only the properties of the finite Fourier transform. Therefore, for Res < 0,
using the definition of the Hurwitz zeta function, the q−periodicity of the finite
Fourier transform and (15), we may write (13) as

f(A, s) =
1

iδ
q−s+1/2πs−1/2Γ

(
1−s
2 + δ

2

)
Γ
(
s
2 + δ

2

) ∞∑
m=1

(FqA)(m)

m1−s
.

Together with the functional equation (16), this yields for Res < 0,

∞∑
m=1

(FqA)(m)

m1−s
= iδcqs−1/2π−s+1/2 Γ

(
δ
2 + s

2

)
Γ
(
1−s
2 + δ

2

)Q1−2s
f g(s)f(A, 1− s).

We put Ξm :=
√
q(FqA)(m) and let k be the smallest positive integer such that

Ξk ̸= 0. Recalling that n is the smallest positive integer such that a(n) ̸= 0, we can
write the above equation as

∞∑
m=k

Ξm

(m/k)1−s
= G(s)

∞∑
m=n

a(m)

(m/n)1−s
, (17)

where we put

G(s) = iδc

(
k

n

)1−s

Qf

√
π

(
q

πQ2
f

)s
Γ
(
δ
2 + s

2

)
Γ
(
1−s
2 + δ

2

) r∏
j=1

Γ(λj(1− s) + µj)

Γ(λjs+ µj)
.

Then, letting Res → −∞ in (17) we get that

G(s) → Ξk

a(n)
, as Res → −∞. (18)

We claim that k = n and that G(s) = Ξn

a(n)
for all s ∈ C, which, together with

(17), would imply that (7) holds true. In order to prove our claim, we first apply the
Stirling formula for the asymptotic behavior of log Γ(s) to deduce that, as |s| → ∞,
we have (for δ ∈ {0, 1})

logG(s) = s log s (1− df )

+s

[
df − 1 + log

(
qβf

2πQ2
f

)
+

iπ

2
(1− df )− log(k/n)

]

+ log s

1
2
(df − 1)− 2i

r∑
j=1

Imµj

+ C +O

(
1

|s|

)
,

where the constant C depends on δ, k, n, c q, Qf , λj , µj , j = 1, ..., r.
Note that from the expression above it easily follows that f(A, s) ∈ S♯ implies

that the coefficient multiplying s log s needs to be equal to zero, i.e. dF = 1, as
mentioned in the introduction.



42 A.-M.Ernvall-Hytonen, A.Odžak and L. Smajlović

Since logG(s) → log
(

Ξk

a(n)

)
, as Res → −∞, inserting s = −σ + iϵ, for some

small, positive ϵ into (19), we deduce that the factors multiplying s log s, s and log s
must be equal to zero. Since the conductor of f is q, the term multiplying s in (19)
becomes − log(k/n), which implies that k = n and, moreover, that G(s) is bounded
as |s| → ∞.

Therefore, in order to prove that G(s) = Ξn

a(n)
, it is now left to prove that G(s)

is an entire function. Coefficients Ξm of the Dirichlet series on the left-hand side of
(17) are bounded and q−periodic. Therefore, for Re(−s) = σ large enough, we have∣∣∣∣∣

∞∑
m=n

Ξm

(m/n)1−s

∣∣∣∣∣ ≥ |Ξn| −
∞∑

m=n+1

|Ξm|
(m/n)1+σ

> 0.

Since ns−1 is a non-vanishing function, this shows that the series
∑∞

m=1
Ξm

(m/n)1−s

is non-vanishing for Res small enough. Analogously, we deduce that the series
f(A, 1− s) is non-vanishing for Res small enough; hence, there exists a non-negative
integer m0 such that both Dirichlet series appearing in (17) are non-vanishing for
Res < −m0. For that reason, both G(s) and G(s)−1 are non-vanishing and holo-
morphic for Res < −m0.

Since G(s)G(1− s) = cc̄q, both G(s) and G(s)−1 are non-vanishing and holo-
morphic for Res > 1 +m0 as well.

The function
∏r

j=1 Γ(λjs+µj)
−1 has zeros at points s such that λjs+µj = −ℓ,

j = 1, . . . , r, where ℓ runs through the set of all non-negative integers. Since λj > 0

and µj is fixed, for all ℓ large enough, the zeros s =
−ℓ−µj

λj
lie in the half-plane

Res < −m0 and, therefore must cancel with the poles of Γ
(
s
2 + δ

2

)
(as those are the

only possible poles in the half-plane Res < −m0).

The function Γ
(
s
2 + δ

2

)
has a pole when − s

2 − δ
2 is a non-negative integer. This

implies that
ℓ+µj

λj
must be an even (δ = 0)/odd (δ = 1) non-negative integer, for all

ℓ large enough. Since f is actually of degree one, according to [10, Remark on p.

211] λj =
1

2mj
, where mj is a positive integer. Since

ℓ+µj

λj
, ℓ and 1

λj
are non-negative

integers, we conclude that µj must be a real rational number. Since ℜµj ≥ 0, the
numbers µj must be non-negative rational numbers. Moreover, we easily deduce
that 2mjµj is an even (case δ = 0) or odd (case δ = 1) non-negative integer; hence
µj = αj/2mj for some even/odd non-negative integer αj for δ = 0/δ = 1. This
proves that the set of all zeros of (Γ(λjs + µj))

−1 is a subset of the set of poles of
Γ
(
s
2 + δ

2

)
.

Reasoning analogously, we conclude that the set of poles of Γ
(
s
2 + δ

2

)
is a sub-

set of zeros of (Γ (λjs+ µj))
−1

. Therefore, the functions
∏r

j=1 Γ (λjs+ µj)
−1

and(
Γ
(
s
2 + δ

2

))−1
are entire functions of order one whose sets of zeros coincide, so there

must exist a polynomial P1(s) of degree at most one such that

r∏
j=1

Γ (λjs+ µj)
−1

= exp (P1(s)) Γ (s/2 + δ/2)
−1

.
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Substituting 1− s in the place of s, and recalling that µj = µj , we obtain

r∏
j=1

Γ (λj(1− s) + µj)
−1

= exp (P1(1− s)) Γ ((1− s)/2 + δ/2)
−1

.

Hence,
G(s) = cqsQ1−2s

f π1/2−s exp (P1(s)− P1(1− s)) ,

which is entire. By Liouville’s theorem, a function which is holomorphic and bounded,
must be constant. This completes the proof.

4. Proof of the main theorem and its corollaries

4.1. Proof of the main result

Proof. Assume first that the periodic Dirichlet series f belongs to S♯ with conductor
q, for some positive integer q. Then, f ∈ S♯

1 and according to [10, Theorem 2], with
θ = 0, we may write f(s) =

∑∞
l=1 a(l) · l−s, where the coefficients a(l) are q−periodic

and the sequence A = {a(l)}∞l=1 is either even or odd (since a(l) are given as linear
combinations of even/odd characters modulo q). Application of Theorem 2 yields
that the coefficients a(l) satisfy system (5), which proves the first part of the theorem.

Now, assume that f(s) = f(A, s) is an even or odd q−periodic Dirichlet series
such that the system of equations (5) holds. Then Theorem 2 yields that f ∈ S♯.
Moreover, the completed function Λf (s) defined by (9), satisfies equation (10) and
hence f is of degree 1 with conductor q. The proof is complete.

4.2. Corollaries of the main result

In addition to the invariants df and qf , it can be shown that the expressions

ω∗
f = ωfe

−iπ(ηf+1)/2

(
Q2

f

βf

)iθf r∏
j=1

λ
−2iImµj

j (19)

and ξf := 2
r∑

j=1

(µj − 1/2) = ηf + iθf are also invariants. The following corollary

gives a simple representation of the invariant ω∗
f for f ∈ S̃♯.

Corollary 2. For f(s) = f(A, s) ∈ S̃♯ the invariant ω∗
f can be written as

ω∗
f = (−1)Reξf+1FqA(n)

a(n)
,

where n is the smallest positive integer such that a(n) ̸= 0.

Proof. When f(s) = f(A, s) ∈ S̃♯, then ω∗
f = (i)−δω(A), where δ = Reξf + 1 = 0

if A is even and δ = Reξf + 1 = 1 if A is odd. This, together with equation (11),
completes the proof.
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A straightforward application of the properties of the finite Fourier transform
yields the following corollary of Theorem 1.

Corollary 3. For a positive integer q and a complex number ω∗ of modulus 1, let
Ṽ ♯(q, δ, ω∗) = S̃♯(q, δ, ω∗)∪{0} denote the vector space over R identified with the set

of functions f(A, s) ∈ S̃♯ of conductor q and invariant ω∗ given by (19), associated
to an even (δ = 0) or odd (δ = 1) q−periodic sequence A = {a(n)}∞n=1 of coefficients
in (3) and put A = {a(n)}∞n=1. Then, the following statements hold true:

i) The mapping A 7→ A, is an isomorphism between the spaces Ṽ ♯(q, δ, ω∗) and

Ṽ ♯(q, δ, (−1)δω∗).

ii) The mapping A 7→ FqA is an isomorphism between the spaces Ṽ ♯(q, δ, ω∗) and

Ṽ ♯(q, δ, ω∗).

iii) The mapping A 7→ FqA is an isomorphism between the spaces Ṽ ♯(q, δ, ω∗) and

Ṽ ♯(q, δ, (−1)δω∗).

Proof.

i) Conjugation does not change the parity of the function, hence by conjugating
system (5) and the equation (FqA(m)) = (−1)δ(FqA)(m) we deduce that

equation (5) is fulfilled by A. This also implies that ω(A) = ω(A), which
together with ω∗

f = (i)−δω(A), yields the statement.

ii) The Fourier inversion formula yields that a(n) = Fq(FqA)(−n). Moreover,

FqA(−n) = FqA(n), hence we have for m,n ∈ {1, ..., q}:

FqA(n) = FqA(−n) = (−1)δFqA(n); Fq(FqA)(m) = a(−m) = (−1)δa(m),

hence
FqA(n)Fq(FqA)(m) = FqA(n)a(m)

and the equation is symmetric with respect to m and n. For this reason,
system (5) holds if and only if

FqA(n)Fq(FqA)(m) = Fq(FqA)(n)FqA(m), for all 1 ≤ m ≤ q.

This, together with the statement of Theorem 1, shows that f(A, s) ∈ S̃♯ if

and only if f(FqA, s) ∈ S̃♯. From the proof of Theorem 2, it is obvious that

the mapping A 7→ FqA fixes the conductor q and, moreover, for f(A, s) ∈ S̃♯

the constant ωf in the functional equation axiom (1) is

ωf = ω(A) = i−δ (FqA)(n)

a(n)
= i−δ (FqA)(n)

Fq(FqA)(n)
= (−1)δω(FqA)

−1.

Noticing that ω∗
f = (−i)δω(A) completes the proof.

iii) Follows directly from i) and ii).
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5. Examples

The characterization of a q−periodic Dirichlet series from the extended Selberg class
in terms of the relations satisfied by the coefficients in their Dirichlet series, derived
in this paper, can be easily applied in the construction of a q−periodic Dirichlet
series with certain properties. It is particularly useful in situations when one needs
to find out whether a given even/odd periodic sequence generates a function from
S♯, in which case one needs to check if system (7) holds.

The main result is also useful in situations when one needs to construct a Dirichlet
series with periodic coefficients which have some given values at specific arguments,
see e.g. [3], where Davenport-Heilbronn type functions have been constructed or [15].
In the following examples we will demonstrate the construction of such functions
having first k coefficients equal to zero, for arbitrary k.

Example 1. Let q = 12, ω∗
f = −1 and define

b(n) =



0, n ≡ 1 (mod 12)

0, n ≡ 2 (mod 12)

1, n ≡ 3 (mod 12)

ξ, n ≡ 4 (mod 12)

η, n ≡ 5 (mod 12)

0, n ≡ 6 (mod 12)

−η, n ≡ 7 (mod 12)

−ξ, n ≡ 8 (mod 12)

−1, n ≡ 9 (mod 12)

0, n ≡ 10 (mod 12)

0, n ≡ 11 (mod 12)

0, n ≡ 12 (mod 12).

The system of equations (7) for q = 12 and the odd sequence b(n) reduces to

η +
√
3ξ + 2 = 0

η + ξ = 0

2(η − 1)ξ̄ +
√
3(η − ξ) = 0

2(η − 1)η̄ +
√
3ξ = η + 2.

The solution ξ = −1 −
√
3 and η = 1 +

√
3 of the given system produces an odd

12-periodic Dirichlet series belonging to the extended Selberg class with the first two
coefficients equal to zero.

A construction of an even 12-periodic Dirichlet series belonging to the extended
Selberg class with the first two coefficients equal to zero can be done analogously.
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Example 2. Let q = 8, ω∗
f = 1 and define

c(n) =



0, n ≡ 1 (mod 8)

0 n ≡ 2 (mod 8)

1, n ≡ 3 (mod 8)

ξ, n ≡ 4 (mod 8)

1, n ≡ 5 (mod 8)

0, n ≡ 6 (mod 8)

0, n ≡ 7 (mod 8)

η, n ≡ 8 (mod 8).

A system of equations (7) consists of five equations and one of them is trivially
satisfied, while the remaining ones are:

ξ +
√
2 = η

η + ξ = 0(
η − ξ +

√
2
)
ξ̄ = η + ξ − 2(

η − ξ +
√
2
)
η̄ = η + ξ + 2.

The solution ξ = −1/
√
2 and η = 1/

√
2 of the given system produces an even

8-periodic Dirichlet series belonging to the extended Selberg class with the first two
coefficients equal to zero.
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