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Abstract. The aim of this paper is to obtain the spectra and fine spectra of the matrix
U(a; 0; b) on the Hahn space. Also, we explore some ideas of how to study the problem
for a general form of the matrix, namely, the matrix U(a0, a1, . . . , an−1; 0; b0, b1, . . . , bn−1),
where the non-zero diagonals are the entries of an oscillatory sequence.
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1. Introduction

In numerical analysis, matrices from the finite element or finite difference problems
are often banded. Such matrices can be viewed as descriptions of the coupling
between problem variables; the bandedness corresponds to the fact that variables
are not coupled over arbitrarily large distances. Such matrices can be further divided
- for instance, banded matrices exist where every element in the band is nonzero.
These often arise when discretizing one-dimensional problems. Problems in higher
dimensions also lead to banded matrices, in which case the band itself also tends to be
sparse. For instance, a partial differential equation on a square domain (using central
differences) will yield a matrix with a bandwidth equal to the square root of the
matrix dimension, but inside the band only 5 diagonals are nonzero. Unfortunately,
applying Gaussian elimination (or equivalently an LU decomposition) to such a
matrix results in the band being filled in by many non-zero elements (see [13]). And
so, the resolvent set of the band operators is important for solving such problems.

Spectral theory is one of the most useful tools in science. There are many ap-
plications of mathematics and physics which contain matrix theory, control theory,
function theory, differential and integral equations, complex analysis, and quan-
tum physics. For example, atomic energy levels are determined and therefore the
frequency of a laser or the spectral signature of a star is obtained in quantum me-
chanics. The resolvent set of band operators is important for solving the above
explanation problems. Band matrices emerge in many areas of mathematics and its
applications. Tridiagonal, or more general, banded matrices are used in telecom-
munication system analysis, finite difference methods for solving partial differential

∗Corresponding author. Email address: ndurna@cumhuriyet.edu.tr (N.Durna)

http://www.mathos.hr/mc c⃝2020 Department of Mathematics, University of Osijek



50 N.Durna

equations, linear recurrence systems with non-constant coefficients, etc. (see [16]);
so, it is natural to ask the question of whether one can obtain some results about
the spectral decomposition of a U(a; 0; b) matrix.

Let X and Y be Banach spaces, and L : X → Y a bounded linear operator. By

R (L) = {y ∈ Y : y = Lx, x ∈ X}

we denote the range of L and by B(X), we show the set of all bounded linear
operators on X into itself.

Let L : D (L) → X be a linear operator, defined on D(L) ⊂ X, where D(L)
denotes the domain of L and X is a complex normed linear space. Let Lλ := λI−L
for L ∈ B(X) and λ ∈ C, where I is the identity operator. L−1

λ is known as the
resolvent operator of L.

The resolvent set of L is the set of complex numbers λ of L such that L−1
λ exists,

is bounded and is defined on a set which is dense in X and denoted by ρ(L,X).
Its complement is given by C\ρ(L;X) which is called the spectrum of L denoted by
σ(L,X).

The spectrum σ(L,X) is a union of three disjoint sets as follows: The point
spectrum σp(L,X) is the set such that L−1

λ does not exist. If the operator L−1
λ is

defined on a dense subspace of X and is unbounded, then λ ∈ C belongs to the
continuous spectrum σc(L,X) of L. Furthermore, we say that λ ∈ C belongs to
the residual spectrum σr(L,X) of L if the operator L−1

λ exists, but its domain of
definition, i.e. the range R(λI − L) of (λI − L) is not dense in X, then in this case
L−1
λ may be bounded or unbounded. From the above definitions we have

σ(L,X) = σp(L,X) ∪ σc(L,X) ∪ σr(L,X) (1)

and

σp(L,X) ∩ σc(L,X) = ∅, σp(L,X) ∩ σr(L,X) = ∅, σr(L,X) ∩ σc(L,X) = ∅.

By w we denote the space of all sequences. Well-known examples of Banach se-
quence spaces are the spaces ℓ∞, c, c0 and bv of bounded, convergent, null and
bounded variation sequences, respectively. Also, by ℓp, bvp we denote the spaces of
all p−absolutely summable sequences and p−bounded variation sequences, respec-
tively.

Hahn [10] introduced the space h of all sequence x = (xk) ∈ c0 such that

∞∑
k=0

k |xk+1 − xk|

is finite. The norm

∥x∥h =

∞∑
k=1

k |xk+1 − xk|+ sup
k

|xk|

was defined on the space h by Hahn [10]. Rao ([12] Proposition 2.1) defined a new
norm of h given by

∥x∥h =
∞∑
k=1

k |xk+1 − xk| .
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The dual space of h is norm isomorphic to the Banach space

σ∞ =

{
x = (xk) ∈ w : sup

n

1

n

∣∣∣∣∣
n∑

k=1

xk

∣∣∣∣∣ < ∞

}
.

Many investigators studied the spectrum and fine spectrum of linear operators on
some sequence spaces. In 2013, Tripathy and Saikia [14] calculated the spectrum of
the Cesàro operator C1 on bv0 ∩ ℓ∞. In 2014, Paul and Tripathy [11] studied the
spectrum of the operator D (r, 0, 0, s) over the sequence spaces ℓp and bvp. In 2016,
Yeşilkayagil and Kirişci [17] calculated the fine spectrum of the forward difference
operator on the Hahn space.

2. Fine spectrum

The upper triangular matrix U(a; 0; b) is an infinite matrix with non-zero diagonals
that are the entries of an oscillatory sequence of the form

U(a; 0; b) =



a0 0 b0 0 0 0 0 0 0 · · ·
0 a1 0 b1 0 0 0 0 0 · · ·
0 0 a2 0 b2 0 0 0 0 · · ·
0 0 0 a0 0 b0 0 0 0 · · ·
0 0 0 0 a1 0 b1 0 0 · · ·
0 0 0 0 0 a2 0 b2 0 · · ·
...

...
...

...
...

...
. . .

. . .
. . . · · ·


(b0, b1 , b2 ̸= 0). (2)

In this paper, we will calculate the spectral decomposition of the above matrix.

Lemma 1 (see [12, Proposition 10]). The matrix A = (ank) gives rise to a bounded
linear operator T ∈ B(h) from h to itself if and only if

(i)
∞∑

n=1
n |ank − an+1,k| converges, for each k;

(ii) supk
1
k

∞∑
n=1

n

∣∣∣∣ k∑
v=1

(anv − an+1,v)

∣∣∣∣ < ∞;

(iii) lim
n→∞

ank = 0, for each k.

Theorem 1. U(a; 0; b) : h → h is a bounded linear operator if and only if an+ bn =
an+1 + bn+1 , n = 0, 1, 2.

Proof. Let us use Lemma 1 for the proof.

(i)
∞∑

n=1
n |ank − an+1,k| =

 |a0| , k = 1
3 |a1| , k = 2
(2k − 1) |ak−1|+ (2k − 5) |bk| , k ≥ 3

is convergent.

Herein ax = ay, bx = by for x ≡ y (mod 3).
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(ii)

∞∑
n=1

n

∣∣∣∣ k∑
v=1

(anv − an+1,v)

∣∣∣∣

=



(3⌊ k−1
3 ⌋−1)⌊ k−1

3 ⌋
2 |a0 − a1 + b0 − b1|+

(3⌊ k−2
3 ⌋−1)⌊ k−2

3 ⌋
2 |a1 − a2 + b1 − b2|

+
(3⌊ k−3

3 ⌋−1)⌊ k−3
3 ⌋

2 |a2 − a0 + b2 − b0|+ (k − 2) |ak−3 − ak−2 + bk−3|
+(k − 1) |ak−2 − ak−1|+ k |ak−1| , k ≥ 2

|a0| , k = 1

where ⌊x⌋ denotes the greatest integer less than or equal to x. Herein ax = ay,
bx = by for x ≡ y (mod 3). Therefore

1

k

∞∑
n=1

n

∣∣∣∣∣
k∑

v=1

(anv − an+1,v)

∣∣∣∣∣
is convergent if and only if an + bn = an+1 + bn+1 , n = 0, 1, 2. Hence

sup
k

1

k

∞∑
n=1

n

∣∣∣∣∣
k∑

v=1

(anv − an+1,v)

∣∣∣∣∣ < ∞

is convergent if and only if an + bn = an+1 + bn+1 , n = 0, 1, 2.
(iii) For each k, it is clear that lim

n→∞
ank = 0.

Thus the assertion of Lemma 1 holds.

Lemma 2 (see [9, p.59]). T has a dense range if and only if T ∗ is 1-1.

Lemma 3 (see [9, p.60]). T has a bounded inverse if and only if T ∗ is onto.

Theorem 2. σp(U(a; 0; b), h) = {λ ∈ C : |λ− a0| |λ− a1| |λ− a2| < |b0| |b1| |b2|}.

Proof. Let λ be an eigenvalue of the operator U(a; 0; b). Then there exists x ̸= θ =
(0, 0, 0, ...) in h such that U(a; 0; b)x = λx. Then we have

x6n = qnx0,
x6n+1 = qnx1,

x6n+2 =
λ− a0
b0

qnx0,

x6n+3 =
λ− a1
b1

qnx1,

x6n+4 =
(λ− a0) (λ− a2)

b0b2
qnx0,

x6n+5 =
(λ− a0) (λ− a1)

b0b1
qnx1.

n ≥ 0

where q =
(λ− a0) (λ− a1) (λ− a2)

b0b1b2
. Thus we get

|x6k+r − x6k+r+1| = |Kr| |q|k , r = 0, 5,
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where

Kr :=



x0 − x1, r = 0

x1 −
λ− a0
b0

x0, r = 1

λ− a0
b0

x0 −
λ− a1
b1

x1, r = 2

λ− a1
b1

x1 −
(λ− a0) (λ− a2)

b0b2
x0, r = 3

(λ− a0) (λ− a2)

b0b2
x0 −

(λ− a0) (λ− a1)

b0b1
x1, r = 4

(λ− a0) (λ− a1)

b0b1
x1 − qx0, r = 5

and so

(6k + r) |x6k+r − x6k+r+1| = |Kr| (6k + r) |q|k , r = 0, 5.

Therefore we have

∞∑
n=1

n |xn − xn+1| =
∞∑
k=1

(6k + r) |x6k+r − x6k+r+1|

= |Kr|
∞∑
k=1

(6k + r) |q|k .

Since

lim
k→∞

(6k + r + 6) |q|k+1

(6k + r) |q|k
= |q|

from D’Alembert’s ratio test, the series

∞∑
k=1

(6k + r) |q|k

is convergent if and only if |q| < 1 and hence, x = (xn) ∈ h if and only if
|λ− a0| |λ− a1| |λ− a2| < |b0| |b1| |b2|. Therefore,

σp(U(a; 0; b), h) = {λ ∈ C : |λ− a0| |λ− a1| |λ− a2| < |b0| |b1| |b2|} .

If T : h 7−→ h is a bounded linear operator represented by a matrix A, then it is
known that the adjoint operator T ∗ : h∗ 7−→ h∗ is defined by the transpose At of the
matrix A. It should be noted that the dual space h∗ of h is isometrically isomorphic

to the Banach space σ∞ =

{
x = (xk) ∈ w : sup

n

1
n

∣∣∣∣ n∑
k=1

xk

∣∣∣∣ < ∞
}
.

Theorem 3. σp(U(a; 0; b)∗, h∗=̃σ∞) = ∅.
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Proof. Let λ be an eigenvalue of the operator U(a; 0; b)∗. Then there exists x ̸=
θ = (0, 0, 0, ...) in σ∞ such that U(a; 0; b)∗x = λx.
Then, we have

a0x0 = λx0 (3)

a1x1 = λx1 (4)

b0x0 + a2x2 = λx2 (5)

b1x1 + a0x3 = λx3 (6)

b2x2 + a1x4 = λx4 (7)

b0x3 + a2x5 = λx5 (8)

b1x4 + a0x6 = λx6 (9)

b2x5 + a1x7 = λx7 (10)

b0x6 + a2x8 = λx8 (11)

...

Then we have

n = 3k, b0xn + a2xn+2 = λxn+2 (12)

n = 3k + 1, b1xn + a0xn+2 = λxn+2 (13)

n = 3k + 2, b2xn + a1xn+2 = λxn+2

Let x0 ̸= 0; then we obtain that λ = a0 from (3), x1 = 0 from (6), x4 = 0 from (9),
x2 = 0 from (7) and x0 = 0 from (5). But this contradicts our assumption.

Now let x0 = 0 and x1 ̸= 0; then we obtain that λ = a1 from (4), x2 = 0 from
(7), x5 = 0 from (10), x3 = 0 from (8), x1 = 0 from (6). But this contradicts with
our assumption.

Similarly let x0 = 0, x1 = 0 and x2 ̸= 0; then we obtain that λ = a1 from (5),
x6 = 0 from (11), x4 = 0 from (9), x2 = 0 from (7). But this contradicts with our
assumption.

Finally, let x3k+1 be the first non-zero of the sequence (xn). If n = 3k, then
from (12) we have λ = a2. Again from (12) for n = 3k + 3 we have b0x3k+3 +
a2x3k+5 = a2x3k+5; then we get x3k+3 = 0. But from (13) for n = 3k + 1 we have
b1x3k+1 + a0x3k+3 = a2x3k+3, we have x3k+1 = 0, a contradiction.

Similarly, if x3k or x3k + 2 is the first non-zero of the sequence (xn), we get a
contradiction.
Hence, σp(U(a; 0; b)∗, c∗0=̃ℓ1) = ∅.

Theorem 4. σr(U(a; 0; b), h) = ∅.

Proof. Since σr(A, h) = σp(A
∗, σ∞)\σp(A, h), Theorems 2 and 3 give us the re-

quired result.

Lemma 4.
n∑

k=1

(
k−1∑
i=0

aibki

)
=

n−1∑
i=0

ai

(
n∑

k=i+1

bki

)
,



Spectra of U(a; 0; b) 55

where (ak) and (bnk) are real numbers.

Proof. It is clear.

Theorem 5. σc(U(a; 0; b), h) = {λ ∈ C : |λ− a0| |λ− a1| |λ− a2| = |b0| |b1| |b2|} and
σ(U(a; 0; b), h) = {λ ∈ C : |λ− a0| |λ− a1| |λ− a2| ≤ |b0| |b1| |b2|} .

Proof. Let us take y = (yn) ∈ σ∞ such that (U(a; 0; b) − λI)∗x = y for some
x = (xn). Then we get a system of linear equations:

(a0 − λ)x0 = y0

(a1 − λ)x1 = y1
...

b0x3n + (a2 − λ)x3n+2 = y3n+2, n ≥ 0

b1x3n+1 + (a0 − λ)x3n+3 = y3n+3

b2x3n+2 + (a1 − λ)x3n+4 = y3n+4

...

Solving these equations, we have

x2n+t =
1

a2n+t − λ

[
y2n+t +

n−1∑
k=0

(−1)n−ky2k+t

n−k∏
ν=1

b2n−2ν+t

a2n−2ν+t − λ

]
,

t = 0, 1;n = 1, 2, . . .

Herein ax = ay, bx = by for x ≡ y (mod 3).
Therefore we get

1

2n+ t

∣∣∣∣∣
2n+t∑
k=0

xk

∣∣∣∣∣ = 1

2n+ t
|x0 + x1 + x2 + x3 + · · ·+ x2n+t|

=
1

2n+ t

∣∣∣∣∣x0 + x1 +
n∑

k=1

x2k+t

∣∣∣∣∣
≤ 1

2n+ t

∣∣∣∣ y0
a0 − λ

+
y1

a1 − λ

∣∣∣∣
+

1

2n+ t

∣∣∣∣∣
n∑

k=1

1

a2k+t − λ

[
y2k+t+

k−1∑
i=0

(−1)k−iy2i+t

k−i∏
ν=1

b2k−2ν+t

a2k−2ν+t − λ

]∣∣∣∣∣
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≤ 1

2n+ t

∣∣∣∣ y0
a0 − λ

+
y1

a1 − λ

∣∣∣∣
+

1

2n+ t

∣∣∣∣∣
n∑

k=1

y2k+t

a2k+t − λ

∣∣∣∣∣
+

1

2n+ t

∣∣∣∣∣
n∑

k=1

1

a2k+t − λ

k−1∑
i=0

(−1)k−iy2i+t

k−i∏
ν=1

b2k−2ν+t

a2k−2ν+t − λ

∣∣∣∣∣
≤ 1

2n+ t

∣∣∣∣ y0
a0 − λ

+
y1

a1 − λ

∣∣∣∣
+

2
max
m=0

∣∣∣∣ 1

am−λ

∣∣∣∣
[

1

2n+t

∣∣∣∣∣
n∑

k=1

y2k+t

∣∣∣∣∣+ 1

2n+t

∣∣∣∣∣
n∑

k=1

k−1∑
i=0

(−1)k−iy2i+t

k−i∏
ν=1

b2k−2ν+t

a2k−2ν+t−λ

∣∣∣∣∣
]
.

Thus

1

2n+ t

∣∣∣∣∣
2n+t∑
k=0

xk

∣∣∣∣∣
≤ 2

max
m=0

∣∣∣∣ 1

am − λ

∣∣∣∣
[
2 ∥y∥σ∞

+
1

2n+ t

∣∣∣∣∣
n∑

k=1

k−1∑
i=0

(−1)k−iy2i+t

k−i∏
ν=1

b2k−2ν+t

a2k−2ν+t − λ

∣∣∣∣∣
]
.

Now, we consider the sum

1

2n+ t

∣∣∣∣∣
n∑

k=1

k−1∑
i=0

(−1)k−iy2i+t

k−i∏
ν=1

b2k−2ν+t

a2k−2ν+t − λ

∣∣∣∣∣ .
In Lemma 4, if we take ai = y2i+t and bki = (−1)

k−i
k−i∏
ν=1

b2k−2ν+t

a2k−2ν+t − λ
, then we have

1

2n+ t

∣∣∣∣∣
n∑

k=1

k−1∑
i=0

(−1)k−iy2i+t

k−i∏
ν=1

b2k−2ν+t

a2k−2ν+t − λ

∣∣∣∣∣
=

1

2n+ t

∣∣∣∣∣
n−1∑
i=0

y2i+t

n∑
k=i+1

(−1)k−i
k−i∏
ν=1

b2k−2ν+t

a2k−2ν+t − λ

∣∣∣∣∣ .
Also, since

k−i∏
ν=1

b2k−2ν+t

a2k−2ν+t − λ
= Mpk−i, where M is constant and

p =

(
b2b1b0

(a2 − λ) (a1 − λ) (a0 − λ)

)1/3

,

the last equation turns into the sum |M |
2n+t

∣∣∣∣∣n−1∑
i=0

y2i+t

n∑
k=i+1

pk−i

∣∣∣∣∣. Then
|M |
2n+t

∣∣∣∣∣n−1∑
i=0

y2i+t

n∑
k=i+1

(−1)
k−i

pk−i

∣∣∣∣∣ = ∣∣∣Mp
1−p

∣∣∣ 1
2n+t

∣∣∣∣n−1∑
i=0

y2i+t

(
1− (−p)

n−i
)∣∣∣∣
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=
∣∣∣Mp
1−p

∣∣∣ 1
2n+t

∣∣∣∣n−1∑
i=0

y2i+t −
n−1∑
i=0

y2i+t (−p)
n−i

∣∣∣∣
≤
∣∣∣Mp
1−p

∣∣∣ 1
2n+t

∣∣∣∣n−1∑
i=0

y2i+t

∣∣∣∣+ ∣∣∣Mp
1−p

∣∣∣ 1
2n+1

∣∣∣∣n−1∑
i=0

y2i+t (−p)
n−i

∣∣∣∣ .
Hence

|M |
2n+ t

∣∣∣∣∣
n−1∑
i=0

y2i+t

n∑
k=i+1

(−1)
k−i

pk−i

∣∣∣∣∣
≤
∣∣∣∣ Mp

1− p

∣∣∣∣ ∥y∥σ∞
+

∣∣∣∣Mpn+1

1− p

∣∣∣∣ 1

2n+ t

∣∣∣∣∣
n−1∑
i=0

y2i+t (−p)
−i

∣∣∣∣∣ .
(14)

If we take ai = y2i+t, bi = (−p)
−i

and apply Abel’s partial summation formula to

the sum
n−1∑
i=0

y2i+t

(−p)
i
, we obtain

n−1∑
i=0

y2i+t

(−p)
i
=

1

(−p)
n

n∑
i=0

y2i+t +

n−2∑
i=0

p+ 1

(−p)
i+1

i∑
k=0

y2k+t

since sn =
n∑

i=0

y2i+t, ∆bi =
p+ 1

(−p)
i+1

. Thus

∣∣∣∣Mpn+1

1− p

∣∣∣∣ 1

2n+ t

∣∣∣∣∣
n−1∑
i=0

y2i+t (−p)
−i

∣∣∣∣∣
=

∣∣∣∣Mpn+1

1− p

∣∣∣∣ 1

2n+ t

∣∣∣∣∣ 1

(−p)
n

n∑
i=0

y2i+t +

n−2∑
i=0

p+ 1

(−p)
i+1

i∑
k=0

y2k+t

∣∣∣∣∣
≤
∣∣∣∣ Mp

1− p

∣∣∣∣ 1

2n+ t

∣∣∣∣∣
n∑

i=0

y2i+t

∣∣∣∣∣+
∣∣∣∣M (p+ 1) pn+1

1− p

∣∣∣∣ 1

2n+ t

∣∣∣∣∣
n−2∑
i=0

1

(−p)
i+1

i∑
k=0

y2k+t

∣∣∣∣∣
≤
∣∣∣∣ Mp

1− p

∣∣∣∣ 1

2n+ t

∣∣∣∣∣
n∑

i=0

y2i+t

∣∣∣∣∣+
∣∣∣∣M (p+ 1) pn

1− p

∣∣∣∣ n−2∑
i=0

1

|p|i
1

2n+ t

∣∣∣∣∣
i∑

k=0

y2k+t

∣∣∣∣∣
≤
∣∣∣∣ Mp

1− p

∣∣∣∣ ∥y∥σ∞
+

∣∣∣∣M (p+ 1) pn

1− p

∣∣∣∣ ∥y∥σ∞

n−2∑
i=0

1

|p|i

and we get∣∣∣∣Mpn+1

1− p

∣∣∣∣ 1

2n+ t

∣∣∣∣∣
n−1∑
i=0

y2i+t (−p)
−i

∣∣∣∣∣≤
[
1 + (p+ 1) p

|p|n−1 − 1

|p| − 1

]∣∣∣∣ Mp

1− p

∣∣∣∣ ∥y∥σ∞
.(15)

Replacing (15) in (14), we have

|M |
2n+ t

∣∣∣∣∣
n−1∑
i=0

y2i+t

n∑
k=i+1

(−1)
k−i

pk−i

∣∣∣∣∣
≤ 2

∣∣∣∣ Mp

1− p

∣∣∣∣ ∥y∥σ∞
+

∣∣∣∣M (p+ 1) p2

1− p

∣∣∣∣ ∥y∥σ∞

|p|n−1 − 1

|p| − 1
.

(16)
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Replacing (16) in (14), we have

1

2n+ t

∣∣∣∣∣
n∑

k=1

k−1∑
i=0

(−1)k−iy2i+t

k−i∏
ν=1

b2k−2ν+t

a2k−2ν+t − λ

∣∣∣∣∣
≤

[
2 + (p+ 1) p

|p|n−1 − 1

|p| − 1

] ∣∣∣∣ Mp

1− p

∣∣∣∣ ∥y∥σ∞
.

(17)

Finally, replacing (17) in (14), we get

1

2n+ t

∣∣∣∣∣
2n+t∑
k=0

xk

∣∣∣∣∣ ≤ ∥y∥σ∞

2
max
m=0

∣∣∣∣ 1

am − λ

∣∣∣∣
{
2+2

∣∣∣∣Mp

1−p

∣∣∣∣+∣∣∣∣M (p+1) p2

1−p

∣∣∣∣ |p|n−1−1

|p|−1

}
.

Since

y = (yn) ∈ σ∞, x = (xn) ∈ σ∞ iff |p| =
∣∣∣∣ b2b1b0
(a2 − λ)(a1 − λ)(a0 − λ)

∣∣∣∣1/3 < 1.

Consequently, if for λ ∈ C, |a2 − λ| |a1 − λ| |a0 − λ| > |b2| |b1| |b0|, then (xn) ∈
σ∞. Therefore, the operator (U(a; 0; b) − λI)∗ is onto if |λ− a0| |λ− a1| |λ− a2| >
|b0| |b1| |b2|. Then by Lemma 3, U(a; 0; b)− λI has a bounded inverse if
|λ− a0| |λ− a1| |λ− a2| > |b0| |b1| |b2|. So,

σc(U(a; 0; b), h) ⊆ {λ ∈ C : |λ− a0| |λ− a1| |λ− a2| ≤ |b0| |b1| |b2|} .

Since σ(L, h) is the disjoint union of σp(L, h), σr(L, h) and σc(L, h), therefore

σ(U(a; 0; b), h) ⊆ {λ ∈ C : |λ− a0| |λ− a1| |λ− a2| ≤ |b0| |b1| |b2|} .

By Theorem 2, we get

{λ ∈ C : |λ− a0| |λ− a1| |λ− a2| < |b0| |b1| |b2|}=σp(U(a; 0; b), h) ⊂ σ(U(a; 0; b), h).

Since σ(L, h) is closed and thus,

{λ ∈ C : |λ− a0| |λ− a1| |λ− a2| < |b0| |b1| |b2|} ⊂ σ(U(a; 0; b), h)

= σ(U(a; 0; b), h)

and
{λ ∈ C : |λ− a0| |λ− a1| |λ− a2| ≤ |b0| |b1| |b2|} ⊂ σ(U(a; 0; b), h).

Hence,

σ(U(a; 0; b), h) = {λ ∈ C : |λ− a0| |λ− a1| |λ− a2| ≤ |b0| |b1| |b2|}

and so

σc(U(a; 0; b), h) = {λ ∈ C : |λ− a0| |λ− a1| |λ− a2| = |b0| |b1| |b2|} .
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3. Subdivision of the spectrum

The spectrum σ(L,X) is partitioned into three sets which are not necessarily disjoint
as follows:

If there exists a sequence (xn) in X such that ∥xn∥ = 1 and ∥Lxn∥ → 0 as
n → ∞, then (xn) is called a Weyl sequence for L.

We call the set

σap(L,X) := {λ ∈ C : there exists a Weyl sequence for λI − L}

the approximate point spectrum of L. Moreover, the set

σδ(L,X) := {λ ∈ σ(L,X) : λI − L is not surjective}

is called a defect spectrum of L. Finally, the set

σco(L,X) = {λ ∈ C : R(λI − L) ̸= X}

is called compression spectrum in the literature.

The following proposition is quite useful for calculating the separation of the
spectrum of the linear operator in Banach spaces.

Proposition 1 (see [1, Proposition 1.3]). The spectra and subspectra of an operator
L ∈ B(X) and its adjoint L∗ ∈ B(X∗) are related by the following relations:

(a) σ(L∗, X∗) = σ(L,X), (b) σc(L
∗, X∗) ⊆ σap(L,X),

(c) σap(L
∗, X∗) = σδ(L,X), (d) σδ(L

∗, X∗) = σap(L,X),

(e) σp(L
∗, X∗) = σco(L,X), (f ) σco(L

∗, X∗) ⊇ σp(L,X),

(g) σ(L,X) = σap(L,X) ∪ σp(L
∗, X∗) = σp(L,X) ∪ σap(L

∗, X∗).

Goldberg’s Classification of Spectrum

If T ∈ B(X), then there are three cases for R(T ):

(I) R(T ) = X, (II) R(T ) = X, but R(T ) ̸= X, (III) R(T ) ̸= X
and three cases for T−1:

(1) T−1 exists and is continuous, (2) T−1 exists but is discontinuous, (3) T−1

does not exist.

If these cases are combined in all possible ways, nine different states are created.
These are labelled by: I1, I2, I3, II1, II2, II3, III1, III2, III3 (see [9]).

σ(L,X) can be divided into subdivisions I2σ(L,X) = ∅, I3σ(L,X), II2σ(L,X),
II3σ(L,X), III1σ(L,X), III2σ(L,X), III3σ(L,X). For example, if T = λI − L is
in a given state, III2 (say), then we write λ ∈ III2σ(L,X).

By the definitions given above and the introduction, we can write following table:
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1 2 3

L−1
λ exists L−1

λ exists L−1
λ

and is bounded and is unbounded does not exists

λ ∈ σp(L,X)
I R(λI − L) = X λ ∈ ρ(L,X) – λ ∈ σap(L,X)

λ ∈ σc(L,X) λ ∈ σp(L,X)

II R(λI − L) = X λ ∈ ρ(L,X) λ ∈ σap(L,X) λ ∈ σap(L,X)
λ ∈ σδ(L,X) λ ∈ σδ(L,X)

λ ∈ σr(L,X) λ ∈ σr(L,X) λ ∈ σp(L,X)

III R(λI − L) ̸= X λ ∈ σδ(L,X) λ ∈ σap(L,X) λ ∈ σap(L,X)
λ ∈ σδ(L,X) λ ∈ σδ(L,X)

λ ∈ σco(L,X) λ ∈ σco(L,X) λ ∈ σco(L,X)

Table 1:

Section 2 mentioned articles concerned with the decomposition of the spectrum
defined by Goldberg. However, in [4], Durna and Yildirim investigated a subdivision
of the spectra for factorable matrices on c0, and in [2], Başar, Durna and Yildirim
investigated subdivisions of the spectra for a generalized difference operator on the
sequence spaces c0 and c and in [5] Durna, have studied subdivision of the spectra
for the generalized upper triangular double-band matrices ∆uv over the sequence
spaces c0 and c. Moreover, in [3], Das calculated the spectrum and fine spectrum
of the upper triangular matrix U(r1, r2; s1, s2) over the sequence space c0. In [8],
El-Shabrawy and Abu-Janah determined spectra and fine spectra of a generalized
difference operator B (r, s) on the sequence spaces bv0 and h, in [18], Yildirim and
Durna examined the spectrum and some subdivisions of the spectrum of discrete
generalized Cesàro operators on ℓp, (1 < p < ∞). In [15], the fine spectrum of the
upper triangular matrix U(r, 0, 0, s) over the squence spaces c0 and c was studied by
Tripathy and Das. In 2018, Durna et al. [6] studied a partition of the spectra for
the generalized difference operator B(r, s) on the sequence space cs, in [7], Durna
studied a subdivision of spectra for some lower triangular doule-band matrices as
operators on c0 and in [19], Yildirim et al. studied the spectrum and fine spectrum
of generalized Rhaly-Cesàro matrices on c0 and c.

In this section, we will take a0 = a1 = a2 = a and b0 = b1 = b2 = b.

Lemma 5.
∞∑

n=2

(
n−2∑
k=0

anbnk

)
=

∞∑
k=0

( ∞∑
n=2+k

anbnk

)
,

where (ak) and (bnk) are positive real numbers.

Proof. It is clear.

Theorem 6. If |λ− a| < |b|, then λ ∈ I3σ(U(a; 0; b), h).

Proof. Suppose that |λ− a| < |b| and so from Theorem 2, λ ∈ σp(U(a; 0; b), h).
Hence, λ satisfies Golberg’s condition 3. We shall show that U(a; 0; b) − λI is onto
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when |λ− a| < |b| .
Let us take y = (yn) ∈ h such that (U(a; 0; b)− λI)x = y for x = (xn). Then

(a− λ)xk + bxk+2 = yk , k ≥ 0

Calculating xk, we get

x2n+t =
1

b

[
y2n−2+t +

n−2∑
k=0

y2k+t

(
λ− a

b

)n−k−1
]
+ xt

(
λ− a

b

)n

,

t = 0, 1; n = 2, 3, . . .

(18)

We must show that x = (xk) ∈ h. Since

∞∑
n=1

n |xn − xn+1| =
∞∑

n=1

(2n− 1) |x2n−1 − x2n|+
∞∑

n=1

2n |x2n − x2n+1| ,

let us investigate whether the series
∞∑

n=1
2n |x2n − x2n+1| is convergent. Similarly,

we can show that the series
∞∑

n=1
(2n− 1) |x2n−1 − x2n| is convergent. Since

x2n − x2n+1 =
1

b

[
y2n−2 − y2n−1 +

n−2∑
k=0

(y2k − y2k+1)

(
λ− a

b

)n−k−1
]

+(x0 − x1)

(
λ− a

b

)n

,

we have

2n |x2n − x2n+1| ≤
1

|b|

[
2n |y2n−2 − y2n−1|+ 2n

n−2∑
k=0

|y2k − y2k+1|
∣∣∣∣λ− a

b

∣∣∣∣n−k−1
]

+ |x0 − x1|
∣∣∣∣λ− a

b

∣∣∣∣n .
Therefore

∞∑
n=1

2n |x2n − x2n+1| ≤
|x2 − x3|

|b|
+

1

|b|

∞∑
n=2

2n |y2n−2 − y2n−1|

+
1

|b|

∞∑
n=1

2n

n−2∑
k=0

|y2k − y2k+1|
∣∣∣∣λ− a

b

∣∣∣∣n−k−1

+ |x0 − x1|
∞∑

n=2

∣∣∣∣λ− a

b

∣∣∣∣n .
(19)

Since |λ− a| < |b|, the series
∞∑

n=2

∣∣∣∣λ− a

b

∣∣∣∣n is convergent. And also, since y = (yn) ∈

h, the series
∞∑

n=2
2n |y2n−2 − y2n−1| is convergent. Hence, it is enough to show that
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the series
∞∑

n=1

2n

n−2∑
k=0

|y2k − y2k+1|
∣∣∣∣λ− a

b

∣∣∣∣n−k−1

is convergent, for the series
∞∑

n=1
2n |x2n − x2n+1| is to be convergent. From Lemma 5,

we get

∞∑
n=1

2n
n−2∑
k=0

|y2k − y2k+1|
∣∣∣∣λ− a

b

∣∣∣∣n−k−1

=
∞∑
k=0

∞∑
n=k+2

2n |y2k − y2k+1|
∣∣∣∣λ− a

b

∣∣∣∣n−k−1

=
∞∑
k=0

2 |y2k − y2k+1|
∞∑

n=k+2

n

∣∣∣∣λ− a

b

∣∣∣∣n−k−1

.

(20)

Setting r :=

∣∣∣∣λ− a

b

∣∣∣∣. Since λ ∈ σp(U(a0, a1, a2; ), h), r < 1. Thus

∞∑
n=k+2

nrn−k−1 =

∞∑
n=1

(n+ k + 1) rn =

∞∑
n=1

nrn + (k + 1)

∞∑
n=1

rn

=
r

(1− r)
2 + (k + 1)

r

1− r

is valid. Replacing this in (20), we obtain

∞∑
n=1

2n

n−2∑
k=0

|y2k − y2k+1| rn−k−1

=

∞∑
k=0

2 |y2k − y2k+1|

(
r

(1− r)
2 + (k + 1)

r

1− r

)

=
2r

(1− r)
2

∞∑
k=0

|y2k − y2k+1|+
r

1− r

∞∑
k=0

2 (k + 1) |y2k − y2k+1| .

Thus since y = (yn) ∈ h, the series

∞∑
k=0

2 (k + 1) |y2k − y2k+1|

is convergent. Also since |y2k − y2k+1| ≤ (k + 1) |y2k − y2k+1| for k ∈ N, y = (yn) ∈
h implies that the series

∞∑
k=0

|y2k − y2k+1|

is convergent from the comparison test. Therefore from (19), y = (yn) ∈ h and
λ ∈ σp(U(a0, a1, a2; ), h) imply that the series

∞∑
n=1

2n |x2n − x2n+1|
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is convergent.
Finally, if we show that lim

n→∞
xn = 0, there exists x = (xn) ∈ h for all y =

(yn) ∈ h. Since y = (yn) ∈ h, lim
n→∞

yn = 0 and since every convergent sequence

is bounded, there exists N > 0 such that |yn| ≤ N for all n ∈ N. Also, since
λ ∈ σp(U(a0, a1, a2; ), h) implies r < 1, from (18), we have

lim
n→∞

x2n+t = lim
n→∞

1

b
y2n−2+t + lim

n→∞

1

b

n−2∑
k=0

y2k+t

(
λ− a

b

)n−k−1

+ xt lim
n→∞

(
λ− a

b

)n

= lim
n→∞

1

b

n−2∑
k=0

y2k+t

(
λ− a

b

)n−k−1

. (21)

Hence we have

0 ≤

∣∣∣∣∣ limn→∞

1

b

n−2∑
k=0

y2k+t

(
λ− a

b

)n−k−1
∣∣∣∣∣ ≤ lim

n→∞

1

|b|

n−2∑
k=0

|y2k+t|
∣∣∣∣λ− a

b

∣∣∣∣n−k−1

=
1

|b|
lim

n→∞

n−2∑
k=0

|y2k+t|
∣∣∣∣λ− a

b

∣∣∣∣n−k−1

=
1

|b|
lim
n→∞

n−2∑
k=0

|y2k+t|
∣∣∣∣ b

λ− a

∣∣∣∣k∣∣∣∣ b

λ− a

∣∣∣∣n−1 . (22)

If we take

an =
n−2∑
k=0

|y2k+t|
∣∣∣∣ b

λ− a

∣∣∣∣k and bn =

∣∣∣∣ b

λ− a

∣∣∣∣n−1

,

then (bn) holds conditions of the Stolz theorem since

∣∣∣∣ b

λ− a

∣∣∣∣ > 1. Therefore, from

(22), we obtain

0 ≤ 1

|b|
lim

n→∞

n−2∑
k=0

|y2k+t|
∣∣∣∣ b

λ− a

∣∣∣∣k∣∣∣∣ b

λ− a

∣∣∣∣n−1 =
1

|b|
lim
n→∞

|y2n−2+t|
∣∣∣∣ b

λ− a

∣∣∣∣n−1

∣∣∣∣ b

λ− a

∣∣∣∣n−1(∣∣∣∣ b

λ− a

∣∣∣∣− 1

)
=

1

|b|
(∣∣∣∣ b

λ− a

∣∣∣∣− 1

) lim
n→∞

|y2n−2+t| = 0.

Thus from the sandwich theorem and (21), lim
n→∞

x2n+t = 0, t = 0, 1 and so lim
n→∞

xn =

0. Thus, (xn) ∈ h iff |λ− a| < |b|. Therefore, U(a; 0; b) − λI is onto. So, λ ∈ I.
Hence we get the required result.

Corollary 1. III1σ(U(a; 0; b), h) = III2σ(U(a; 0; b), h) = ∅.

Proof. Since σr(L, h) = III1σ(L, h)∪ III2σ(L, h) from Table 1, the required result
is obtained from Theorem 4 with a0 = a1 = a2 = a and b0 = b1 = b2 = b.



64 N.Durna

Corollary 2. II3σ(U(a; 0; b), h) = III3σ(U(a; 0; b), h) = ∅.

Proof. Since σp(L, h) = I3σ(L, h) ∪ II3σ(L, h) ∪ III3σ(L, h) from Table 1, the
required result is obtained from Theorem 2 and Theorem 6 with a0 = a1 = a2 = a
and b0 = b1 = b2 = b.

Theorem 7. It holds:

(a) σap(U(a; 0; b), h) = {λ ∈ C : |λ− a| ≤ |b|};

(b) σδ(U(a; 0; b), h) = {λ ∈ C : |λ− a| = |b|};

(c) σco(U(a; 0; b), h) = ∅.

Proof. (a): From Table 1, we get

σap(L, h) = σ(L, h)\III1σ(L, h).

And so σap(U(a; 0; b), h) = {λ ∈ C : |λ− a| ≤ |b|} from Corollary 1.

(b): From Table 1, we have

σδ(L, h) = σ(L, h)\I3σ(L, h).

So using Theorem 5 and 6 with a0 = a1 = a2 = a and b0 = b1 = b2 = b, we get the
required result.

(c): By Proposition 1 (e), we have

σp(L
∗, h∗) = σco(L, h).

Using Theorem 3 with a0 = a1 = a2 = a and b0 = b1 = b2 = b, we get the required
result.

Corollary 3. It holds:

(a) σap(U(a; 0; b)∗, h∗ ∼= σ∞) = {λ ∈ C : |λ− a| = |b|};

(b) σδ(U(a; 0; b)∗, h∗ ∼= σ∞) = {λ ∈ C : |λ− a| ≤ |b|}.

Proof. Using Proposition 1 (c) and (d), we have

σap(U(a; 0; b)∗, h∗ ∼= σ∞) = σδ(U(a; 0; b), h)

and

σδ(U(a; 0; b)∗, h∗ ∼= σ∞) = σap(U(a; 0; b), h).

Using Theorem 7 (a) and (b) with a0 = a1 = a2 = a and b0 = b1 = b2 = b, we get
the required results.
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4. Results

We can generalize our operator

U(a0, a1, . . . , an−1; 0; b0, b1, . . . , bn−1) =



a0 0 b0 0 0 0 0 0 0 · · ·
0 a1 0 b1 0 0 0 0 0 · · ·

0 0
. . . 0

. . . 0 0 0 0 · · ·
0 0 0 an−1 0 bn−1 0 0 0 · · ·
0 0 0 0 a0 0 b0 0 0 · · ·
0 0 0 0 0 a1 0 b1 0 · · ·
...

...
...

...
...

...
. . .

. . .
. . . · · ·


where b0, b1, . . . , bn−1 ̸= 0.

One can get all our results obtained in the previous section as follows.

Theorem 8. If

S =

{
λ ∈ C :

n−1∏
k=0

∣∣∣∣λ− ak
bk

∣∣∣∣ ≤ 1

}
,

S̊ is the interior of the set S and ∂S is the boundary of the set S. Then the following
holds:

1. σp(U(a0, a1, . . . , an−1; 0; b0, b1, . . . , bn−1), h) = S̊;

2. σp(U(a0, a1, . . . , an−1; 0; b0, b1, . . . , bn−1)
∗, h∗ ∼= σ∞) = ∅;

3. σr(U(a0, a1, . . . , an−1; 0; b0, b1, . . . , bn−1), h) = ∅;

4. σc(U(a0, a1, . . . , an−1; 0; b0, b1, . . . , bn−1), h) = ∂S;

5. σ(U(a0, a1, . . . , an−1; 0; b0, b1, . . . , bn−1), h) = S.
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