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Abstract. We study the existence of solutions for a system of Riemann-Liouville fractional
differential equations with nonlinearities dependent on fractional integrals, supplemented
with uncoupled nonlocal boundary conditions which contain various fractional derivatives
and Riemann-Stieltjes integrals. We use the fixed point theory in the proof of our main
theorems.
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1. Introduction

We consider a nonlinear system of fractional differential equations

{ Dy u(t) + f(tu(t), v(t), gk u(t), ITLo(t)) = 0, t € (0,1),

(5)
Dy v(t) + g(t,ult), o(t), Igiu(t), Ig3o(t) = 0, t € (0,1),

with uncoupled nonlocal boundary conditions
u(0) = u/(0) = - = u*2)(0) = 0, D u(1) / Dy u(t) dH (2),
0(0) = v/(0) = - -- = 02 (0) = 0, DI u(1) / DY, o(t) dK (1),

where o, 8 € R, « € (n—1,n], B € (m—1,m], n,m € N, n > 2 m > 2,
01,02,01,00 >0, p, g eN,v; € Rforalli =0,...,p0, 0 <y <2 <o < p <
a—1,v%€el0,a—1),5 € Rforalli=0,...,¢,0<d < <--- << f—1
6 € [0,8 — 1), D, denotes the Riemann-Liouville derivative of order k (for k =
a, By 0,7yt = 1,...,p0, 00,0;, 0 = 1,...,q), I§+ is the Riemann-Liouville integral
of order ¢ (for ¢ = 61,01,02,02), the functions f and g are nonnegative, and the
integrals from the boundary conditions (BC) are Riemann-Stieltjes integrals with
H;fori=1,...,pand K; for i =1,...,q functions of bounded variation.
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Based on some theorems from the fixed point theory, in this paper we give con-
ditions for the nonlinearities f and g such that problem (S) — (BC) has at least one

solution. The fractional equation
(E) DGy u(t) + Af(tu(t) =0, te(0,1),

with nonlocal boundary conditions

(BCY) u(0) = u/(0) = --- =u""2(0) = 0, Df,u(l) = Z%DSM(&),

where §; e R i=1,....m,0< & < <&n<l,p,geR, pel,n—2],¢<l0,p],
was investigated in [8]. In [8], the nonlinearity f changes the sign and it is singular
in the points ¢t = 0, 1, and there the authors used the Guo-Krasnosel’skii fixed point
theorem to prove the existence of positive solutions when the parameter A belongs to
various intervals. For some recent results on the existence, nonexistence and multi-
plicity of positive solutions or solutions for Riemann-Liouville, Caputo or Hadamard
fractional differential equations and systems of fractional differential equations sub-
ject to various boundary conditions we refer the reader to the monographs [7, 21]

and the papers [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20].

2. Auxiliary results
We consider the fractional differential equation
D u(t) +h(t) =0, te(0,1),

with boundary conditions

u(0) = u/(0) = --- = u""2(0) = 0, Dibu(l) = Z D u(t) dH;(t),

i=1

where h € C(0,1) N L'(0,1). We denote by

_ F(OZ) 3 p F(O{) 1Sa7,yi71 .
A= Il — ) ; T(o— ;) /0 dH;(s).

By standard computations we obtain the following lemma.

Lemma 1. If Ay # 0, then the function u € C0,1] given by

1 ! a—1 ta_l ! —s a—yo—1 s)ds
m/o (t —s) h(s)ds—l—iAlF(a_%) /0 (1-29) h(s)d

=1 2 1
Ay

u(t) = —

i=1

is a solution of problem (1) — (2).

> (o =) /01 (/Os(s — 7)Y n(r) dT) dH;(s), t€0,1],
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We also consider the fractional differential equation
D0+v( ) + k(t) = 07 te (07 1)7 (3)
with boundary conditions

0(0) = o/(0) = - = ™2 (0) = 0, DI Z / Dot dE(1),  (4)

where k € C(0,1) N Ll(O, 1). We denote by

q
INGG
§ B—di—1 )
AQ ﬁ 50 — T B 5 / dK,(S)

Lemma 2. If Ay # 0, then the function v € C[0, 1] given by

1 th-1
u(t) = —

L t k() ds 4 — b 1 IV,
F(/B)/o(t )7 k(s)d +A2F(ﬁ_50>/0 (L-3s) k(s)d
B-1 4 1 1 s st g .

is a solution of problem (3) — (4).
Lemma 3 (see [2]). If z € C[0,1] then for ¢ > 0 we have

1
T(C+1)

|I(§+Z( )| —= F( Vi e [Oa l]a

where |[z|| = supye(o 1) |2(2)]-

We denote by (/1) the following basic assumptions for problem (5) — (BC') that
will be used in the main theorems.

(I) a, p e R, € (n—1n], 8 € (m—1m], n,m € N, n >2 m > 2
01,05,01,00 >0, p,qg € Nyv e Rforalli =0,...,p, 0 <7 < 7 <
< <a-1, 7% €0a—-1),6 e Rforalli =0,...,¢, 0 < § <

0y < o+ < g < B—1 60 €[0,8-1), H; : [0,1] - R, i=1,....pand
K; : [0,1] - R, j =1,...,q are functions of bounded variation, Ay # 0,

Ag # 0.
We introduce the following constants:
M, =1+¥, M2=1+;, M3:1+;,
e, +1) I(oy+1) T'f2+1)
My =1+ m,, M5 = max{M;, Ms}, Mg = max{Ms, My},
1 1 !

M7 = R dHl(S) y

1
- -
Mla+1) |AT(a—v+1) |Aq] ;F(a—%—i-l)

1 1 1
Mo =L D) MG v D) T A 2 TG 5 F D)

1
P70 dK(s)]
0
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1 1
o _ ot
Mot 1) Mg = My (5)

M = Mz = T(B+1)

We consider the Banach space X = C[0, 1] with supremum norm [[ul| = sup,¢[o 17 [u(t)],
and the Banach space Y = X x X with the norm ||(u,v)|ly = ||u|| + ||v|. We intro-
duce the operator A : Y — Y defined by A(u,v) = (A1(u,v), A2(u,v)) for (u,v) €Y,
where the operators Ay, As : Y — X are given by:

Av(u,0)(t) = —ﬁ/o (t— )" f (s, uls), v(s), 1% u(s), ITu(s)) ds
1

+Art<a—7> / (1= )20 (s, u(s), (), I u(s), [T v(s)) ds — tA

) zp; ﬁ /01</05(s )Y (g u(r), o(r), I (), IgLo(r)) dT) dH(s),
Aalu0)0) =~ [0 9~ g0, 0060, o) 05 s

+ Art(‘;w) /01<1 =)0 g5, u(s), v(s), I uls), It o(s)) ds — tBA:

S L ([ g o). 1 (), I 0(r)) dr ) K (),
> t5-0) J, U,
= vVt e[0,1], (u,v) €Y.
©)

By using Lemmas 1 and 2, we note that if (u,v) is a fixed point of operator A, then
(u,v) is a solution of problem (S) — (BC).

3. Existence of solutions for (S) — (BC)

In this section, we will present some conditions for the nonlinearities f and g such

that operator A has at least one fixed point, which is a solution of problem (S) —
(BC).

Theorem 1. Assume that (I1) and

(I2) The functions f, g : [0,1] x R* — R are continuous and there exist L1, Ly > 0

such that
4
|f(t, 21, 02, 23, 24) — f(t, 21,72, 73, 24)| < Ly Z |z; — ],
i=1
4
|g(tay17y27y37y4) - g(t,g17§27§3,§4)‘ S L2 Z |yl - §i|7
i=1

for allt €10,1], ;,y:, 25,9 €ER, i=1,...,4,

hold. If 2 := LiMsMy7 + LoMgMy < 1, then problem (S) — (BC) has at least one
solution (u(t),v(t)), t € [0,1], where My, Mg, M7, My are given by (5).
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Proof. We consider the positive number r given by
r = (Mo My + MyMo)(1 — Ly M5 My — LyMgM,) ™",

where Mo = sup;c(o 1 |f(¢,0,0,0,0)|, My = SUPte(o,1] lg(t,0,0,0,0)|. We define the
set B, = {(u,v) € Y, [|(u,v)|ly < r} and first we show that A(B,) C B,. Let
(u,v) € B,. By using (/2) and Lemma 3, for f(t,u(t),v(t),Igj_u(t),lgj_v(t)) we
deduce the following inequalities:
|F(tu®), v(t), oy u(t), ITEo(®))]
<|F(tu(t), v(t), 15 ut), 17 o(1) = £(£,0,0,0,0)[ + [ £(£,0,0,0,0)]
<Ly (lu(®)] + [o(t)] + | Iy u(®)] + | I510(t)]) + Mo
[l o]

<L M
= (”u” I 5D T e+ 1)> o

1 1
=14 ((1 + 7I‘(91 n 1)> [lue]] + (1 + 71“(01 n 1)) |v||> + M,
=Ly (M ||lul| + Ma||v[]) + Mo

§L1M5||(u7v)||y + My < LiMsr + My, Vte [0, 1}.

In a similar manner, we have
|g(t,u(t),v(t),Igiu(t),lgj_v(t)ﬂ
<lg(t, u(t), v(t), g3 ult), 530 (1)) — g(t,0,0,0,0)| + |g(¢,0,0,0,0)|
<Lo(lu(®)] + [o()] + I3 u(®)] + |[I530(0)]) + Mo

(02+1)  TI'(o2+1)

1 1 —~
=L 1+ —— 1+ — M,
(( +r<92+1>)“”+< +r(02+1)>””|>+ g

— Lo(Malul| + Malloll) + Mo

<Ly Mg||(u,v)|ly + Mo < LyMgr + Mo, Yt € [0,1].
Then by (6) (the definition of operators A; and Az), we obtain

u v -
<Ly <||u||+||v|-|—r Il _ el >+M0

1 t
| A1 (u,v)(®)] S@ / (t— s)o‘_l(LlMg,r + My) ds
0
tafl 1
T Jy 09 b+ M)

tafl

p
1
+
|Aq] ; INCERD)

o e

TlatD) [AT@—70+1)

g1 2 1 !
+ s* Vi dH;(s
|A1|§r<a—%+1>/o )

=(L1 Msr + M) {

}, Vte[0,1].
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Therefore, we conclude

1 1
Ta+1)  [Aa—r0+1)

/01 N dH (5) ] (7)

1A (0, 0| (LM + Mo) [

1 & 1
+
|Aq] ; Pla =7 +1)
:(L1M57" + Mo)M7.

Arguing as before, we find

| As(u, ) (1) S%ﬁ) /0 (t — )7 (LoMgr + M) ds

81 1 —
)/ (1 — 5)P=%"Y(LoMegr + M) ds
0

TR =8
[ ([ = rrom e + Wy ar ) arts

-1 2 1
A 2T
th th—1
B+D " [AT(B—d0+ 1)

—(LyMer + M) [F

=1 < 1 Lo
+ s dK(s)| |, Vte|o,1].
|A2i_zlr<ﬁ5i+1>/o || veewn
Then we have
~ [ 1 1
Ao (u,v)|| <(LoMgr + M, +

1 U 1 1 P .
A ; L(B—6+1) /0 " dKq(s) }
=(LoMer + MO)MQ.

By relations (7) and (8) we deduce
1AGu, 0y =[| A1 (u, v)[| + | A2, v)| < (LyMzr + M) Mz + (Lo Mer + Mo) My =,

for all (u,v) € B,, which implies that A(B,) C B,. B
Next, we prove that operator A is a contraction. For (u;,v;) € B, i = 1,2, and
for each ¢ € [0, 1] we obtain

| A1 (ur,v1)(t)— A1 (uz, v2)(1)]
< ‘_F(la)/o (t—s)t [f(Saul(s)vUl(s)»fgiul(s)»fgivl(s))
— lssua(s)vals). I us(s). 1§ va(5))| d

a—1 1
+ |A11f(04—%)/0(1 — 8)*70 7 f(s,u1(s), v1(s), Igiul(s), I v1(s))
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= f(s,ua(s), va(s), Ig} ua(s), I51va(s))| ds
o1 p 1 1 s R . . 91u -
" |Aq] ;F(a—%‘) /o (/0 (s=7) [f (7 un(7), v1(7), Iofua(7), Igh (7))
— J(rua(r),va(7), I ua(r), I Lva(r)) | dr ) dHi(s)|
Ll ! a—1
SF()/ (t—s) {lm(s) —uz(8)] + |vi(s) — va(s)] + |13+u1( ) — Io+“2( s)|
It vi(s) — Igtva(s)]] ds

Ly 1 a1 — usg(s v1(8) — va(s
R L 09 ) = wa()] + ur () = vas)
() = ()] +HIor(s) — IT1ea(s)]) ds
'Ly 1 ' ) =Y N (1) — ug(T v1(7) — va(T
At Y e | ([ o= ) = )l + () = )

i=1

() — Ius()| + I on () — Igtua(r)l] dr) di(s)

I /t _1{ 1
<— t—s)* up — usl| + ||lvg — vol| + =——||lu; — w
“T(a) 0( ) Jur — ual| + [Jvr — va| F(91+1)H 1 — ua|

+ |1 —v2||} ds

1
(o1 +1)
1

to 1L, !
_— 1—8)™ 0 [y — ws|| + ||v1 — val| + =——Ju; — u
|A1|F(Oé—’}/0)/ ( ) |:|| 1 2” H 1 2H F(01—|—1) || 1 2”

Ly ﬂd
—_——||U1 — VU S
F(O’l—f—l) ! 2
ta—lLl p 1 1 </s
+ (5 — 1) lug — ua] + [lor — va]
A ;F(a*%) 0 0
TR S A I S @d)dH()
o ||u1 —u — vy — v T i(s
re,+0)" " PN T+
Ly M5 t
<t | =9 =l o = val) s

t* =1L, M, !
5 / (1= )02 (fluy — ua| + [|v1 — va]) ds

|A1|F(a—70)
a—1 1 s
S| (i) ame
tOéfl

X (lug — ual| + [lv1 —v2||)
ta
—L, M. +
! 5<r(a+1) |AT (o — 40 + 1)

1
/ s*TY dH(s)
0

to-1 L 1
+
Ay = T =7y +1)

> ([lur = uzl| + [lvr = v2|)).
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Then we conclude

[ A1 (ur,v1) = As(ug, va)|| < Ly Ms Mz ([luy — uz|| + [Jor — val]). 9)
By similar computation, we also find

[A2(u1,v1) = Az (ug, v2)[| < LoaMeMo([ur — uall + [[o1 — va)). (10)
Therefore, by (9) and (10) we obtain

| A(u,v1) — A(ug, vo)lly =[lA1(ur,v1) — A1 (ug, v2)|| + [[A2(u1,v1) — Az (uz, va)]|
<(LyMsM7 + LaMeMo)([lur — uz|| + [[vr — va2||)

=Z|[(u1,v1) — (uz,v2)|ly-

By using the condition = < 1, we deduce that operator A is a contraction. By the
Banach contraction mapping principle, we conclude that operator A has a unique
fixed point (u,v) € B,, which is a solution of problem (S) — (BC) on [0, 1]. O

Theorem 2. Assume that (I1) and
,1

(I3) The functions f, g : [0,1] x R* — R are continuous and there exist real con-

stants ¢;, d; > 0,1 =20,...,4, and at least one of ¢y and dy is positive, such
that
4 4
|f(t 21, 2,23, 24)] < o + ZCH%‘L 19(t, y1, 92, Y3, y4)| < do + Zdi|yi|a
i=1 i=1

forallt€[0,1], z;, y; €R, i =1,...,4,

hOld IfEl = maX{Mll,Mlg} < 1, where M11 = (Cl—‘rﬁ)M'y—f—(dl—I—%)Mg

and My = (co + ﬁ)M7 + (do + %)Mg, then the boundary value problem

(S) — (BC) has at least one solution (u(t),v(t)), t € [0,1].

Proof. We prove that operator A is completely continuous. By the continuity of
functions f and g we obtain that operators A; and As are continuous, and then A
is a continuous operator. Next, we prove that A is a compact operator. Let Q2 C Y
be a bounded set. Then there exist positive constants L3 and L, such that

|f(t (), v(t), Ighu(t), I50()] < La, |g(t,ult), v(t), T3 u(t), [§20(t)| < La,

for all (u,v) € Q and ¢ € [0,1]. Therefore, as in the proof of Theorem 1 we deduce
that

\Al(u, U)(t)| < L3Mz, |A2(u7v)(t)| < L4My, Vte [0, 1], (U,U) e Q.
So we obtain
[A1(u, v)[| < LsMz, [[Az(u,v)|| < LaMy, [|A(u,v)|ly < LsMr+LaMs, V(u,v) € €,

and then A(Q) is uniformly bounded.
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Next, we will prove that the functions from A(2) are equicontinuous. Let (u,v) €
Q and tq, t2 € [0, 1] with ¢; < t3. Then we have

| A1 (u, v) (t2) — A1 (u, v) (t1)]

< \—F(la) [0 s, I ), o000

1 t1 - 1 B
+@/o (t1— )" f(s,u(s), v(s), Ighu(s), ILo(s)) ds

tg~t — ot
|A1[T (e = 70)

tg et & 1
+
1A ; I =)

+ /(1 —8)*7 0 (5 u(s), U(S),Igj_u(s), Igiv(s))ds
0

1 ( a=Yi=Le(r wu(r), v(r), I w(r), I  v(7)) dr (s

x /O(/()(s—ﬂ Fru(r), o(r), 10 u(r), I o)) d )dﬂm
L3 h _sa—l_ _sa—l S LS f2 _Sa—l S
<ty ) W=t = st s [0t

a—1 a—1 1 a—1 a—1
+ L3(t2 — tl ) / (1 _ s)a—'yo—l ds + L3(t2 — tl )
|A1[ (e =0) Jo Ay

: ZP(al—w / (/( - df) 0H, (s)

Ls a-1 _ ja-

Then
| A1 (u,v)(t2) — A1 (u,v)(t1)] = 0, as ty — t;, uniformly with respect to (u,v) € Q.

In a similar manner, we find

L _ _
|Az(u, v)(t2) — Az(u,v)(t1)| < F(Tjtl)(tg —t]) + LaMio(ts " —t77h),

and so
|As(u, v)(t2) — Az(u,v)(t1)| = 0, as to — t1, uniformly with respect to (u,v) € Q.

Thus A;(2) and A5(Q) are equicontinuous, and then A(f) is also equicontinuous.
Hence by the Arzela-Ascoli theorem, we conclude that A(2) is relatively compact,
and then A is compact. Therefore, we deduce that A is completely continuous.

We will show next that the set V = {(u,v) €Y, (u,v) = vA(u,v), 0 < v < 1}
is bounded. Let (u,v) € V, that is (u,v) = vA(u,v) for some v € (0,1). Then
for any ¢ € [0,1] we have u(t) = vA;(u,v)(t), v(t) = vAs(u,v)(t). Hence we find
[u(®)] < |A1(u,v)(t)| and |v(¢t)| < |A2(u,v)(t)| for all t € [0, 1].
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By (I3) we obtain

u(t)] <[Ax(u,v)(#)]

1 t
< | =97 oo+ calul)] + calo(o)] + ol )] + eal g o5
I'(a) Jo
e A e o+ ol + sl o)
| A1 (e = 70) Jo ot

+ea| I v(s)|] ds
ta_l P

1
J’_
| A ; Ila =)

s IgLu(r)] + el ISLu(r) ] dr ) dHi(s)|

C3 Cq t
0 + 1) lll + T(o) +1) ”””) [I‘(a 1)

1
/ sV dH;(s)
0

< (o erlll + calll +
ta—l ta—l p 1
+ +
|Arl(@ =y +1)  |A4] ;F(a—%-Fl)

}

Then we deduce

C3

Jull < o+ (e gty ) Bl + (2 + oty ) ol e

In a similar manner, we have

d3 d4
< - = s
|lv]| < [do + (d1 + T + 1)> [lu|| + (dz + (o 1 1)> ||v} My,

and therefore
[[(w, V)|ly < coMy + doMy + My ||u|| + Miz||v|| < coM7 + doMgy + Z1||(u, v)]|y-
Because Z; < 1, we obtain
[(u,v)|ly < (coM7+ doMs)(1 —Z1)"1, V(u,v) € V.

So, we conclude that the set V' is bounded.
By using the Leray-Schauder alternative theorem, we deduce that operator A
has at least one fixed point, which is a solution of our problem (S) — (BC). O

Theorem 3. Assume that (I1), (I2) and
(I4) There exist the functions ¢1, ¢2 € C([0,1],[0,00)) such that
|f(t,x1,x2,x3,x4)| S (bl(t)a |g(ta1‘1a$27l‘371’4)| S ¢2(t)a

forallt €[0,1], z; R, i =1,...,4,
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hold. If 25 := L1M5ﬁ +L2M6% < 1, then problem (S) — (BC) has at least
one solution on [0, 1].

Proof. We fix r; > 0 such that r; > My ||¢1 || 4+ My||p2||. We consider the set B,, =
{(u,v) €Y, |[(u,v)|ly <71}, and introduce the operators D = (Dy, D) : By, =Y
and E = (E1, E3) : B, =Y, where Dy, Dy, Ey, Es: BT1 — X are defined by

Dy (u,v)(t) = — ﬁ/o (t =) f(s,u(s), v(s), Igh u(s), ITtv(s)) ds,
a—1 1
B (0)(0) = o [ (0= 970 () o). I u(s) o) s
o1 & 1

A — T(a—)
<[ 1 ([ = me st ot sute). 25300 ar ) at)

! t - 2 o2
W /0 U S)ﬁ lg(s’ u(s), v(s), Ig+u(s), I3 v(s)) ds,

-1 1
:m/ (1-— s)ﬁ_‘s"_lg(s,u(s),v(s),Igiu(s),lgj_v(s))ds

ZF@’ ;)

Da(u, v)(t) = —

Es(u,v)(t)

for t € [0,1] and (u,v) € B,,. So Ay = Dy + Ey, Ay = Dy + Ey and A= D + E.
By using (I4) for all (u1,vy), (u2,v2) € B,, we obtain that

[ D(u1,v1)+E(uz,v2)|y
<D (ur,vi)lly + | E(uz, v2)ly
=Dy (u1,v1)|| + ||D2(U1,U1)H + | E1 (ug, v2)[| + || B2 (uz2, va)|

611l + =775 92l
1
/ sV dH(s)
0

1
ﬁ76i dKZ(S)

1
SNCES)) (ﬁ+1)

)II¢1|
>Il¢2|

1 p
<|A1r<a—% Y ;
1 q
_|_
(IAzf(b’ T T
=Mz|é1|| + Mo || 2| < 71.

NGRS 6+)

Hence D(u1,v1) + E(ug,ve) € B,, for all (uy,vy), (ug,v2) € By,.
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The operator D is a contraction because

| D(u1,v1)—D(ug, v2)|ly
=[|D1(u1,v1) — Di(uz,va)|| + || Da(u1,v1) — Da(uz, v2)||

1 1
<|\LiMs—— +LoMs=——7—— - -
< (BaM gy + TaMogz ) (o = wall + s = wal)
=Eal|(u1,v1) — (uz, v2)]ly,

for all (ul,vl), (U,Q,Ug) € Ena and =5 < 1.

The continuity of f and g implies that operator E is continuous on B,,. We
prove in what follows that E is compact. The functions from E(B,,) are uniformly
bounded because

1B (u, v) ||y
=[E1(u, )| + [ Ea(u, v)

_ 1 L1 z”:
A= +1) A ZH T(a—7i+1)

1
/0 S dH () ) ™

i : > \/lsﬁﬁidff-(s) Il
[AsT(B—d0+1)  [As] &= T(B—06i+1) | /g i

=Ms||é1ll + Mol é2]l, ¥ (u,v) € By,
We prove now that the functions from E(B,,) are equicontinuous. We denote by

U, =sup{|f(t,u,v,2z,y)], t € [0, 1], [u] <71, o] <7,

< iy WS )

12
6 s o), £ 011 1l < b < (12)

ol < =y €
= r(e +1) Y'=T(oy +1)
Then for (u,v) € B,,, and t1, t3 € [0,1] with ¢; < t2, we obtain

| By (u,v)(t2) — E1(u,v)(t1)]
ta—l _ ta—l

1
<¥/ 1= )01y, ds
STAaT@ -0 Jy 179

tg—l —t?_l D 1 1 s L
+ / 5—T)* T, dT) dH;(s
TPy ([ (#)

= Tla—n)
<, (157 — 1)
1 1
T dIT[Z S
A Ta—0+1) |A1|Z T %+1> / (s)
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—,, My(tg — 1),

ty =t B—80—1

— % 1—-5)"7%7"0,, ds
NG 5o>/o (1) 1

| B2 (u,v)(t2) — Ea(u,v)(t1)| <
R T 1

|Ag| 2 I8 —b:)

i=1

_|_

<Oty '~ 1)

" 1 L ! Zq: 1
[Ao|D(B =00 +1)  |As| & T(B—6; +1)

=0, Mio(ty " —1]71).

1
/ P70 K (s)
0

Hence we find
| By (u,0)(t2) — Er(u,v)(t1)] = 0, |E2(u,v)(t2) — Ea(u,v)(t1)] — 0,

as ty — t; uniformly with respect to (u,v) € B,,. So, E1(B,,) and Ey(B,,) are

equicontinuous, and then E(B,,) is also equicontinuous. By using the Arzela-Ascoli
theorem, we deduce that the set E(B,,) is relatively compact. Therefore, E is
a compact operator on B,,. By the Krasnolsel’skii theorem for the sum of two
operators (see [12]), we conclude that there exists a fixed point of operator D+ E(=

A), which is a solution of problem (S) — (BC). O

Theorem 4. Assume that (I1), (I2) and (I4) hold. If 23 := L1 MsMsg~+Lo MM <
1, then problem (S) — (BC) has at least one solution (u,v) on [0, 1].

Proof. We consider again a positive number r; > Mz||¢1|| + Mol|d2|, and the
operators D and E defined on B, given by (11). As in the proof of Theorem 3, we
obtain that D(uy,v1) + E(ug,v2) € By, for all (uy,v1), (ug,v2) € By,

The operator E is a contraction because

[ E(u1,v1)—E(uz2,v2)ly
=[|Er(u1,v1) — Er(uz, v2)|| + [ B2(u1,v1) — Ea(uz, v2)|
<LiMsMs(|lur — sl + [lor — va|) + LoaMeMio(|lur — uzl| + [lor — v2)
=(L1MsMg + Lo Mg M) || (ur,v1) — (u2,v2)|ly = Za|(u1,v1) — (u2,v2)|y,

for all (uy,v1), (ug,v2) € B,,, with Z3 < 1.
Next, the continuity of f and g implies that operator D is continuous on B,,. We

show now that D is compact. The functions from D(B,,) are uniformly bounded
because

1D (w, )y =[|D1(w, 0)|| + || Da(u, v)|

1 1
sl + s5 =

SF(()erl) F(BJrl)H(?zH, V (u,v) € By,.



100 R.Luca

Now we prove that D(B,,) is equicontinuous. By using ¥, and ©,, defined in (12),
for (u,v) € By, and t1, t2 € [0,1] with t; < t2 we find that

|QWWWQ—EWWWM§ﬁ%hj£—ﬁL
I%WwWﬁ—mWWWﬁsmghﬁﬁ—fy

Then we obtain
|D1(U,U)(t2) — Dl(u,v)(t1)| — O, |D2(U,’U)(t2) — D2(U,U)(t1)| — O7

as to — t1 uniformly with respect to (u,v) € B,,. We deduce that D;(B,,) and
Do(B,,) are equicontinuous, and so D(B,,) is equicontinuous. By using the Arzela-
Ascoli theorem, we conclude that the set D(B,.,) is relatively compact. Then D is a
compact operator on B,.,. By the Krasnosel’skii theorem we deduce that there exists

a fixed point of operator D+ E(= A), which is a solution of problem (5)—(BC). O
Theorem 5. Assume that (I1) and

(I5) The functions f, g : [0,1]xR* — R are continuous and there exist the constants
a; > 0,4 =0,...,4 with at least one nonzero, the constants b;, 1 = 0,...,4
with at least one nonzero, and l;, m; € (0,1), i =1,...,4 such that

4
‘f(t7$17 $2,$3,$4)| <ap + Z a‘i‘xi‘ll7
i=1
4
|9(t, y1, Y2, ys, ya)| <bo+ D bilys
i=1

mg
?

forallt €10,1], x5, ys R, i =1,...,4,
hold. Then problem (S) — (BC') has at least one solution.
Proof. Let Br = {(u,v) €Y, ||(u,v)|ly < R}, where

1 1 10as M~ -T3
R >max { 10ag M7, (10a1 M7) =1, (10ae M7) =2, | = ;
> { oM, (1003 M) %, (100200) ™%, ()

1Oa4M7
((F(Ol +1))k

( 10b3 Mo )a( 10b, Mo >
(F(02 4 1))ms "\ (o2 +1))ms '

We prove that A : Bp — Bg. For (u,v) € Bg, we deduce

1
T—14 1 )
) 4)10b0M97(1Ob1MQ)W7(1Ob2Mg)W,

IN
SAR=~

Rl» R"
< l] l2
|As (u,0)(t)] < (ao ta + a7 +as T+ D) o+ 1))Z4>M7

R™3 R™
As(u,0) (1)) < (Bo + BLR™ + baR™ + b +b M,
s )0 < (B B ™ by et by M

IN
| 5y
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for all ¢ € [0,1]. Then we obtain

[A(w, 0)lly = [[As(u, v)[| + [|A2(u, 0)|| < R, V(u,v) € B,
which implies that A(Bgr) C Bg.

Because the functions f and g are continuous, we conclude that operator A is
continuous on Bg. In addition, the functions from A(Bg) are uniformly bounded
and equicontinuous. Indeed, by using the notations (12) with r; replaced by R, for
any (u,v) € B and t1, t2 € [0,1], t; < to we find that

A (0, 0)(02) = A 0) (1) < ot (85 = 19) + WM (157" — 1570,
[a,0)(02) = An(0)(t)] < s (8 ) + ot = 7).

Therefore,
|A1(U,’U)(t2) — Al(u,v)(t1)| — 0, |A2(U,U)(t2) — AQ(’LL, U)(t1)| — 0, as to — 11,

uniformly with respect to (u,v) € Br. By the Arzela-Ascoli theorem, we deduce that
A(BR) is relatively compact, and then A is a compact operator. By the Schauder
fixed point theorem, we conclude that operator A has at least one fixed point (u,v)
in Bg, which is a solution of our problem (S) — (BC). O

Theorem 6. Assume that (I1) and

(I6) The functions f, g : [0,1] x R* — R are continuous and there exist p; > 0,

i =0,...,4 with at least one nonzero, q; > 0, ¢ = 0,...,4 with at least one
nonzero, and nondecreasing functions h;, k; € C([0,00),[0,00)) i = 1,...,4
such that
4
|f(ts 1, @2, 25, 20)] <po + ) pibilli]),
i=1
4
l9(t, 1, Y2, y3, ya)| <qo + ZQ’Lklalev
i=1

forallt € [0,1], z;, y; €R, i=1,...,4,

hold. If there exists =y > 0 such that

. (= e [ F0 ha (= )) ar
<P0+P1 1(Z0) +p2ha(Z0) +ps 3<F(91+1)>+p4 4(F(01+1>>) '

+ (g0 + @11 (B) + goka(Z0) + gsks [ == ) + quks [ =2 >)M<E,
<QO q1k1(Z0) + g2k2(Z0) + g3 3<F(92+1)) qa 4<F(02+1) 9 <=0
(13)

then problem (S) — (BC) has at least one solution on [0, 1].
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Proof. We consider the set Bz, = {(u,v) € Y, ||(u,v)|ly < Eo}, where 5y is given

in the theorem. We will prove that A : Bz, — Bzg,. For (u,v) € Bz, and t € [0,1]
we obtain

| A1 (u,v)(t)] < (po + p1h1(Z0) + p2h2(Zo)

+ p3hs (F(@H(j—l)) + pahy (F(O’;Z—l))) My,
| Az (u,v)(t)] < (g0 + q1k1(Z0) + g2k2(Z0)

)
rok () o (s 7))

and then for all (u,v) € Bg, we have

[A(u0) [y

< (po + p1h1(Z0) + p2h2(Z0) + p3hs <1“(9:(—)i-1)) +Paha (1“(0?2—1))) Mz

+<qo+q1 1(Z0) + ¢2k2(Z0) + g3 3(r(92+1)>+q4 4(F(02+1)>) ’
<Eo.

Then A(Bz,) C Bz,. In a similar manner used in the proof of Theorem 5, we can
prove that operator A is completely continuous.

We suppose now that there exists (u,v) € 0Bz, such that (u,v) = vA(u,v) for
some v € (0,1). We obtain as above that ||(u,v)|y < ||A(w,v)||y < Zo, which is a
contradiction because (u,v) € dBg,. Then by the nonlinear alternative of Leray-
Schauder type, we conclude that operator A has a fixed point (u,v) € Bz,, and so
problem (S) — (BC) has at least one solution. O

4. Examples

Letal—g(ng: ), i%(m:4),91:%701:%3,92:%,02:%,7():%,
71257221,50:?,(5: 52:*,H1(t):t,t€O,l],Hg()—{Ote
[0,3); 2, t €[5, 1]}, Ki(t) = {0, “te, 3)i 4 te (s 1), Ko(t) =12, t € 0,1].

We consider the system of fractional dlfferential equations
5/2 1/3 9/4
sy ult) + £ (¢ ult), o(t), I u(t), It u(t)) = 0, t € (0,1),
0
10/3 716/5 25/6
DOJ o(t) +g(t,u(),o(t), I Pu(t) 157 u(t)) = 0, t € (0,1),
with the boundary conditions
u(0) = u/'(0) = 0, Dg}*u(1) =3 [ 2Dy  u(t) dt + 2D} u (1),
(BCO) 11/5 1/6 15/7
v(0) = v'(0) = v"(0) = 0, Dy} v(1) = 4Dy v (1) +2 [ tDyY (1) dt.

We obtain A; ~ —0.83314732 # 0 and Ay =~ —0.85088584 # 0. So assumption
(I1) is satisfied. In addition, we have My ~ 2.11984652, M> ~ 1.39227116, M3 =~
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1.12892098, M, ~ 1.03231866, Mz = M,, Mg = Ms, My ~ 1.98819306, My ~
1.68729195, My ~ 1.95523852, M;o ~ 1.84725332.

Example 1. We consider the functions

flt, 1, 20,23, 24) = L + Gl — Earctarlxg
e Va+2  TE+1)31+ 7)) 8
t? 1 o
+t+9COS$37mSIH T4,
g(t Y1,Y2,Y3 y4) :i - iSinyl + % + iafCtanyS - LCOS2 Ya
YL Y3 U8 T T 0 42+ |pl) | 12 t+20 ’

forallt € [0,1], z;, y; R, i =1,...,4. We find the inequalities

4

-~~~ 1 ~
|f(t,$171'2,$3,$4) - f(t,l'171'2,$3,$4)| é - |1'1 - xi'v
7
i=1

4
SOOI 1 -
9(t,y1, 2, Y3, 4) — 9t U1, Y2, U3, Ya)| < 3 Z lyi — Yil,
i=1

for all t € [0,1], 2, y; € R, ¢ = 1,...,4. So we have L; = %, Ly = %, and
=~ 0.878 < 1. Therefore, assumption (12) is satisfied, and by Theorem 1 we deduce
that problem (Sp) — (BCy) has at least one solution (u(t),v(t)), t € [0,1].

Example 2. We consider the functions

t+1 1 1 t
flt,x1, 29,23, 24) :;—?(iﬂint + 1 sinxy) — mm + 1 arctan xs — cos T4,
—t
e 1 . 9 1
9(t,y1,Y2,Y3,Ya) 1+ 3 sinys + cos” yz + 5 arctan ya,

forallt €[0,1), z;, y; €R, i =1,...,4. Because we have
5 1 1 1
t <24 - - -
|f(t, 21, 22, 23, 24)] <3 + 8|331| + 9|$2| + 4|553|7
1 1
|g(t7yl7y2ay3,y4)‘ SQ + §|y2‘ + g‘y4|7
for allt € [0,1], z;,y; € R, i = 1,...,4, then assumption (I3) is satisfied with
=5 =% c=gc=71c=04d=2d =0,d =3, d3 =0,
dy = Besides, we obtain My, ~ 0.805142, Mis =~ 0.885295 and =1 = M5 < 1.

Then by Theorem 2 we conclude that problem (Sy) — (BCy) has at least one solution
(u(t),v(t)), t €[0,1].

Example 3. We consider the functions

GUoren

2/3
arctan :c4/ )

T1,T2,T3,T — =T +
gy bly L2, L3, L4 1 2(1 t)

e—t

t =
g( ,ylay25y37y4) 1+t4

1 .
— 3 ll'/2 4 sin e,
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forallt € [0,1], z;, y; € R, i=1,...,4. Because we obtain

1 1 1
|f(t,x1, 22,23, 14)| < Z|$1\3/5+§|934|2/3’ lg(t, y1,y2,Y3,ya)| < 1+§|y2\1/2+|y3|3/4,

for allt € [0,1], z;,y; € R, i = 1,...,4, then assumption (I5) is satisfied with
aozo,alzi,agzo, a3:O,a4:%,bozl,b1:0,b2:%,b3:1,b4:0,
I = %, ly = %, my = %, ms = %. Therefore, by Theorem 5 we deduce that problem
(So) — (BCy) has at least one solution (u(t),v(t)), t € [0,1].

Example 4. We consider the functions

(1—1)3 N etxy tQIéB
10 20(1 + 2) 5
21—t , 5

t -
g(t,y1, 92,93, Ya) 50t o5 Y1 30 (7

forallt €10,1], z;, y; € R, i =1,...,4. Because we have

f(tyxlaanx37x4) =

1
|f(t,l‘1,.’172,.’1}37.'134 | = 10 ‘$2|3 |.’I}3|1/3
1 2 15,
|g(t7y1ay27y3ay4)| = ‘y1| |y |
20
for allt € [0,1], z;,y; € R, i = 1,...,4, then assumption (I6) is satisfied with
o= p1=0,pp=  ps= L, ps =0, hi(z) = 0, ha(sr) = 2%, hs( ) = a'/?,
h4($)=0,q:2%;Q1=25;2—0(]3—0114:3%;/61() ko(x) = 0,

0
k3(z) =0, ka(z) = 21/5. For 2y = 2, condition (13) is satisfied because

<po + p1hi1(2) + paha(2) + pshs (F(912+1)) + paha (1“(0?4—1))) My

2 2
+ k1(2) + g2k (2) + q3ks | =———— | + ubks | =——— | | M,
<QO+Q1 1(2) + g2k2(2) + g3 3(F(92+1)) q4 4<I‘(02+1)>) 9
~ 1.96264 < 2.

Therefore, by Theorem 6 we conclude that problem (So) — (BCy) has at least one
solution (u(t),v(t)), t € [0, 1].
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