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Abstract. For ∅ ̸= P ⊆ P, let DP be the arithmetic subderivative function with respect
to P on Z+, let ζDP be the function defined by the Dirichlet series of DP , and let σDP

denote its abscissa of convergence. Under certain assumptions concerning s and P , we
present asymptotic formulas for the partial sums of ζDP (s) and show that σDP = 2. We
also express ζDP (s), s > 2, using the Riemann zeta function.
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1. Introduction

Let n ∈ Z+. There exists a unique sequence of nonnegative integers (with only
finitely many positive terms)

(νp(n))p∈P,

where P stands for the set of primes, such that

n =
∏
p∈P

pνp(n).

We use the approach mostly from [1, 3, 5, 7]. Let ∅ ̸= P ⊆ P. The arithmetic
subderivative of n with respect to P is

DP (n) = n′
P :=

∑
p∈P

n′
p,

where n′
p is the arithmetic partial derivative of n with respect to p ∈ P, defined by

Dp(n) = n′
p = n′

{p} :=
νp(n)

p
n.
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The arithmetic derivative of n is

D(n) = n′ := n′
P =

∑
p∈P

n′
p.

We define the (arithmetic) logarithmic subderivative, logarithmic partial derivative,
and logarithmic derivative of n, respectively, as follows:

ldP (n) =
n′
P

n
, ldp(n) =

n′
p

n
, ld(n) =

n′

n
.

Let f be an arithmetic function. There exists σf ∈ R ∪ {±∞} such that its
Dirichlet series

∞∑
n=1

f(n)

ns
, s ∈ C,

converges if ℜ(s) > σf (ℜ denotes the real part) and diverges if ℜ(s) < σf (see [6,
p. 108, Theorem 3]). We call σf the abscissa of convergence of this series and define
the function ζf by

ζf (s) =
∞∑

n=1

f(n)

ns
, ℜ(s) < σf .

For example, let the function u be identically one. The Riemann zeta function is

ζ(s) =

∞∑
n=1

1

ns
= ζu(s), and σu = 1.

Our paper originates from three results due to Barbeau [1]. The first one gives
an upper bound for n′ using n:

Lemma 1 (see [1, p. 118] or [7, Theorem 9]). Let n ∈ Z+. Then

n′ ≤ n logn

2 log 2
.

In the next theorem, the first and second formula describe the asymptotic be-
havior of ∑

1≤n≤x

ld(n) and
∑

1≤n≤x

n′ :

Theorem 1 (see [1, pp. 119–121] or [7, Theorem 24]). Asymptotically,∑
1≤n≤x

ld(n) = Cx+O(log x log log x)

and ∑
1≤n≤x

n′ = C
x2

2
+O(x1+δ).

Here

C =
∑
p∈P

1

p(p− 1)
= 0.749 . . . , (1)

and δ > 0 is arbitrary.
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In the proofs cited above, actually x ∈ Z+, but they can easily be extended to
hold for x ∈ R, x ≥ 1.

Our goal is to find asymptotic formulas for the partial sums of ζDP
(s), in other

words, for the sums

∑
1≤n≤x

n′

ns
and

∑
1≤n≤x

n′
p

ns
and, more generally, for

∑
1≤n≤x

n′
P

ns
, (2)

where s ∈ R. As a corollary, we will see that σD = σDp = σDP
= 2. For s = 1 and

s = 0, the formulas concerning the first sum are already given in Theorem 1. Lastly,
we express ζDP

(s), s > 2, using the values of ζ.

Our main tool is the following Abel’s summation formula:

Lemma 2 (see [6, p. 3, Theorem 1]). Let (an) be a sequence of complex numbers,
let x > 1, and let g : [1, x] → C be a continuously differentiable function. Then

∑
1≤n≤x

ang(n) =
( ∑

1≤n≤x

an

)
g(x)−

∫ x

1

( ∑
1≤n≤t

an

)
g′(t)dt.

2. Partial sums of ζD(2)

In this section, we consider the first sum of (2) with s = 2. We obtain the following
result:

Theorem 2. Asymptotically,

∑
1≤n≤x

n′

n2
= C log x+O(1).

Proof. Applying Lemma 2 to

an =
n′

n
, g(x) =

1

x
,

we obtain ∑
1≤n≤x

n′

n2
=

∑
1≤n≤x

n′

n

1

n
= H(x) +K(x),

where

H(x) =
( ∑

1≤n≤x

n′

n

) 1

x
, K(x) =

∫ x

1

( ∑
1≤n≤t

n′

n

) 1

t2
dt.

By Theorem 1,

H(x) = C +O(x−1 log x log log x) = O(1) (3)
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and

K(x) =

∫ x

1

(Ct+O(log t log log t))
1

t2
dt

=

∫ x

1

C
1

t
dt+

∫ x

1

O(t−2 log t log log t)dt

= C log x+O
(∫ x

1

t−2 log t log log t dt
)
.

Further, since

log t log log t = O(tδ)

for any δ ∈ (0, 1), we have

K(x) = C log x+O
(∫ x

1

tδ−2dt
)
= C log x+O(xδ−1) +O(1)

= C log x+O(1). (4)

Now, the claim follows from (3) and (4).

Corollary 1. It holds that σD = 2.

Proof. By Lemma 1,

0 ≤ n′

ns
≤ n log n

2ns log 2
=

log n

2ns−1 log 2
. (5)

If s > 2, then the series
∞∑

n=1

log n

ns−1

converges. By using (5), we conclude that the series

∞∑
n=1

n′

ns

converges, too. Hence σD ≥ 2. On the other hand, since by Theorem 2 the series

∞∑
n=1

n′

n2

diverges, we have σD ≤ 2.

3. Partial sums of ζD(s), 1 ̸= s < 2

Next, we study the first sum of (2) in the case of 1 ̸= s < 2.
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Theorem 3. Let 1 ̸= s < 2. Asymptotically,∑
1≤n≤x

n′

ns
=

C

2− s
x2−s +R(x),

where R(x) is defined as follows: If 1 < s < 2, then R(x) = O(1). If s < 1, then
R(x) = O(xδ−(s−1)) for any δ > 0.

Proof. Assume first that 1 < s < 2. We proceed as in the proof of Theorem 2 but
take

g(x) =
1

xs−1
.

Then ∑
1≤n≤x

n′

ns
= H(x) +K(x),

where
H(x) = Cx2−s +O(x1−s log x log log x) = Cx2−s +O(1)

and

K(x) =

∫ x

1

(Ct+O(log t log log t))
s− 1

ts
dt

= C(s− 1)

∫ x

1

dt

ts−1
+ (s− 1)

∫ x

1

O(t−s log t log log t)dt

= C
s− 1

2− s
x2−s +O(1) +O

(∫ x

1

t−s log t log log t dt
)

= C
s− 1

2− s
x2−s +O(1) +O

(∫ x

1

tδ−sdt
)

= C
s− 1

2− s
x2−s +O(1) +O(xδ−(s−1)) +O(1).

We can restrict ourselves to 0 < δ ≤ s− 1. Then δ− (s− 1) ≤ 0, which implies that

K(x) = C
s− 1

2− s
x2−s +O(1)

and further,

H(x) +K(x) = C
(
1 +

s− 1

2− s

)
x2−s +O(1) =

C

2− s
x2−s +O(1),

completing the proof in this case.
If s < 1, then

K(x) = C
s− 1

2− s
x2−s +O(xδ−(s−1)),

and we can proceed as above.

Note that this theorem is a generalization of the latter part of Theorem 1; just
set s = 0.
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4. Partial sums of ζDp(1)

We show that the asymptotic formulas for the partial sums of ζD(s) given in Theo-
rems 1–3 have variants for those of ζDp(s). In these variants, the coefficient C given
in (1) is replaced by Cp defined as

Cp =
1

p(p− 1)
, p ∈ P.

Note that C =
∑

p∈P Cp.
We begin the study of the partial sums of ζDp

(s) with s = 1.

Theorem 4. Let p ∈ P. Asymptotically,∑
1≤n≤x

ldp(n) = Cpx+O(log x).

Proof. It is easy to see that it is enough to consider the sum

n∑
k=1

ldp(k) = ldp

n∏
k=1

k = ldp(n!).

We modify the proof of the first part of Theorem 1. By [2, Theorem 416],

n! =
∏
q∈P

qµq(n), (6)

where

µq(n) =
∞∑

m=1

⌊
n

qm

⌋
=

α(n)∑
m=1

⌊
n

qm

⌋
, α(n) =

⌊
logn

log 2

⌋
. (7)

Now, denoting by
(i)
= that the equation follows from the formula (i), we obtain

ldp(n!)
(6)
= ldp

∏
q∈P

qµq(n) =
µp(n)

p

(7)
=

1

p

α(n)∑
m=1

⌊
n

pm

⌋

=
1

p

α(n)∑
m=1

n

pm
+

1

p

α(n)∑
m=1

O(1)
(7)
= n

α(n)+1∑
m=2

1

pm
+O(log n)

= n

∞∑
m=2

1

pm
− n

∞∑
m=α(n)+2

1

pm
+O(log n)

= Cpn− n

pα(n)+1(p− 1)
+O(log n).

It remains to study the complexity of

A(n) =
n

pα(n)+1(p− 1)
.

Since
pα(n)+1 ≥ 2α(n)+1 > n

by (7), it follows that A(n) = O(1), and the proof is complete.
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5. Partial sums of ζDp(s) and ζDP
(s)

In this section, we continue by studying the second sum of (2), where 1 ̸= s ≤ 2.
We first assume that s = 2.

Theorem 5. Let p ∈ P. Asymptotically,∑
1≤n≤x

n′
p

n2
= Cp log x+O(1).

Proof. The proof is analogous to that of Theorem 2. We apply Lemma 2 to

an =
n′
p

n
, g(x) =

1

x
,

and use Theorem 4.

Corollary 2. Let p ∈ P. Then σDp = 2.

Proof. Clearly, 0 ≤ n′
p ≤ n′ for all n ∈ Z+. Since σD = 2 by Corollary 1, we have

σDp ≥ 2. On the other hand, since by Theorem 5 the series

∞∑
n=1

n′
p

n2

diverges, it follows that σDp ≤ 2.

Next, we consider the case of 1 ̸= s < 2.

Theorem 6. Let p ∈ P and 1 ̸= s < 2. Asymptotically,∑
1≤n≤x

n′
p

ns
=

Cp

2− s
x2−s +R(x),

where R(x) is as in Theorem 3.

Proof. The proof is a simple modification of that of Theorem 3.

Corollary 3 (see Theorem 1). Let p ∈ P. Then∑
1≤n≤x

n′
p = Cp

x2

2
+O(xδ+1)

for any δ > 0.

Our results about ζDp(s) can be extended to concern ζDP
(s) if P ⊂ P is nonempty

and finite (or if P = P, see Theorem 3). Then Cp is replaced by

CP =
∑
p∈P

1

p(p− 1)
.

For example, Theorem 4 and Theorem 6 (s = 0) extend to∑
1≤n≤x

ldP (n) = CPx+O(log x),
∑

1≤n≤x

n′
P = CP

x2

2
+O(xδ+1),

and Corollary 2 extends to σDP
= 2.
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6. Reducing ζDP
to ζ

It is natural to expect that ζDP
has a close relation to the Riemann zeta function ζ.

For ζDp , this relation is already known in the following lemma (originally with
different terminology and notation):

Lemma 3 (see [4, Lemma 6]). Let p ∈ P and s > 2. Then

ζDp(s) =
ζ(s− 1)

ps − p
.

We extend this to ζDP
.

Theorem 7. Let ∅ ̸= P ⊆ P and s > 2. Then

ζDP
(s) = ζ(s− 1)

∑
p∈P

1

ps − p
.

Proof. We have

ζDP (s) =

∞∑
n=1

n′
P

ns
=

∞∑
n=1

n
∑

p∈P
νp(n)

p

ns
=

∞∑
n=1

∑
p∈P

νp(n)

pns−1
. (8)

Since the series (8) converges and all its terms are nonnegative, we can change the
order of summation. Therefore, by the simple calculation and applying Lemma 3
we obtain

ζDP
(s) =

∑
p∈P

∞∑
n=1

νp(n)

pns−1
=

∑
p∈P

∞∑
n=1

nνp(n)

pns
=

∑
p∈P

∞∑
n=1

n′
p

ns

=
∑
p∈P

ζDp(s) =
∑
p∈P

ζ(s− 1)

ps − p
,

completing the proof.

In particular,

ζD(s) = ζ(s− 1)
∑
p∈P

1

ps − p
.

7. Three further questions

In the case of s ≤ 2, Theorems 1–3 give asymptotic formulas for the first sum
of (2), and Theorems 4–6 give those for the second. What about the case of s > 2?
Theorems 3 and 6 with R(x) = O(1) hold also then, but since the main term has
a smaller complexity than the error term, we get nothing reasonable out of them.
The question about a nontrivial asymptotic formula for the second (and third) sum
of (2) in the case of s > 2 therefore remains open.
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As noted at the end of Section 5, our results about ζDp(s) can be extended
to ζDP

(s) if P ⊂ P is nonempty and finite or if P = P. Can they be extended also
if P ⊂ P is infinite? This question remains open, too.

Using advanced number-theoretic methods, the error terms of our asymptotic
formulas can probably be improved, i.e., their complexity can be decreased. How
could this be done? This is our third question.
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