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Abstract. Recently, Feng and Zhai have studied some results of positive solutions to
fractional differential equations. By using mixed monotone operators on cones and the
concept of γ-concavity, we study an application for fractional differential equations. An
example is also provided illustrating the obtained results.
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1. Introduction

In 2017, Feng and Zhai investigated the following problem:

Dκ
t u(t) + f(t, u(t)) + g(t, u(t)) = 0, 0 < t < 1, (1)

u(0) = u′(0) = 0, u(1) =

∫ 1

0

θ(ξ)u(ξ)dξ,

where 2 < κ ≤ 3, Dκ
t is the standard Riemann-Liouville fractional derivative of order

κ. The authors obtained one positive solution to this problem (see [4, 14]).
The function θ satisfies the following conditions:

θ : [0, 1] → [0,∞) with θ ∈ L1[0, 1] and

σ1 =

∫ 1

0

ξκ−1(1− ξ)θ(ξ)dξ > 0, σ2 =

∫ 1

0

ξκ−1θ(ξ)dξ < 1.

Motivated by [4], in this paper we establish the existence of a positive solution to
the following problem:

Dκ
t u(s, t) + f(t, u(s, t),

∂

∂s
u(s, t)) + g(t, u(s, t),

∂

∂s
u(s, t)) = 0, (2)

0 < s, t < 1, u(s, 0) =
∂

∂t
u(s, 0) = 0, u(s, 1) =

∫ 1

0

φ(s, ξ)u(s, ξ)dξ,
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where 2 < κ ≤ 3, f, g are continuous and increasing with respect to the second
argument and decreasing with respect to the third argument. Dκ

t is the standard
Riemann-Liouville fractional derivative of order κ. The function φ(t) satisfies the
following conditions:

(Φ) φ : [0, 1]× [0, 1] → [0,∞) with φ ∈ L1([0, 1]× [0, 1]) and

ζ1 =

∫ 1

0

ξκ−1(1− ξ)φ(s, ξ)dξ > 0, ζ2 =

∫ 1

0

ξκ−1φ(s, ξ)dξ < 1.

Definition 1 (see [7, 8]). The Riemann-Liouville fractional derivative of order κ
for a continuous function f is defined by:

Dκ
t f(t) =

1

Γ(n− κ)
(
d

dt
)n

∫ t

0

f(ξ)

(t− ξ)κ−n+1
dξ, (n = [κ] + 1)

where the right-hand side is point-wise defined on (0,∞).

Definition 2 (see [7, 8]). Let [a, b] be an interval in R and κ > 0. The Riemann-
Liouville fractional order integral of a function f ∈ L1([a, b],R) is defined by:

Iκt f(t) =
1

Γ(κ)

∫ t

a

f(ξ)

(t− ξ)1−κ
dξ,

whenever the integral exists.

It exists extensively in the research of nonlinear fractional differential and integral
equations (see [1, 2, 3, 6, 13, 12]).

In this paper, we present some basic concepts in ordered Banach spaces and a
fixed-point theorem which will be used later. For the convenience of readers, we
suggest that one refers to [5] for details. Suppose that (E, ∥ . ∥) is a Banach space,
which is partially ordered by a cone P ⊆ E, that is, z ≤ w if and only if w− z ∈ P .
If z ̸= w, then we denote z < w or z > w. We denote the zero element of E by
θ. Recall that a non-empty closed convex set P ⊂ E is a cone if it satisfies (i)
z ∈ P, λ ≥ 0 =⇒ λz ∈ P , and (ii) z ∈ P, − z ∈ P =⇒ z = θ. A cone P is called
normal if there exists a constant N > 0 such that θ ≤ z ≤ w implies ∥ z ∥≤ N ∥ w ∥.
We also define the ordered interval [z1, z2] = {z ∈ E|z1 ≤ z ≤ z2} for all z1, z2 ∈ E.

Definition 3 (see [5]). A : P × P → P is said to be a mixed monotone operator if
A(z, w) is increasing in z and decreasing in w, i.e., ui, vi(i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥
v2 imply A(u1, v1) ≤ A(u2, v2), z ∈ P is called a fixed point of A if A(z, z) = z and
for h > θ, Ph = {z ∈ P |∃λ, µ > 0 such that λh ≤ z ≤ µh}.

Definition 4. Let γ be a real number with 0 < γ < 1. An operator A : P → P is
said to be γ-concave if it satisfies A(tz) ≥ tγA(z) for all t > 0, z ∈ P . An operator
A : P → P is said to be homogeneous if it satisfies A(tz) = tA(z) for all t > 0, z ∈ P .
An operator A : P → P is said to be sub-homogeneous if it satisfies A(tz) ≥ tA(z)
for all t > 0, z ∈ P .
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We point out that C[0, 1] = {z : [0, 1] → R is continuous}, ∥ z ∥= sup{|z(t)| :
t ∈ [0, 1]} is a Banach space. Let P = {z ∈ C[0, 1] : z(t) ≥ 0, t ∈ [0, 1]}, then it is
a normal cone in C[0, 1] and the normality constant is 1. We know that this space
can be equipped with a partial order given by:

z ≤ w, z, w ∈ C[0, 1] ⇔ z(t) ≤ w(t), t ∈ [0, 1].

Theorem 1 (see [10]). Let P be a normal cone in a real Banach space E, γ ∈ (0, 1)
A : P → P an increasing sub-homogeneous operator, B : P → P a decreasing
operator, C : P×P → P a mixed monotone operator and let the following conditions:

B(
1

t
z) ≥ tBw, C(tz,

1

t
w) ≥ tγC(z, w), t ∈ (0, 1), z, w ∈ P,

be satisfied. Assume that

(i) there is h0 ∈ Ph such that Ah0 ∈ Ph, Bh0 ∈ Ph, C(h0, h0) ∈ Ph;

(ii) there exists a constant δ0 > 0 such that C(z, w) ≥ δ0(Az+Bz) for all z, w ∈ P .

Then

(1) A : Ph → Ph, B : Ph → Ph and C : Ph × Ph → Ph;

(2) there are u0, v0 ∈ Ph and r ∈ (0, 1) such that

ru0 ≤ u0 < v0, u0 ≤ Au0 +Bv0 + C(u0, v0) ≤ Av0 +Bu0 + C(v0, u0) ≤ v0;

(3) the operator equation Az +Bz + C(z, z) = z has a unique solution z∗ in Ph;

(4) for z0, w0 ∈ Ph, construct

zn = Azn−1 +Bwn−1 + C(zn−1, wn−1), n = 1, 2, . . . ,

wn = Awn−1 +Bzn−1 + C(wn−1, zn−1), n = 1, 2, . . . .

We have zn → z∗ and wn → z∗ as n → ∞.

Lemma 1 (see [11]). If

G1(t, ξ) =
1

Γ(κ)

{
tκ−1(1− ξ)κ−1 − (t− ξ)κ−1, 0 ≤ ξ ≤ t ≤ 1,
tκ−1(1− ξ)κ−1, 0 ≤ t ≤ ξ ≤ 1.

(3)

Then for G1(t, ξ) the following property holds:

tκ−1(1− t)ξ(1− ξ)κ−1

Γ(κ)
≤ G1(t, ξ) ≤

ξ(1− ξ)
κ−1

Γ(κ− 1)
, t, ξ ∈ [0, 1].

From [9] and Lemma 1, we have

ζ1ξ(1− ξ)κ−1tκ−1

(1− ζ2)Γ(κ)
≤ G(t, ξ) ≤ tκ−1(1− ξ)κ−1

(1− ζ2)Γ(κ)
, t, ξ ∈ [0, 1], (4)



160 H. Afshari, H. Gholamyan and C. Zhai

where G(t, ξ) is given as follow:

G(t, ξ) = G1(t, ξ) +G2(t, ξ), (t, ξ) ∈ [0, 1]× [0, 1], (5)

where

G2(t, ξ) =
tκ−1

1− ζ2

∫ 1

0

G1(τ, ξ)φ(ξ, τ)dτ. (6)

In 2017, Feng and Zhai established the following theorem.

Theorem 2 (see [4]). Assume (Φ) and

(H1) f, g : [0, 1]× [0,∞) → [0,∞) are continuous and increasing with respect to the
second argument, g(t, 0) ̸≡ 0;

(H2) g(t, λz) ≥ λg(t, z) for λ ∈ (0, 1), t ∈ [0, 1], z ∈ [0,∞), and there exists a
constant γ ∈ (0, 1) such that f(t, λz) ≥ λγf(t, z) for all t ∈ [0, 1], λ ∈ (0, 1), z ∈
[0,∞);

(H3) ∃ δ0 > 0 such that f(t, z) ≥ δ0g(t, z), t ∈ [0, 1], z ≥ 0.

Then problem (1) has a unique positive solution u∗ in Ph, where h(t) = tκ−1, t ∈ [0, 1]
and for u0 ∈ Ph construct

un+1(t) =

∫ 1

0

G(t, ξ)[f(ξ, un(ξ)) + g(ξ, un(ξ))]dξ, n = 0, 1, 2, . . . .

We have un(t) → u∗(t) as n → ∞, where G(t, ξ) is given as (5).

2. Main result

As a prompt consequence of Theorem 1 we have the following result.

Proposition 1. Let P be a normal cone in a real Banach space E, γ ∈ (0, 1),
T,C : P × P → P mixed monotone operators and let the following conditions

T (tz,
1

t
w) ≥ tT (z, w), t ∈ (0, 1), z, w ∈ P,

C(tz,
1

t
w) ≥ tγC(z, w), t ∈ (0, 1), z, w ∈ P,

be satisfied. Assume that

(i) there is h0 ∈ Ph such that T (h0, h0) ∈ Ph, C(h0, h0) ∈ Ph;

(ii) there exists a constant δ0 > 0 such that C(z, w) ≥ δ0T (z, w) for all z, w ∈ P .

Then

(1) T : Ph × Ph → Ph and C : Ph × Ph → Ph;
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(2) there are u0, v0 ∈ Ph and r ∈ (0, 1) such that

ru0 ≤ u0 < v0, u0 ≤ T (u0, v0) + C(u0, v0) ≤ T (v0, u0) + C(v0, u0) ≤ v0;

(3) the operator equation T (z, z) + C(z, z) = z has a unique solution z∗ in Ph;

(4) for z0, w0 ∈ Ph, construct

zn = T (zn−1, wn−1) + C(zn−1, wn−1)

wn = T (wn−1, zn−1) + C(wn−1, zn−1), n = 1, 2, . . . .

We have zn → z∗ and wn → z∗ as n → ∞.

Definition 5. An operator A : P × P → P is said to be γ-concave if

A(tz,
1

t
w) ≥ tγA(z, w), t ∈ (0, 1), (z, w) ∈ P × P, 0 ≤ γ < 1.

Definition 6. An operator B : P × P → P is said to be sub-homogeneous if it
satisfies the following:

B(tz,
1

t
w) ≥ tB(z, w), t ∈ (0, 1), z, w ∈ P.

Definition 7. Let γ be a real number with 0 < γ < 1. An operator A : P × P → P
is said to be γ-concave if it satisfies A(tz, 1

tw) ≥ tγA(z, w) for all t > 0, z, w ∈ P .
An operator B : P × P → P is said to be sub-homogeneous if B(tz, 1

tw) ≥ tB(z, w)
for all t > 0, z, w ∈ P .

Lemma 2. Assume (Φ) holds and y : [0, 1] × [0, 1] → R is continuous. Then the
problem

Dκ
t u(s, t) + y(s, t) = 0, 2 < κ ≤ 3, (7)

s, t ∈ [0, 1], u(s, 0) =
∂

∂t
u(s, 0) = 0, u(s, 1) =

∫ 1

0

φ(s, ξ)u(s, ξ)dξ,

has the solution

u(s, t) =

∫ 1

0

G(t, ξ)y(s, ξ)dξ,

where G(t, ξ) is given as (5).

Proof. By (7), the following inequality holds:

u(s, t) = −Iκt y(s, t) + c1t
κ−1 + c2t

κ−2 + c3t
κ−3 c1, c2, c3 ∈ R.

Hence

u(s, t) = −
∫ t

0

(t− ξ)κ−1

Γ(κ)
y(t, ξ)dξ + c1t

κ−1 + c2t
κ−2 + c3t

κ−3.

From u(s, 0) = ∂
∂tu(s, 0) = 0 and u(s, 1) =

∫ 1

0
φ(s, ξ)u(s, ξ)dξ, we obtain

c1 =

∫ 1

0

(1− ξ)κ−1

Γ(κ)
y(s, ξ)dξ +

∫ 1

0

φ(s, ξ)u(s, ξ)dξ, c2 = c3 = 0.
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Therefore

u(s, t) =−
∫ t

0

(t− ξ)κ−1

Γ(κ)
y(s, ξ)dξ +

tκ−1

Γ(κ)

∫ 1

0

(1− ξ)κ−1y(s, ξ)dξ

+ tκ−1

∫ 1

0

φ(s, ξ)u(s, ξ)dξ

=

∫ 1

0

G1(t, ξ)y(s, ξ)dξ + tκ−1

∫ 1

0

φ(s, ξ)u(s, ξ)dξ.

Consequently,∫ 1

0

φ(s, t)u(s, t)dt =

∫ 1

0

φ(s, t)(

∫ 1

0

G1(t, ξ)y(s, ξ)dξ)dt

+

∫ 1

0

(φ(s, t)tκ−1

∫ 1

0

φ(s, ξ)u(s, ξ)dξ)dt

=

∫ 1

0

(

∫ 1

0

φ(s, t)G1(t, ξ)dt)y(s, ξ)dξ

+ (

∫ 1

0

tκ−1φ(s, t)dt)(

∫ 1

0

φ(s, ξ)u(s, ξ)dξ),∫ 1

0

φ(s, ξ)u(s, ξ)dξ =
1

1− ζ2

∫ 1

0

(

∫ 1

0

G1(t, ξ)φ(s, t)dt)y(s, ξ)dξ

=
1

1− ζ2

∫ 1

0

(

∫ 1

0

G1(τ, ξ)φ(s, τ)dτ)y(s, ξ)dξ.

Clearly we get

u(s, t) =

∫ 1

0

G1(t, ξ)y(s, ξ)dξ +
tκ−1

1− ζ2

∫ 1

0

(

∫ 1

0

G1(τ, ξ)φ(s, τ)dτ)y(s, ξ)dξ

=

∫ 1

0

G1(t, ξ)y(s, ξ)dξ +

∫ 1

0

G2(t, ξ)y(s, ξ)dξ

=

∫ 1

0

G(t, ξ)y(s, ξ)dξ.

Now we consider the new Banach space E1 as follows:

E1 = {u(s, t) ∈ C([0, 1]× [0, 1])| ∂
∂s

u(s, t) ∈ C([0, 1]× [0, 1])}.

E1 is a Banach space with the norm

∥u∥ = max{ max
s,t∈[0,1]

|u(s, t)|, max
s,t∈[0,1]

| ∂
∂s

u(s, t)|}.

E1 is endowed with an order relation

u(s, t) ≼ v(s, t) if and only if u(s, t) ≤ v(s, t),
∂

∂s
u(s, t) ≤ ∂

∂s
v(s, t),
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for all u(s, t), v(s, t) ∈ E1.
Moreover, let P1 ⊆ E1 be defined by:

P1 = {u ∈ E1 : u(s, t) ≥ 0,
∂

∂s
u(s, t) ≥ 0, s, t ∈ [0, 1]}.

We point out P1 is a normal cone. Indeed, for u(s, t), v(s, t) ∈ P1, with u(s, t) ≼
v(s, t) we have

u(s, t) ≤ v(s, t) and
∂

∂s
u(s, t) ≤ ∂

∂s
v(s, t).

Then obviously for M = 1 the following conditions hold:

|u(s, t)| ≤ M |v(s, t)| and | ∂
∂s

u(s, t)| ≤ M | ∂
∂s

v(s, t)|.

So we have four items below:

(i) ∥ u(s, t) ∥= max |u(s, t)|, ∥ v(s, t) ∥= max |v(s, t)| and M = 1, then we have

max |u(s, t)| ≤ M max |v(s, t)|,

therefore
∥ u(s, t) ∥≤∥ v(s, t) ∥,

(ii) ∥u(s, t)∥ = max | ∂
∂su(s, t)| and ∥ v(s, t) ∥= max | ∂

∂sv(s, t)|, then we have

∥ u(s, t) ∥= max | ∂
∂s

u(s, t)| ≤ max | ∂
∂s

v(s, t)| = ∥v(s, t)∥,

(iii) ∥u(s, t)∥ = max | ∂
∂su(s, t)| and ∥ v(s, t) ∥= max |v(s, t)|, then we have

∥ u(s, t) ∥= max | ∂
∂s

u(s, t)| ≤ max | ∂
∂s

v(s, t)| ≤ max |v(s, t)| = ∥v(s, t)∥,

(iv) ∥u(s, t)∥ = max |u(s, t)| and ∥ v(s, t) ∥= max | ∂
∂sv(s, t)|, then we have

∥ u(s, t) ∥= max |u(s, t)| ≤ max |v(s, t)| ≤ max | ∂
∂s

v(s, t)| = ∥v(s, t)∥,

therefore P1 is a normal cone.
Now here, continuing the work of Feng and Zhai, we establish the existence and

uniqueness of solution to fractional differential equation (2).

Theorem 3. Assume (Φ) and

(H1) f, g : [0, 1]×[0,∞)×[0,∞) → [0,∞) are continuous and increasing with respect
to the second argument, but also decreasing with respect to third argument.
g(t, 0, 1) ̸≡ 0;

(H2) g(t, λz, 1
λw) ≥ λg(t, z, w) for λ ∈ (0, 1), t ∈ [0, 1], z, w ∈ [0,∞), and there exists

a constant γ ∈ (0, 1) such that f(t, λz, 1
λw) ≥ λγf(t, z, w) for all t ∈ [0, 1], λ ∈

(0, 1), z, w ∈ [0,∞);
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(H3) there exists a constant δ0 > 0 such that f(t, z, w) ≥ δ0g(t, z, w), t ∈ [0, 1] and
z, w ≥ 0.

(H4) y(s, t) ≤ y′(s, t) implies that ∂
∂sy(s, t) ≤

∂
∂sy

′(s, t).

Then problem (2) has a unique positive solution u∗ in P1h , where h(t) = tκ−1, t ∈
[0, 1] and for u0 ∈ P1h , construct

un+1(s, t) =

∫ 1

0

G(t, ξ)[f(ξ, un(s, ξ),
∂

∂s
un(s, ξ))

+ g(ξ, un(s, ξ),
∂

∂s
un(s, ξ))]dξ, n = 0, 1, 2, . . . .

We have un(s, t) → u∗(s, t) as n → ∞, where G(t, ξ) is given as (5).

Proof. From Lemma 2, problem (2) has an integral formulation given by

u(s, t) =

∫ 1

0

G(t, ξ)[f(ξ, u(s, ξ),
∂

∂s
u(s, ξ)) + g(ξ, u(s, ξ),

∂

∂s
u(s, ξ))]dξ.

Define A : P1 × P1 → P1 and B : P1 × P1 → P1 by:

A(u(s, t), v(s, t)) =

∫ 1

0

G(t, ξ)f(ξ, u(s, ξ),
∂

∂s
v(s, ξ))dξ,

B(u(s, t), v(s, t)) =

∫ 1

0

G(t, ξ)g(ξ, u(s, ξ),
∂

∂s
v(s, ξ))dξ.

Then u is the solution to problem (2) if and only if

u = A(u, u) +B(u, u).

Firstly, we show that A, B are two increasing operators with respect to the second
argument, but also decreasing with respect to third argument. For (u, v), (u′, v′) ∈
P1 × P1 with u ≽ u′ and v ≼ v′, we have

A(u(s, t), v(s, t)) =

∫ 1

0

G(t, ξ)f(ξ, u(s, ξ),
∂

∂s
v(s, ξ))dξ

≥
∫ 1

0

G(t, ξ)f(ξ, u′(s, ξ),
∂

∂s
v′(s, ξ))dξ

=A(u′(s, t), v′(s, t)).

By (H4), it is easy to see that

∂

∂s
A(u(s, t), v(s, t)) ≥ ∂

∂s
A(u′(s, t), v′(s, t)).

So

A(u(s, t), v(s, t)) ≽ A(u′(s, t), v′(s, t)).
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Similarly, B(u, v) ≽ B(u′, v′). Secondly, we prove that A is a γ-concave operator
and B is a sub-homogeneous operator. For any λ ∈ (0, 1) with (u, v) ∈ P1 × P1,
from (H2) we obtain:

A(λu(s, t),
1

λ
v(s, t)) =

∫ 1

0

G(t, ξ)f(ξ, λu(s, ξ),
1

λ

∂

∂s
v(s, ξ))dξ

≥ λγ

∫ 1

0

G(t, ξ)f(ξ, u(s, ξ),
∂

∂s
v(s, ξ))dξ

= λγA(u(s, t), v(s, t)).

By (H4), we have ∂
∂sA(λu(s, t), 1

λv(s, t)) ≥ λγ ∂
∂sA(u(s, t), v(s, t)), therefore

A(λu(s, t),
1

λ
v(s, t)) ≽ λγ A(u(s, t), v(s, t))

B(λu(s, t),
1

λ
v(s, t)) =

∫ 1

0

G(t, ξ)g(ξ, λu(s, ξ),
1

λ

∂

∂s
v(s, ξ))dξ

≥ λ

∫ 1

0

G(t, ξ)g(ξ, u(s, ξ),
∂

∂s
v(s, ξ))dξ

= λB(u(s, t), v(s, t)),

and also
∂

∂s
B(λu(s, t),

1

λ
v(s, t)) ≥ λ

∂

∂s
B(u(s, t), v(s, t)),

hence

B(λu(s, t),
1

λ
v(s, t)) ≽ λB(u(s, t), v(s, t)).

So A is γ-concave and B is sub-homogeneous.

Next, we prove that A(h, h) ∈ P1h and B(h, h) ∈ P1h . From (H1), (3), (6) and
(4), we have

A(h(t), h(t)) =

∫ 1

0

G(t, ξ)f(ξ, ξκ−1, 0)dξ

≤ tκ−1

(1− ζ2)Γ(κ)

∫ 1

0

(1− ξ)κ−1f(ξ, 1, 0)dξ,

A(h(t), h(t)) =

∫ 1

0

G(t, ξ)f(ξ, ξκ−1, 0)dξ

≥ ζ1t
κ−1

(1− ζ2)Γ(κ)

∫ 1

0

ξ(1− ξ)κ−1f(ξ, 0, 1)dξ.

From (H3) and (H1) we have

f(ξ, 1, 0) ≥ f(ξ, 0, 1) ≥ δ0g(ξ, 0, 1) > 0.
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Because κ− 1 > 0 and g(ξ, 0, 1) ̸≡ 0, we can get∫ 1

0

(1− ξ)κ−1f(ξ, 1, 0)dξ ≥
∫ 1

0

ξ(1− ξ)κ−1f(ξ, 0, 1)dξ

≥ δ0

∫ 1

0

ξ(1− ξ)κ−1g(ξ, 0, 1)dξ > 0.

Let

l1 :=
ζ1

(1− ζ2)Γ(κ)

∫ 1

0

ξ(1− ξ)κ−1f(ξ, 0, 1)dξ.

l2 :=
1

(1− ζ2)Γ(κ)

∫ 1

0

(1− ξ)κ−1f(ξ, 1, 0)dξ.

Then l2 ≥ l1 > 0 and thus l1h(t) ≤ A(h(t), h(t)) ≤ l2h(t), t ∈ [0, 1]; similarly,

l1
∂

∂s
h(t) ≤ ∂

∂s
A(h(t), h(t)) ≤ l2

∂

∂s
h(t),

hence

l1h(t) ≼ A(h(t), h(t)) ≼ l2h(t),

Thus A(h, h) ∈ P1h .
Also

B(h(t), h(t)) =

∫ 1

0

G(t, ξ)g(ξ, ξκ−1, 0)dξ

≤ tκ−1

(1− ζ2)Γ(κ)

∫ 1

0

(1− ξ)κ−1g(ξ, 1, 0)dξ,

B(h(t), h(t)) =

∫ 1

0

G(t, ξ)g(ξ, ξκ−1, 0)dξ

≥ ζ1t
κ−1

(1− ζ2)Γ(κ)

∫ 1

0

ξ(1− ξ)κ−1g(ξ, 0, 1)dξ.

We can easily get B(h, h) ∈ P1h , from g(t, 0, 1) ̸≡ 0 and similarly to operator A.
That is, condition (i) of Theorem 1 holds.

Further, we prove that condition (ii) of Theorem 1 is also satisfied.
For (u, u) ∈ P1 × P1, by (H3),

A(u(t), u(t)) =

∫ 1

0

G(t, ξ)f(ξ, u(s, ξ),
∂

∂s
v(s, ξ))dξ

≥ δ0

∫ 1

0

G(t, ξ)g(ξ, u(s, ξ),
∂

∂s
v(s, ξ))dξ

= δ0B(u(t), u(t))
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and
∂

∂s
A(u(t), u(t)) ≥ δ0

∂

∂s
B(u(t), u(t)).

Hence we get A(u, u) ≽ δ0B(u, u).
Finally, from Theorem 1 we know that A(u, u)+B(u, u) = u has a unique solution

u∗ ∈ P1; for u0 ∈ P1h , construct un = A(un−1, un−1) +B(un−1, un−1), n = 1, 2, . . ..
We have un → u∗. That is, problem (2) has a unique positive solution u∗ ∈ P1h for
the sequence

un+1(s, t) =

∫ 1

0

G(t, ξ)[f(ξ, un(s, ξ),
∂

∂s
un(s, ξ))

+ g(ξ, un(s, ξ),
∂

∂s
un(s, ξ))]dξ, n = 0, 1, 2, . . . .

We have un(s, t) → u∗(s, t).

Corollary 1. Assume (Φ) and

(H1) Let f : [0, 1] × [0,∞) × [0,∞) → [0,∞) be a continuous and increasing with
respect to the second argument, but also decreasing with respect to the third
argument. f(t, 0, 1) ̸≡ 0;

(H2) there exists a constant γ ∈ (0, 1) such that f(t, λz, 1
λw) ≥ λγf(t, z, w) for all

t ∈ [0, 1], λ ∈ (0, 1), z, w ∈ [0,∞);

(H3) y(s, t) ≤ y′(s, t) implies that ∂
∂sy(s, t) ≤

∂
∂sy

′(s, t).

Then

Dκ
t u(s, t) + f(t, u(s, t),

∂

∂s
u(s, t)) = 0, 2 < κ ≤ 3,

0 < s, t < 1, u(s, 0) =
∂

∂t
u(s, 0) = 0, u(s, 1) =

∫ 1

0

φ(s, ξ)u(s, ξ)dξ,

has a unique positive solution u∗ in P1h , where h(t) = tκ−1, t ∈ [0, 1]. For u0 ∈ P1h ,
construct

un+1(s, t) =

∫ 1

0

G(t, ξ)f(ξ, un(s, ξ),
∂

∂s
un(s, ξ))dξ n = 0, 1, 2, . . . .

We have un(s, t) → u∗(s, t) as n → ∞, where G(t, ξ) is given as (5).

Example 1. Consider the problem

D2.3
t u(s, t) + (

u(s, t)
∂
∂su(s, t)

)
1
2 +

√
u(s, t)√

u(s, t) +
√

∂
∂su(s, t)

et + a = 0, (8)

0 < s <
1

2
, 0 < t < 1,

u(s, 0) =
∂

∂t
u(s, 0) = 0, u(s, 1) =

∫ 1

0

φ(s, ξ)u(s, ξ)dξ,
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where a > 0 is a constant.
Here, φ(s, t) = (t+s)2. Then φ : [0, 1]×[0, 1] → [0,∞) with φ ∈ L1([0, 1]×[0, 1]),

ζ1 =

∫ 1

0

ξ1.3(1− ξ)(ξ + s)2dξ > 0 and ζ2 =

∫ 1

0

ξκ−1(ξ + s)2dξ < 1.

Suppose also

u(s, t) ≤ u′(s, t) implies that
∂

∂s
u(s, t) ≤ ∂

∂s
u′(s, t).

Take 0 < b < a and f, g : [0, 1]× (0,∞)× (0,∞) → [0,∞) defined by:

f(t, z, w) = (
z

w
)

1
2 + b, g(t, z, w) =

√
z√

z +
√
w
et + a− b, γ =

1

2
.

f and g are increasing with respect to the second argument, but also decreasing
with respect to the third argument, g(t, 0, 1) = a − b > 0 for λ ∈ (0, 1), t ∈ (0, 1),
z, w ∈ (0,∞) and

g(t, λz,
1

λ
w) ≥ λg(t, z, w),

f(t, λz,
1

λ
w) ≥ λf(t, z, w).

Moreover, for δ0 ∈ (0, b
e+a−b ),

f(t, z, w) = (
z

w
)

1
2 + b ≥ b =

b

e+ a− b
.(e+ a− b)

≥ δ0(

√
z√

z +
√
w
et + a− b) = δ0g(t, z, w).

By Theorem 3, problem (8) has a unique positive solution in P1h , where

h(s, t) = (t+ s)1.3, 0 < s <
1

2
and 0 < t < 1.
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