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Soft nanotechnology: the potential of polyelectrolyte 
multilayers against E. coli adhesion to surfaces
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Preventing bacterial attachment to surfaces is the most efficient approach to controlling biofilm proliferation. The aim of 
this study was to compare anti-adhesion potentials of 5 and 50 mmol/L polyelectrolyte multilayers of 
poly(allylamine hydrochloride)/poly(sodium 4–styrenesulfonate), poly(4-vinyl-N-ethylpyridinium bromide)/
poly(sodium 4–styrenesulfonate), and poly(4-vinyl-N-isobutylpyridinium bromide)/poly(sodium 4–styrenesulfonate) 
against Escherichia coli. Glass surface was covered with five polyelectrolyte layers and exposed to bacterial suspensions. 
Poly(4-vinyl-N-ethylpyridinium bromide)/poly(sodium 4–styrenesulfonate) was the most effective against bacterial 
adhesion, having reduced it by 60 %, followed by poly(4-vinyl-N-isobutylpyridinium bromide)/poly(sodium 4–
styrenesulfonate) (47 %), and poly(allylamine hydrochloride)/poly(sodium 4–styrenesulfonate) (38 %). Polyelectrolyte 
multilayers with quaternary amine groups have a significant anti-adhesion potential and could find their place in coatings 
for food, pharmaceutical, and medical industry.
KEY WORDS: bacterial adhesion; poly(allylamine hydrochloride)/poly(sodium 4–styrenesulfonate); poly(4-vinyl-N-
ethylpyridinium bromide)/poly(sodium 4–styrenesulfonate); poly(4-vinyl-N-isobutylpyridinium bromide)/poly(sodium 4–
styrenesulfonate)surface hygiene

Bacterial attachment to surfaces and proliferation under 
favourable conditions can lead to biofilm growth, lower 
product quality, a failed industrial process, and eventually 
adverse health issues (1). This bacterial surface attachment 
depends on several factors, including bacterial cell 
properties (surface charge, flagella, and extracellular 
polymeric substances), surface properties (roughness, 
surface charge, and chemical composition), and 
environmental conditions (nutrient, temperature, pH, and 
the presence of antimicrobial substances) (2). During the 
initial stage of cell adhesion, bacterial cells interact with 
substrate surface chemically and physically. Interactions 
typically contributing to bacterial adhesion are electrostatic, 
van der Waals, and hydrophobic or hydrophilic (3).

The most effective approach to bacterial management 
is to prevent cell adhesion rather than to treat it. Some have 
tried to accomplish this with antimicrobial coating and 
others by modifying surface properties (4). The anti-
adhesive effect can be achieved by inhibiting close contact 
between the cell and the surface with hydrophilic polymer-
based polyelectrolyte multilayers (PEMs) or by stiffening 
the surface so that the cells cannot attach (5).

The last decade saw a remarkable progress with PEMs 
(6–9), which have good antibacterial properties but are not 
toxic to eukaryotes, humans included. Another appealing 
advantage of PEMs is that their layered structures can be 

tuned with nanoscale precision to obtain desired surface 
properties (9). PEMs owe their antibacterial effects to 
hydrophobicity and charge interaction, which destabilises 
and disrupts bacterial cells (10–15).

The aim of this study was to compare the anti-adhesion 
potential of newly synthesised poly(4-vinyl-N-
ethylpyridinium bromide) (PVP-ethyl Br) and poly(4-vinyl-
N-isobutylpyridinium bromide) (PVP-isobutyl Br) with a 
well-established poly(allylamine hydrochloride) (PAH) of 
earlier generation to identify the most efficient against 
bacterial adhesion.

MATERIALS AND METHODS

Bacterial strain

Standard strains of Escherichia coli ATCC 35218 were 
obtained from the Czech Collection of Microorganisms 
(Brno, Czech Republic). E. coli is often used as a model 
organism and indicator of faecal contamination and is, 
therefore, included in hygiene assessment (16).

PEM preparation and characterisation

PAH (Mw=15000 g/mol, Sigma-Aldrich, St. Louis, MO, 
USA), (PVP-ethyl Br), and (PVP-isobutyl Br) were used 
as polycations, and poly(sodium 4–styrenesulfonate) (PSS; 
Mw=70000 g/mol, Sigma-Aldrich, USA) was used as 
polyanion. PVP-ethyl Br and PVP-isobutyl Br were 
prepared with the nucleophilic substitution of alkyl bromide 
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on poly(4-vinylpyridine) (Mw≈60000 g/mol, Sigma-Aldrich) 
as described below.

PVP-ethyl Br was prepared using a modified procedure 
described by Okubo and Ise (17); 2.08 g of poly(4-
vinylpyridine) were dissolved in 20 mL of nitromethane 
and added 30 mL of ethyl bromide with vigorous stirring. 
The mixture was heated to 45 °C and stirred overnight. The 
obtained precipitate was filtered, dried, and ground in a 
mortar. The obtained powder was solved in the filtrate, and 
10 mL of ethyl bromide added. After another 24 h of heating 
at 45 °C, the volatiles were evaporated. The residue was 
dissolved in 40 mL of ethanol and added to 250 mL of 
dioxane. The precipitated product was filtered and dried 
under vacuum, yielding 3.73 g of polymer.

PVP-isobutyl Br was prepared by dissolving 3.00 g of 
poly(4-vinylpyridine) in 60 mL of nitromethane, and 40 mL 
of isobutyl bromide was added with vigorous stirring. The 
mixture was heated to 60 °C and stirred for seven days. 
During the first 24 h, the product was separated as oil. 
Volatiles evaporated after seven days, and the obtained 
residue was dissolved in 100 mL of ethanol. The 
precipitation of the product was induced by abrupt addition 
of ether (300 mL). The product was filtered, washed with 
ether, and dried under vacuum, yielding 4.30 g.

Polycation monomer functionalisation degrees (f) of 
PVP-ethyl Br and PVP-isobutyl Br were determined with 
potentiometric titration, either with a standardised solution 
of sodium hydroxide or with an AgNO3 solution of known 
concentration. The monomer functionalisation degree of 
PSS was determined spectrophotometrically. The molar 
absorption coefficient of PSS(aq) in 5 % KCl(aq) by weight 

(e=420 L/cm/mol at 261.5 nm) used for this purpose was 
taken from literature (18). The following values were 
obtained: f (PAH)=0.89, f (PVP-ethyl)=0.91, f (PVP-
isobutyl)=0.57, and f (PSS)=0.83.

Multilayer preparation

Stock solutions (100 mmol/L) of polyelectrolytes were 
prepared by dissolving appropriate amounts of solid 
polyelectrolyte in miliQ water and then diluting it to 
5 mmol/L or 50 mmol/L solutions. Borosilicate glass (1 mm 
thick, Isolab, Eschau, Germany) was cut in 1×1 cm squares, 
cleaned with ethanol and miliQ water, and then autoclaved 
before use. The glass was then coated with PEMs using a 
layer-by-layer method that is highly versatile for surface 
modification. It involves dip coating to deposit 
complementary molecules on the surface (14). First, the 
glass surface was soaked in ≈50 mL of polycation solution 
(PAH or PVP-ethyl Br or PVP-isobutyl Br) for five minutes 
and then rinsed with water. After that, it was soaked in PSS 
for another five minutes and rinsed with water. These two 
steps were repeated until five layers were deposited, and 
the polycation was the top layer (Figure 1).

Monitoring bacterial adhesion on PEMs

E.coli from the collection were transferred to nutrient 
agar and incubated at 37 °C for 24 h. After that, a single 
colony was transferred to nutrient broth (Biolife, Milan, 
Italy) and incubated in the same conditions. Adhesion was 
tested with a modified method described by Bohinc et al. 
(19). Overnight E. coli culture was diluted with fresh 
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Figure 1 Sample coating and anti-adhesion assessment
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nutrient broth in a 1:300 ratio, and the newly inoculated 
medium poured over the PEM-coated glass samples. 
Control samples were those not coated with PEMs. The 
samples were incubated at 37 °C for 1 h to achieve 
irreversible bacterial adhesion (20). After incubation, the 
medium was removed. Loose cells were then removed with 
phosphate-buffered saline (PBS) (0.026 g KH2PO4, 0.047 g 
K2HPO4 in 1 L) and the remaining attached bacteria stained 
with 0.1 % crystal violet (Merck, Darmstadt, Germany) 
suspension for five minutes. The dye was removed and the 
cells counted with a Olympus CX40 light microscope ( 
400x magnification) with a CCD CMOS camera (Olympus, 
Tokyo, Japan). Each counting was done in triplicate and 
cell counts expressed as log number of cells per square 
millimetre (Figure 2).

Statistical analysis

Average bacterial counts (of 15 samples per PEMs or 
control) were compared on R software version 3.1.3 (Bell 
Laboratories, New Jersey, NJ, USA) with the paired 
Student’s t-test between control and PEM-coated surfaces. 
Differences were considered significant at p<0.05.

RESULTS AND DISCUSSION

Surfaces coated with PAH/PSS PEMs showed 
significantly lower bacterial counts than uncoated control 
glass surfaces (p<0.05). Moreover, bacterial counts 
decreased with higher polyelectrolyte concentrations 
(50 mmol/L). The best anti-adherent effect was achieved 
with PVP-ethyl Br/PSS at 50 mmol/L, which reduced 
bacterial adhesion up to 60 %, followed by PVP-isobutyl 
Br/PSS (38.4 %), and PAH/PSS (38.1 %) (Table 1).

Light microscopy confirmed significant reduction in E. 
coli adhesion for all PEMs, which again was especially 
pronounced for PVP-ethyl Br/PSS (Figure 2).

As expected, our findings have confirmed anti-adhesion 
properties of polyanion top layers in PEMs (22–25). 
Kovačić et al. (23), in fact, reported that only 20 % of 
Pseudomonas aeruginosa stuck to the surface. Similar 80 % 
reduction was reported for E. coli by Richet et al. (25) for 
chitosan/hyaluronan PEMs.

Our study has also demonstrated the efficacy of 
polycation top layer against bacterial adhesion. Guo et al. 
(8) reported that polycations with quaternary ammonium 
groups have sufficient charge density on flexible backbones 
to prevent adhesion. The interaction between positively 
charged molecules and negatively charged cell membranes 
can cause leakage of intracellular constituents and, 
consequently, cell detachment.

Besides concentration, the structure of polyelectrolytes 
seems to have a significant role in antibacterial properties 
of PEMs. We observed that polycations with quaternary 
amine groups (PVP-ethyl and PVP-isobutyl) had greater 
anti-adhesive potential than polycations with primary amine 
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groups (PAH). This may be related to different charge 
density of the polyion, which in PAH depends on pH. 
Furthermore, some steric factors and hydrophobicity of the 
monomers could have influenced the observed behaviour 
of PEMs. It is expected that polyelectrolytes with longer 
and more hydrophobic side chains would have stronger 
anti-adhesion properties (13).

However, the development of anti-microbial coatings 
should rely on the safe-by-design concept. This includes 
precautionary measures and tools to identify uncertainties 
and potential risks at the earliest feasible stage of 
development. Understanding antimicrobial toxicity of 
applied coatings or their production and surface application 
and durability is needed to assure safety. For example, the 
same antimicrobial coating if applied inappropriately may 
on different surfaces lead to a release of biocides due to 
incomplete chemical binding (26).

Science is facing new challenges in creating surfaces 
that would allow systematic management of the attachment 
of living cells. PEMs provide numerous coating opportunities 
that can be used to control bacterial attachment. Our study 
has demonstrated that the selection of proper PEM and 
proper layering and concentration can optimise anti-
adhesive efficiency. In this respect, the best result (60 % 
reduction) was achieved with top-layer polycations with 
quaternary amine groups. This may encourage synthesising 
and evaluating new polyelectrolytes for better anti-adhesion 
coatings. At the same time, future research should assess 
potential toxic effects of PEMs.
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Mehka nanotehnologija: Anti-adhezivni potencial polielektrolitskih premazov proti adheziji E. coli na površine

Preprečevanje adhezije bakterij na površine je najbolj učinkovit način obvladovanja rasti biofilmov. Namen te raziskave 
je bil analizirati anti-adhezivni potencial 5 in 50 mmol/L polielektrolitskih plasti poli(alilamin hidroklorid)/poli(natrijev 
4-stirensulfonat), poli(4-vinil-N-etilpiridin bromid/ poli(natrijev 4-stirensulfonat) in poli(4-vinil-N-izobutilpiridin bromid/ 
poli(natrijev 4-stirensulfonat) na bakterijo E. coli. Pet zaporednih plasti polielektrolitov je bilo sestavljenih na steklenih 
površinah in izpostavljenih bakterijski suspenziji. Rezultati kažejo, da 50 mmol/L poli(4-vinil-N-etilpiridin bromid/ 
poli(natrijev 4-stirensulfonat) najbolj učinkovito prepreči adhezijo bakterij 0,4 log bakt./mm2 (60 %), sledi mu poli(4-
vinil-N-izobutilpiridin bromid/ poli(natrijev 4-stirensulfonat) 0,3 log bakt. mm-2 (47 %) in poli(alilamin hidroklorid)/ 
poli(natrijev 4-stirensulfonat) 0,2 log bakt. mm-2 (38 %). Ta raziskava dokazuje, da polieletrolitske plasti z kvartarne 
amino skupinami igrajo pomembno vlogo pri preprečevanju adhezije bakterij in zato predstavljajo pomembno uporabo 
v živilski in farmacevtski industriji ter v medicini.

KLJUČNE BESEDE: anti-adhezivni potencial; bakterijska adhezija; E. coli; higiena površin; polielektrolitske plasti


