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 Electroencephalography (EEG) is well known 
method of recording electrical brain activity with 
electrodes placed along the scalp. One of the 
challenging tasks in this field is the removal of 
electrical signals that are not related to brain 
activity. 
In this paper, an algorithm for the removal of the 
EEG signals corresponding to the eye blink 
artifacts is presented. The presented algorithm is 
based on ADJUST artifact removing tool, which 
uses independent component analysis (ICA) for 
signal decomposition. For every signal component 
returned by the ICA algorithm, temporal-spatial 
features are calculated, upon which every 
independent component is classified as artifact or 
non-artifact, and removed accordingly. 
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1 Introduction 

Electroencephalography (EEG) is well known 
technique for acquiring electrical brain activity data 
[1]. Thanks to its temporal resolution and everyday 
declining cost of the EEG acquisition systems (in 
comparison to other brain activity acquisition 
systems like Magnetoencephalography (MEG)), the 
EEG is most widely distributed method of 
measuring human brain functionality.  
Despite all of the virtues that EEG system poses, 
one of the main challenges in EEG acquisition 
processing is artifact removal. Physiological artifact 
activity like eye or neck movement, could 
potentially lead to extreme amplitude jumps that are 
5-10 times greater than the normal brain activity 
measured by the EEG acquisition system. Such 
amplitude disturbances in the signal can obscure 
electrical brain activity of interest, leaving us with 
the challenging task of neurological and 

physiological activity separation. Other type of 
artifacts are of a non-biological nature and are 
mainly caused by the electrode high-impedance or 
the electric device interferences. 
Over the last decades numerus methods of non-
neurological removal in the acquired EEG signal 
have been developed. One of the simplest methods 
is the threshold method, in which the samples with 
amplitudes greater than the threshold value are 
simply removed from the signal. Although this 
method is very simple and fast, the significant 
amount of information is lost in the remaining EEG 
signal. For the EEG signals that are decomposed 
into epochs, a simple averaging method over epochs 
can be used. However, this procedure is limited with 
the number of available averaging epochs and the 
artifact frequency. 
Some advanced methods of the EEG artifact 
removal consist of modelling the eye blink or the 
ocular movement, and removing them from the 
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original EEG signal. For this purpose, additional 
electrooculogram (EOG) channel is placed around 
eyes measuring the electrical activity of the eye 
muscles [2]–[4]. This signal combined with the 
propagation model of the artifact signal, can elicit a 
propagated artifact signal that can be easily 
subtracted from the artifact-corrupted EEG signal.  
Most recent efforts in the field of artifact removal 
algorithms, involve independent component analysis 
(ICA) tool; a statistical tool which decomposes a 
multidimensional signal into the maximally 
independent components (IC) originating from 
independent signal sources [5], [6]. Because of its 
statistical approach and assumptions (eg. linear 
mixing of ICs) a prefect signal decomposition is not 
always possible. Nevertheless, the EEG signals can 
be successfully decomposed with the ICA into 
independent components (IC) related to the various 
artifacts, which can then be subtracted from the 
original EEG signal.  
In this paper we propose an algorithm for the eye 
blink artifact removal based on the Automatic EEG 
artifact Detection based on Joint Use of Spatial and 
Temporal features (ADJUST) tool. Compared to the 
ADJUST, the proposed algorithm involves extra 
steps, including eye blink artifact detection and 
decomposition of the EEG signal into the signal 
epochs containing artifact and nearby clean brain 
activity samples. The extracted epochs are then 
decomposed with the ICA into ICs which have been 
classified into artifact and non-artifact classes, based 
on their spatial-temporal features. Guided with the 
ICA limitations stated before, the iterative ICA, the 
spatial-temporal features calculation and the IC 
classification process is implemented in the 
proposed algorithm, ensuring better artifact 
rejection. 
 
2 The acquisition system of the EEG 

signals and experiment design 
 
Datasets used for the development and analysis of 
the proposed artifacts removing algorithm, have 
been collected from the candidates participating in a 
typical auditory event-related potential paradigm. 
The experiment is designed in OpenVibe [7] and 
consists of six different words that are randomly 
played on the speaker. One of the events represents 
the target event, while the other events are labelled 
as non-targets. For the purpose of this paper, the 
candidates have not just focused on the played 

words, but were also asked to make an eye blink 
whenever they hear the target event.   
The EEG measurements have been collected with 2 
different EEG data acquisition systems the Emotiv 
Epoc+ and the Brain Products V-Amp. The Emotiv 
Epoc+ [8] is an accessible and cheap EEG 
acquisition system, with 14 EEG signal electrodes, 
one reference, one ground electrode (Fig. 1), and 
maximal sampling frequency of 128 Hz. V-Amp [9] 
on the other hand is high-quality device for the EEG 
acquisition, with 16 EEG electrodes, one reference, 
one ground electrode, 24-bit AD converter, and 512 
Hz sampling frequency. The main advantage of the 
V-Amp system over the Emotiv Epoc+ system, 
beside the technical specifications, is the ability of 
setting custom electrode configuration (Fig. 2). 
 

 
 

Figure 1. The position of the electrodes in the 
Emotiv Epoc+ EEG [8] acquisition 
systems. Used signal electrodes have 
been marked with green color 
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Figure 2. The position of the electrodes in the V-

Amp 16 EEG acquisition systems. Used 
electrodes have been marked with green 
color 

 
3 The ADJUST algorithm 
 
The ADJUST [10] is a plugin tool for EEGLAB 
software [11] and is used for the removal of EEG 
artifacts from the EEG datasets. The main advantage 
of the ADJUST algorithm is the ability to 
automatically decompose a set of multidimensional 
EEG signals into ICs, classifying them as artifacts 
and non-artifacts and removing artifact related ICs 
without any user intervention or supervision. The 
ADJUST algorithm can distinguish 4 different EEG 
artifacts corresponding to the: eye blink (EB), 
vertical eye movement (VEM), horizontal eye 
movement (HEM) and generic discontinuities (GD), 
related to the problems with a EEG data acquisition 
system. 
As stated in the introduction, only removal of the 
eye blink artifacts will be a subject of this research. 
Fig 3. shows a block diagram of the new enhanced 
algorithm for the removal of eye blink artifacts 
based on the ADJUST algorithm. Blocks marked 
with the green color are original ADJUST functions 
for the decomposition, temporal and spatial feature 
calculation and classification, which have been 
explained in continuation of this section. 
 
3.1 The independent component analysis 
 
The ICA algorithm is a statistical method for 
decomposition of the observed multidimensional 

random vector into components which are 
statistically as independent from each other as 
possible. For our particular problem, the ICA 
algorithm will decompose N-dimensional EEG 
signal into N ICs, which are product of the N 
independent brain activity sources [5], [6]. Beside 
the ICs, a mixing matrix A is returned satisfying the 
following equation: 
 

ICAEEG ∗=  (1) 
 
where EEG is measured N-dimensional EEG signal, 
and IC is N-dimensional vector of brain source 
independent components. 
Applying the principal component analysis (PCA) 
on data before execution of the ICA algorithm, the 
number of desired ICs is reduced, simplifying the 
component extraction process. 
 
3.2 Spatial and temporal classification features 
 
For discrimination between the eye blink artifacts 
and the non-artifact, ICs spatial and temporal 
features of independent components are calculated 
based on the ICA outputs. 
 
3.2.1 Spatial average difference 
 
By their nature, the eye blink arifacts induce a high 
voltage jumps in frontal area of the brain. Thus in 
order to distinguish artifacts from non-artifact a 
measure is introduced, which emphasizes amplitude 
jumps of EEG signal in the frontal areas, and 
supressing the jumps on electrodes covering the 
posteriori region of the brain. Accordingly, the 
spatial average difference (SAD) calculated for each 
IC is defined as following [10]: 
 

)()( PAFA AavgAavgSAD −=  (2) 
 
where AFA and APA represents the vectors of 
normalized ICA mixing matrix weights of frontal 
and posteriori electrodes, respectively and avg 
denotes the averaging function. This feature is 
calculated for every IC. 
Similar to the SAD, one more control variable 
called Spatial Variance Difference (SVD) is 
introduced and defined as following [10]: 
 

( ) ( )PAFA AASVD varvar −=  (3) 
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where var denotes a variance function. Because of 
the high amplitude oscillations and spatial 
distribution of the eye blinking artifacts, the 
variance of signals measured in frontal area should 
be larger than the variance of posteriori EEG 
signals, resulting in a positive SVD for the ICs 
originating from eye blink artifacts. This control 
variable is useful in situations where the mixing 
matrix weights across the posteriori electrodes have 
positive and negative values, leading to a very low 
average value of the posteriori mixing matrix 
weights. This could potentially lead to a false 
positive classification of ICs as the eye blinking 
artifact parts. 
 
3.2.2 Temporal kurtosis 
 
Kurtosis is widely used statistical method, based on 
the high-order statistics, which is very sensitive to 
outliers of the amplitude distribution, and is 
calculated as [10]: 
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where E stands for the expected value, X is a signal 
vector, and µ and σ are mean value and standard 
deviation of vector X, respectively.  
Combining the kurtosis with the property of high 
amplitude nature of the EEG artifact signal, it is 
reasonable assumption that the eye blinking artifacts 
are very well captured by this measure. 
Thus, combining the kurtosis with the SAD feature 
will achieve better IC classification as artifacts and 
non-artifacts. 
 
3.3 Features classification 
 
The Expected-Maximisation algorithm [12] has 
been used in order to classify the ICs as artifacts and 
non-artifacts, based on the previously discussed 
temporal-spatial measures.  
This algorithm takes the calculated features and 
separates them into two classes Ca and Cna, where Ca 
and Cna are the IC classes associated with artifacts 
and the brain activity sources, respectively. The 
separation is performed, by simply calculating the 
median value: 
 

2
)min()max( CCM +

=  (5) 

of whole feature space and classifying the feature 
values smaller than M into Cna class while the values 
larger than M into Ca class.  
The created classes Ca and Cna have been used for 
calculation of two Gauss distributions, which 
intersection gives a threshold value for artifact and 
non-artifact feature separation. This procedure is 
then iterated until the difference between the 
calculated threshold values from the two 
consecutive steps is lower than the user pre-defined 
value. At every iteration of the Expected-
Maximisation algorithm, the Gauss distribution 
statistics is updated by maximizing the log-
likelihood measure. 
By applying this method on the SAD measure and 
kurtosis we obtain two threshold values. The final 
classification of the ICs as artifacts is preformed if 
the component satisfies both threshold conditions. 
 
4 Enhanced artifact removing algorithm 
 
In order to get better removal of eye blink artifacts, 
some extra steps have been introduced around the 
ADJUST algorithm core and some existing ones 
have been modified (Fig. 3). The main reason 
behind the insufficient elimination of the artifacts 
can be interpreted by the ICA algorithm limitations 
and assumptions. For this reasons the extra steps in 
the proposed algorithm have been primarily focused 
on two goals: 
 

• lowering the number of EEG samples that 
are subjected to the ICs analysis and signal 
processing methods; 

• quality measure calculation of eye blink 
artifact removal algorithm for every 
detected eye-blink artifact. 

4.1 The EEG data preprocessing 
 
Before application of the artifact removing 
algorithm on the recorded datasets, datasets have 
been pre-processed. Firstly, datasets have been 
visually inspected and the corrupted parts of the 
signals have been removed. Secondly, DC 
component (mean value) of every channel has been 
computed and removed from the clean EEG signals.  
Thirdly, the EEG measurements have been filtered 
with the 16th order FIR bandpass filter with cut-off 
frequencies of 0.5 Hz and 40 Hz. In doing so, better 
linear signal decomposition results have been 
reported [13].  For this purpose, MATLAB filtfilt 
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function has been used, resulting in the filtered 
signal without the phase shift.  
 
4.2 Eye blink artifact detection method 
 
Eye blinking artifacts are one of the worst 
disturbances in the EEG signals, which are 

characterized by the abrupt amplitude jumps on the 
frontal electrodes of the EEG acquisition system, 
but can also lead to the amplitude jumps on all 
electrodes depending on the reference electrode 
position.

 

 
 
Figure 3. The block diagram of the proposed eye blink artifact removing algorithm 
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For rough detection of the blinking artifact 
locations, the simple peak detection method with 
threshold has been used. Depending on the 
acquisition system and the reference/ground 
electrode positions the peak detection has been 
applied on different electrodes. For the Emotiv 
Epoc+, four EEG signals from frontal electrodes 
(AF3, F3, AF4 and F4) have been summed up, 
enhancing the artifact to clean EEG signal ratio.  
Because of the differences between the reference 
electrode positions in the V-Amp 16 and Emotiv 
Epoc+ acquisition systems as shown in Fig. 1 and 
Fig. 2, strong eye blink artifacts have been observed 
on all signal electrodes of the V-Amp system. With 
the same idea of enhancing artifact to clean EEG 
ratio in mind, signal from all electrodes of the V-
Amp acquisition system have been summed up. By 
applying the peak detection algorithm on the 
summed signals, the positions of eye blink artifact 
peaks have been located. This sample values have 
been used, as a starting points for the signal 
epoching and the artifact removing process. 
 
4.3 The EEG dataset epoching 
 
The previously calculated sample markers have 
been used for extraction/epoching of the EEG signal 
parts affected by the eye blink artifacts. The idea 
behind epoching procedure is that the ICA 
algorithm is only executed over the epochs, 
containing the eye blink artifacts. 
One of the most important conditions for the 
successful ICA is having enough data for IC 
extraction. Some empirical guidelines define the 
minimum number of samples for the successful and 
argumentative ICA as 20-30 times number of 
desired IC [14]. 
Following the mentioned guideline, we have 
developed a simple epoching algorithm, that is 
creating epochs of the same length around detected 
artifacts. The algorithm is trying to enclose one or 
more artifacts, depending on their sample distance. 
After the initial windows have been set, the 
algorithm will consecutively shift all epochs left and 
right until there is no more overlapping between the 
neighbouring epochs. Epochs shifting is a restrained 
action, which can potentially lead to ejection of the 
artifacts from the defined epoch. Following this 
restrain, epochs shifting is possible only under 
condition that all of the artifacts enclosed by the 
epoch initialization stay in the same epoch after a 
successful shift.  

However, it is not always possible to surround the 
artifacts with the selected epoch length without 
overlapping between neighbouring epochs, therefore 
in those situations the epoch length is reduced by 
the adjustable number of samples and the process is 
repeated until the algorithm has managed to set the 
epochs without the overlapping. Example of the 
EEG signal with the correctly calculated epochs is 
shown in Fig. 4. 
 

 
Figure 4. The EEG data for the Fp1 electrode (blue 

signal) and final artifact epoch positions 
(red signal) after the completion of 
artifact epoching algorithm. All artifacts 
are surrounded by their corresponding 
epoch without any overlapping 

 
4.4 Independent component extraction and 

feature calculation 
 
After the EEG pre-processing and epoching, the 
algorithm steps for the IC extraction, the spatial-
temporal feature calculation, and classification of 
the extracted ICs are analog to the ADJUST 
algorithm. 
Two steps of the ADJUST algorithm have been 
modified, and are discussed down below. 
 
4.4.1 Electrode selection for spatial and 

temporal features 
 
Applying the channel selection guidelines 
introduced in the ADJUST algorithm [10], [15] on 
our EEG acquisition systems, the following 
electrodes/channels have been chosen to fill the 
frontal and posteriori channel vectors, respectively. 
For the Emotiv Epoc+ acquisition system we have 
selected the following frontal area (FA) and 
posteriori area (PA) electrodes: 
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FA = [AF3(Ch1), F3(Ch3), F4(Ch12), AF4(Ch14)], 
PA = [P7(Ch6), O1(Ch7), O2(Ch8), P8(Ch9)], 

 
while for the V-Amp 16 acquisition system, the 
following electrodes have been selected: 
 

FA = [Fp1(Ch1), Fp2(Ch2), F3(Ch3), Fz(Ch4), 
F4(Ch5)], 

PA = [P3(Ch11), Pz(Ch12), P4(Ch13), PO7(Ch14), 
Oz(Ch15), PO8(Ch16)]. 

 
For the selected electrode vectors, the spatial and 
temporal features and related threshold values have 
been calculated as explained in Section 3. 
 
4.4.2 The independent components analysis  
 
For our purposes the Fast ICA (FICA) algorithm 
[6], [16] has been used. The FICA algorithm is 
applied on all epochs with the PCA dimension 
reduction (typ. 12 ICs have been extracted per 
epoch). Default outputs of the FICA function are the 
mixing matrix A, the weight matrix W (inverse of 
the mixing matrix A) and the independent 
components IC. Mentioned values have been used 
for spatial and temporal feature calculation 
associated with the eye blink artifacts.  
In addition to those 3 default outputs, the 4th output 
has been added and defined as a convergence 
success indicator. This indicator indicates that the 
FICA convergence has not been successful and that 
the given FICA results are not correct. The FICA 
algorithm will be repeated until the successful 
convergence or the maximum allowed number of 
iterations. In every new iteration, a new initial value 
of the mixing matrix A for FICA algorithm will be 
generated. If the maximal number of FICA attempts 
has been reached, without successful IC extraction, 
the affected epochs are marked and skipped by the 
artifact removing algorithm. 

4.5 Artifact removal and success indicator 
calculation 

 
With the calculated feature threshold values, all of 
the ICs can be classified as artifacts if both features 
are larger than the respective threshold value, and as 
non-artifact otherwise.  
The ICs which are classified as artifact are then 
removed from the EEG signal. In order to avoid 
sharp edges in processed signal, caused by the 
removal of the artifact related ICs, low-pass filter 
has been applied to the EEG signal. 
After removal of the artifact related ICs from the 
EEG signal, for every epoch and every artifact, the 
artifact removal success indicator has been 
calculated. This indicator is used for the detection of 
the artifact areas that have not been properly 
processed, and further iterations are necessary to 
ensure a valid result. As mentioned before, the 
artifact epochs contain one or more artifacts, which 
are surrounded by their respective markers. All 
other samples in that epoch can be interpreted as the 
“clean” EEG signal, as shown in Fig 5. First step of 
the indicator calculation is to take clean parts of the 
EEG signal in the associated epoch and calculate the 
mean value and variance.  
The calculated variance of the signal represents the 
energy distribution of the “clean” EEG signal parts. 
The calculated mean value is then used for the 
variance calculation on the samples which are 
bounded within artifact markers. The calculated 
variance can be interpreted as the energy 
distribution of the corrected signal. It is a reasonable 
assumption that energy of the EEG signal 
containing artifacts (or artifact remains), is 
significantly higher than the “clean” EEG. This 
assumption combined with simple threshold logic, 
has been used as a measure for the inadequate 
artifact removal. 
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Figure 5. Illustration of the artifact epoch containing two artifacts. The green and red triangles represent the 

left and right artifact markers, respectively. The blue colored signal is associated with the “clean” 
EEG signal, where red colored signal is associated with the eye-blink artifacts. If the artifact 
removal algorithm has been successful, energy distributions of green signals should be similar to 
the signal distribution of the blue signal 

 
 

Figure 6. Fraction of the EEG signal after the artifact removal with the ADJUST (green line) and the 
proposed artifact removal algorithm (red line) on the Fp1, Fz, Cz and Pz electrodes. The blue line 
represents the original EEG signal corrupted with the eye blink artifacts 

 
 

4.6 Improving removal results 
 
If the “artifact” energy is significantly larger than 
the energy of the “clean” EEG signal, the associated 
epochs will be marked as “unsuccessfully cleaned” 
and the artifact removal algorithm will be repeated 
on that epoch. This includes a new execution of the 
FICA algorithm, calculation of new classification 
features, and the calculation of success indicator. 
The main reason behind the unsuccessful artifacts 
removal is most likely the ICA, caused by its 
statistical approach, simplifications and assumptions 
(eg. equal or less number of electrodes and active 

sources, linearity, etc.). In fact 50-70% of the 
returned ICs do not have a neurological 
interpretation [17]. 
For this reason, the unsuccessfully processed epochs 
are iteratively subjected to the removing algorithm 
until the necessary success indicator values are 
satisfied, or the maximum number of iterations has 
been reached. 
 
5 The results 
 
Validation of the proposed artifact removal 
algorithm has been conducted on 24 recordings, 
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recorded as explained in the Section 2. A ratio 
between the signal energies of clean EEG signal 
parts and the corrupted signal parts has been 
calculated in order to validate results for all trials on 
all electrodes. Furthermore, to get better view on 
performance of the proposed algorithm, the energy 
ratios have been compared with the energy ratios of 
the EEG recordings processed by the open-source 
EEGLAB plug-in artifact removal algorithms: 
Automatic Artifact Removal tool (AAR) [18], 
ADJUST, Multiple Artifact Rejection Algorithm 
(MARA) [19][20], Fully Automated Statistical 
Thresholding for EEG artifact Rejection (FASTER) 
[21]. Due to fact that the FASTER tool is a high 
density EEG artifact removal algorithm for the 
acquisition systems with more than 32 electrodes, 
no comparison between the algorithms has been 
conducted. 
Applying the MARA artifact removal algorithm on 
the EEG recordings, by removing all artifacts from 
the EEG signal, but at cost of removing almost all 
essential neurological parts. This is very pronounced 

on the frontal electrodes, as it can be seen from Fig. 
7. The reason for such performance is that the 
MARA classifier marked 15 out of possible 16 ICs, 
returned by the ICA algorithm, as artifacts. As 
reported in [19] the MARA algorithm has been 
validated on different EEG recordings with 
electrode sets that covered the entire scalp with the 
approximately equidistant electrode positioning. 
However, the performance of the MARA algorithm 
has not been analysed on the EEG acquisition 
systems with the reduced number of electrodes. 
From the presented results we can only conclude 
that the MARA algorithm performed extremely 
aggressive on the low-density EEG recordings, and 
thus, the MARA algorithm is not suitable for the 
EEG electrode configurations used in this paper. 
Improvement of the results can be achieved by the 
manual inspection and classification of the artifact 
related ICs. However, the proposed algorithm is 
fully automated, and thus, no further comparison 
between the MARA algorithm and proposed artifact 
removing algorithm has been conducted. 

 
Table 1. The artifact removal results with the proposed artifact removing algorithm (ARA), the ADJUST 

(ADJ) algorithm, and the AAR algorithm for 6 different recordings. For each recording and 
channel, energies of the clean EEG signal parts and the corrupted EEG signal parts have been 
calculated after the artifact removal, and shown in energy ratio form. Last column represents the 
grand-mean over all recordings 

 
Trial
nCh ARA ADJ AAR ARA ADJ AAR ARA ADJ AAR ARA ADJ AAR ARA ADJ AAR ARA ADJ AAR ARA ADJ AAR
Fp1 1,61 1,28 1,38 1,40 0,16 0,20 1,47 5,65 8,55 0,79 0,79 0,08 2,09 1,02 0,70 1,34 1,19 0,54 1,45 1,68 1,91
Fp2 1,55 1,12 1,14 1,06 0,14 0,11 1,56 4,18 4,06 0,57 0,70 0,06 1,72 1,04 0,48 1,10 1,20 0,50 1,26 1,40 1,06
F3 0,83 0,71 1,71 0,97 0,14 0,14 0,83 1,85 1,80 0,58 0,32 0,08 0,79 0,64 0,48 0,47 0,49 0,15 0,75 0,69 0,73
Fz 0,92 0,65 1,77 0,73 0,11 0,11 0,86 3,96 1,81 0,33 0,25 0,06 0,62 0,49 0,46 0,47 0,20 0,11 0,65 0,95 0,72
F4 0,83 0,83 1,64 0,75 0,12 0,12 0,71 3,43 1,59 0,21 0,31 0,10 0,57 0,50 0,32 0,42 0,76 0,49 0,58 0,99 0,71
T7 1,29 1,26 2,44 2,02 0,32 0,22 1,30 9,92 20,37 1,14 0,09 0,11 0,36 0,37 0,55 0,24 0,15 0,42 1,06 2,02 4,02
C3 0,77 0,51 2,46 0,21 0,15 0,12 0,68 0,66 5,58 0,36 0,16 0,15 0,39 0,43 1,15 0,26 0,26 0,30 0,45 0,36 1,63
Cz 0,72 0,48 1,72 0,85 0,10 0,13 0,71 3,56 0,77 0,24 0,10 0,08 0,44 0,51 0,54 0,31 0,22 0,36 0,54 0,83 0,60
C4 0,61 0,48 1,50 0,48 0,08 0,09 0,54 4,08 0,99 0,16 0,09 0,08 0,32 0,56 0,37 0,20 0,16 0,23 0,38 0,91 0,54
T8 0,47 0,32 1,20 0,10 0,04 0,04 0,38 0,61 4,38 0,33 0,06 0,03 0,15 0,24 0,15 0,12 0,15 0,19 0,26 0,24 1,00
P3 2,45 4,14 4,92 0,45 0,14 0,11 0,62 1,37 7,55 0,25 0,08 0,12 0,36 0,37 0,50 0,30 0,23 0,31 0,74 1,05 2,25
Pz 0,68 0,38 1,67 0,96 0,09 0,23 0,64 1,62 0,79 0,22 0,07 0,08 0,37 0,78 0,37 0,25 0,27 0,33 0,52 0,53 0,58
P4 0,50 0,49 1,48 0,42 0,15 0,09 0,46 4,17 0,40 0,15 0,04 0,05 0,25 0,43 0,41 0,22 0,24 0,40 0,33 0,92 0,47
PO7 0,72 0,63 1,69 0,47 0,11 0,12 0,82 1,23 4,00 0,88 0,07 0,08 0,34 0,49 0,79 0,22 0,13 0,14 0,58 0,44 1,14
Oz 0,69 0,29 2,59 1,34 0,27 0,15 1,69 2,69 50,03 0,44 0,06 0,07 0,36 0,29 0,56 0,22 0,17 0,25 0,79 0,63 8,94
PO8 0,43 0,22 1,36 0,20 0,04 0,05 0,24 0,63 1,05 0,15 0,03 0,04 0,11 0,16 0,24 0,11 0,06 0,13 0,21 0,19 0,48

6 mean1 2 3 4 5
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Figure 7. Fraction of the EEG signal after the 

artifact removal with the MARA tool 
(red line) on Fp1, Cz and Pz 
electrodes, respectively. Blue lines 
represent the original corrupted EEG 
signals 

 

 
 
Figure 8. The energy ratio for all electrodes on 

all 24 recodings after the EEG data 
has been processed with the following 
artifact removing algorithms: ARA 
(blue bars), ADJUST (red bars), AAR 
(green bars). The dotted line represents 
ideal energy ratio after the artifact 
removal process 

 
Compared to the ADJUST artifact removing 
algorithm, the ability of proposed algorithm to repeat 
the artifact removal process on “unsuccessfully 
cleaned” epochs, provided better artifact removal 
results, as shown in Fig. 6. Table 1. shows the energy 
ratios between the clean and the corrupted EEG signal 
areas over all EEG channels for the proposed removal 
algorithm (ARA), and the EEGLAB plug-in artifact 
removal tools: ADJUST and AAR. For the ratio value 
equal to one, a reasonable assumption is that the 
artifact removal process has been ideal due to the fact 
that energies of the compared signal parts are equal. 
On the other hand, if ratio values are higher than one, 
the corrupted signal areas are over-filtered, or under-
filtered if the ratio values are lower than one.  
Figure 8. shows the energy ratio comparison between 
the proposed artifact removal algorithm and the 
EEGLAB plug-in artifact removal tools: ADJUST and 
AAR, respectively. As shown, the proposed algorithm 
has achieved better results on almost all electrodes of 
used acquisition system. For the T7, P3, PO7, Oz 
electrodes, the energy ratios differ considerably from 
the ideal energy ratio value. This can be interpreted as 
the inability of the ICA algorithm to decompose 
signals on the highlighted electrodes into the ICs 
which can be classified as artifacts. In order to fully 
understand how the epoch length, different ICA 
algorithms and different classification methods can be 
optimised for achieving better artifact removing 
results, signals from those electrodes will be a focus 
point of our future research. 
 
6  Conclusion 
 
In this paper we have proposed the artifact removal 
algorithm based on the ADJUST algorithm. In order to 
get better artifact removal results we have modified 
the original algorithm by adding extra processing 
steps. The proposed algorithm can achieve better 
results through energy difference inspection between 
the “clean” and the processed signal parts and 
additional iterations of the artifact removal process on 
the artifact corrupted epochs, which have not satisfied 
the energy difference condition. In the experimental 
section we have shown that the proposed algorithm 
has achieved better results compared to the ADJUST 
algorithm on almost all electrodes. 
Moreover, the ability of the proposed artifact removal 
algorithm to place epochs around the artifact peaks 
and process only samples inside the corrupted epochs 
is one more advantage of this approach. By doing so, 
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all samples outside the corrupted epochs have not 
been processed, leaving the original artifact-free 
EEG signal intact. Although many advanced 
artifact removing algorithms like MARA and 
FASTER have been introduced over the last 
years, they were unable to properly clean the EEG 
signal from the eye blink artifacts, for the 
electrode configurations used in this paper. 
Therefore, additional investigation of the artifact 
removal algorithms in the low-density EEG 
acquisition systems is necessary. 
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