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Summary 

Surrogate (metamodel) based optimization has numerous potential applications in the 

field of naval architecture. It is aimed here to establish a methodology for the aft form 

optimization for minimum viscous resistance, thus the present study is focused on the aft form 

where the viscous effects become dominant. It is necessary to solve this problem within 

acceptable time span from practical naval architectural point of view which requires 

metamodeling techniques currently under investigation. 

Accordingly, the present paper investigates the metamodeling ability of the Kriging 

interpolation and attempts to explore its capabilities and limitations in the aft form 

optimization from viscous resistance point of view. As metamodeling techniques become 

more widely used, their constraints are more apparent. Especially in highly nonlinear design 

spaces, the effect of dimensionality should be taken into consideration. Taking all those 

factors into account, the present paper is to examine the capabilities of Kriging and to 

establish the learning performance in terms of RMS error, correlation coefficient and required 

number of training points according to selected optimization algorithm for multidimensional 

ship design problem. The results show that, at least 5% reduction in viscous pressure drag can 

be attained by the present optimization methodology. 
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1. Introduction 

There is a growing need to reduce the fuel consumption of the ships by hull form 

optimization for economic considerations and to meet the International Maritime 

Organisation’s (IMO) regulation related with Energy Efficiency Design Index (EEDI) [1] 

which urges ship-owners to reduce CO2 emissions. Hull form design is a complex problem 

which requires solutions under the influence of many constraints that affect each other 

positively or negatively, hence there are many studies which show the complexity of this 

issue in the literature [2-5]. Particularly aft form design has its own difficulties, as the flow in 

this region of the hull is dominated by viscous effects on the one hand and there are several 

objectives in this region to be minimized or optimized such as viscous resistance, flow 

uniformity, propeller design, cavitation, noise and vibration on the other. For this reason, 
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many constraints should be studied (see for example; [6]) and meantime it is important to 

choose the correct objective functions to optimize the aft form [7]. In addition, there are a 

couple of studies which focused on the aft form design to increase the propulsive efficiency of 

the hull [8-11]. 

Difficulties with the experimentation such as required time, financial matters, scaling 

issues on the one hand and the improvements in computing power and numerical techniques, 

on the other, lead the engineers to include CFD methods in their optimization [12-18]. 

Recently, with the practical advantages of CFD, surrogate models – which are able to 

replicate the CFD with a reasonable error and without requiring too much computing time – 

are employed in engineering optimization studies. They can replace computationally 

expensive simulation processes in ship design problems and costly model experiments. 

Today, no unique metamodel technique has developed on which a consensus is reached 

among naval architects. Every technique has its own strengths and weaknesses. Thus many 

research groups are trying either to develop tuning parameters of the methods that is currently 

in use or introduce new metamodels [19-22]. In the literature there is variety of different 

studies that uses metamodeling from chemical industry [23] to aerospace [24] or bio-inspired 

robots [25]. One can also find several comprehensive review papers that describe different 

types of metamodeling and their advantages/disadvantages in every aspect [26-30]. Thus, 

metamodeling in engineering is widely used in design optimization studies and/or in design 

space exploration.  

In the present study, Kriging interpolation is chosen for aft form optimization problem. 

Kriging has many advantages; such as being a proper approach to multi-dimensional 

problems and its prediction capability as compared to other metamodeling techniques [31-32] 

and being able to produce error estimates. On the other hand, Kriging technique is still 

developing by many research groups from all around the world [33-36,67-68]. Those 

development studies are rather concentrate on the sampling types [37], on the tuning 

parameter exploration such as variogram adaptation [38] or on adding some descriptive new 

information into the algorithm such as gradient/hessian enhanced types [39-43]. Thus, based 

on the above discussions, Kriging metamodeling is chosen as a viable tool in the present hull 

form optimization study. 

 The aim of this study is to develop an algorithm to optimize the vessel’s aft form by 

using metamodels. Accordingly, the study presents a new design procedure which 

accomplishes the optimization of the aft form for minimum viscous resistance via surrogate 

modeling on which a very limited number of studies are recorded in the literature. For 

example, a different technique can be cited which employs an adjoint based optimization 

method, Rung [6]. Another study in the literature uses generic hull shapes for modifications 

for larger re-design region and uses viscous flow analysis, [44-45]. The study given in [44], 

used a similar approach as we used here but focuses on a global optimization procedure by 

employing Lackenby’s form transformation technique whereas the present approach uses a 

point-based hull form transformation. Thus, the most important output of the study was able 

to find and eliminate the problem of local flow separation, with the advantage of focusing on 

a local design patch. 

Design of experiments (DoE) required for the training of the metamodel is achieved 

here by a viscous flow solver. In this context, 15-20% of the ship's length is selected in the aft 

part as the optimization zone and the wetted surface geometry of the prescribed zone is 

defined by a limited number of control points. Subsequently, variant hull forms obtained by 

the variation of the control points were subjected to viscous flow analysis. Variations 

(transformations) of the hull form are obtained by Akima surface generation method 

introduced in [46]. The dimensionality reduction in optimization problems is a different 
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research topic, and some important examples can be found in [47-48].  In this study, the 

dimension of the design space is 6 and DoE are developed by using these 6 parameters. The 

optimization study is then carried out for minimum viscous pressure resistance. The form 

obtained from optimization procedure is then tested by viscous solvers. Although, 5% 

reduction seems to be a limited gain because of strict constraints, it shows the promising 

ability of the present methodology in aft form optimization of ships.  

The remainder of the paper is structured as follows: The next section provides theory 

followed by design of experiments and then results and our conclusions with future work 

comments will be given.  

2. Surrogate Modelling: The Kriging Interpolation  

Kriging was originally developed in geostatistics by Danie G. Krige [49]. The 

mathematical basis for Krige’s idea was then developed by Matheron [50]. Following 

Matheron, Kriging metamodels were applied to the input/output data sets of deterministic 

simulation models. Kim et al. [51] show that Kriging is a superior method when applied to 

nonlinear, multimodal problems. Kriging technique appears to be better than the other 

surrogate modelling methods such as Radial Basis Function (RBF) and Artificial Neural 

Network (ANN) as shown by Peri [63]. 

Kriging is mostly presented as a way of ‘modelling the function as a realization of a 

stochastic process’. The reason is, if we want to make a guess at a point x in the domain 

before sampling any point, the prediction will have an uncertainty. Modelling this uncertainty 

resembles a random variable Y(x) that is normally distributed with the mean, , and the 

variance, 2 , [52].  This means that the function has a value   which varies between ±σ. 

This implies that closer data points will tend to have nearly the same function values ( )iy x , 

( )jy x , where x1 and x2 are data points. In other words, this interpolation technique assumes 

correlation between closer observed data as can be statistically modelled in the following 

expression: 

1

[ ( ), ( )] exp
d

p

i j i jcor Y Y 
=

 
= − − 

 
x x x x       (1) 

Expression (1) has an intuitive property that if 
i jx = x then the correlation is 1, and as 

i j− →x x  the correlation tends to 0 for each d (number of dimensions). The 

interpolation parameters 
l  are related with correlation change by moving in the 

th
 

coordinate direction and if this parameter tends to have greater values, function values change 

rapidly even if the distances between the data points are small. The p  makes the model 

smooth when it is near 2. On the one hand, the additional parameters in (1) make the model 

more complex, but on the other hand enhance the accuracy and capability of the prediction. 

The uncertainty of the function values at the n (number of sample points), by using a random 

vector, can be written as:  

1( )

( )n

Y

Y

 
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Y
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         (2) 

and covariance matrix equal to;  
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2( )Cov =Y R *        (3) 

where R vector is a nxnmatrix which is represented in (1) with (i,j) element. The distribution 

of observed values determines the variation by moving different coordinate directions which 

depends on the model parameters as;  , 2 ,  and p . For the estimation of those 

parameters, maximum likelihood estimation is used. The likelihood estimation can be written 

- by using the observed values represented by 

1

n

y

y

 
 

=  
 
 

y  - as: 

1

1/2 22 /2

1 ( ) ( )
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2(2 )

T

n

 



− − −
 
 

1 1y R y

R
     (4) 

To simplify the likelihood estimation, we maximize (4) by taking its natural logarithm and 

derivative; 

1
2

2

1 ( ) ( )
log( ) log( )

2 2 2

Tn  




− − −
− − − 

 

1 1y R y
R     (5) 

and  end up with the optimal values of  and 2 as functions of R; 

1

1
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           (6) 
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=
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Then substituting (6) and (7) into the (5) gives the concentrated log-likelihood function 

– ignoring the constant term – as: 

2 1
ˆlog( ) log

2 2

n
− − R         (8)  

p  is specified as 2 – as described above – and   is searched according to the procedure 

given in Jones [52].  

Now, the same procedure is applied to a pseudo observation which means a new point added 

to the previous data set for a new estimation. The estimator will be derived by evaluating the 

quality of the new estimation which means again maximizing the likelihood function with the 

model parameters obtained so far. By adding (n+1)th observation to the data as * *, )( yx -new 

point *
x and estimated *y - to get the augmented likelihood function, ( )*,

T

yT
y = y , and r 

denoting the vector of correlations of *( )Y x with the ( )iY x for i=1,…n; 

*

1

*

[ ( ), ( )]

[ ( ), ( )]n

cor Y Y

cor Y Y

 
 

=  
 
 

x x

r

x x

        (9) 

The correlation matrix for the augmented data R ; 

 
* Covariance is a measure of the correlation between two or more sets of random variables which one can 

derive correlation from covariance as; ( , ) cov( , ) / ( )x ycor X Y X Y  = where x  and 
y are standard deviations 

of X and Y. 
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1

 
  

R r
R = 

r
         (10) 

and by using (10) in the concentrated likelihood function and solving the equation – again by 

maximizing the relation by taking derivatives and setting it to zero – for the new *y which 

gives us the standard Kriging predictor (see [52-54]) as:  
* 1ˆ ˆ ˆ( ) ( )y  −= + −1x r R y

        (11) 

The metamodel is tested with respect to Root Mean Square Error (RMSE) and 

correlation coefficient (r).  
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                (13) 

RMSE in (12) and the correlation coefficient in (13) provide a quantitative measure of 

model accuracy and also is useful to have a numerical understanding of the quality of the 

surrogate model. 

3. Design of Experiments 

The design of experiments was accomplished by a two-step process which contains a 

hull form transformation procedure and a sensitivity analysis to properly locate the control 

points defining the surface patch of the optimization region.   

Main particulars of the hull form in model scale are given in Table 1. The geometry of 

the proposed hull form can be seen in Figure 1. The hull form used in this study is not a well-

known benchmark form, but a form with problematic flow characteristics around the aft body. 

Table 1: General specifications of the hull form. 

Main properties Symbol Value 

Scale λ 21 

Length LPP (m) 4.14 

Breadth B (m) 0.71 

Draft D (m) 0.29 

Displacement ∇ (m3) 0.6866 

 

 

 

 

 

 

Figure 1: Lines plan of the proposed hull form. 

3.1 Hull form variations and Geometric transformation 

For creating the data set of 280 variant hull form, cubic interpolation technique of 

Akima [55] is employed. There are some other interpolation techniques (see [46] and [56]). 

But for our case we focused on cubic interpolation techniques; among them are natural, 

monotonic and Akima’s surface polynomials. Natural cubic interpolation is a piecewise curve 
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on each data point and second derivative is assumed to be zero at the beginning and the end of 

the curve. As a result, the curve oscillates around the boundary points. The monotonic cubic 

interpolation uses monotonicity of the points by modifying the tangent values of the data to 

prevent oscillation. Akima method is a continuously differentiable interpolation, built from 

piecewise third order polynomials and applicable to successive intervals of the given points. 

The slope of the curve is locally determined at each given point, by the coordinates of five 

points centered on the studied point. In consequence, this spline type creates a smooth and 

natural curve between the waypoints and always passes directly through them. 

 
Figure 2: Comparison of different interpolation methods [57]. 

In Figure 2, the comparison of various cubic interpolation techniques is made. Akima 

surface polynomials are obviously superior to other cubic interpolation methods and 

moreover, according to our experience, it provides smooth natural curves/surfaces and it is 

computationally efficient and reduces oscillatory effects [46]. In conclusion, Akima surface 

representation is chosen to obtain the variants of the aft form.   

3.2 RANS Computations 

The governing equations are the continuity equation; 

0i

i

U

x


=


          (14) 

and the Navier-Stokes equations approximated by the RANS equations for the steady, three-

dimensional, incompressible flow:  

' '( ) 1i j j i ji

j i j j i j

U U U u uUP

x x x x x x




     
= + + −           

    (15) 

P demonstrates the mean pressure, ρ the density and ν the kinematic viscosity of the fluid 

where the velocity U can be decomposed into mean velocity iU  component and fluctuating 

velocity part as in (16),  
'

i i iU U u= +          (16) 

The k-ε turbulence model is applied in order to simulate the turbulent flow around the 

hull. This turbulence model is applicable when there are no high pressure changes along the 

hull and quite economical in terms of CPU time [58], compared to, for example, the SST 

turbulence model, which increases the required CPU time by nearly 25% [59]. During the 

analyses, Reynolds stress tensor is calculated as in (17); 

' ' 2

3

ji
i j t ij

j i

UU
u u k

x x
 
 

= − + +    

       (17) 
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Here, 
t  is the eddy viscosity and expressed as 2 /t C k = while Cμ is an empirical 

constant (Cμ =0.09). k is the turbulent kinetic energy and ε is the turbulent dissipation rate.  

Also, transport equations are solved for k (18) and ε (19): 

( )j t
k

j j k j

kUk k
P

t x x x


 



     
+ = + + −  

      

     (18) 
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1 2
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j j j
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C P C

t x x x k k
 
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   




     
+ = + + −  

      

    (19) 

where comprehensive explanations can be found in [60]. 

The solver uses a finite volume method which discretizes the governing equations. A 

second order convection scheme was used for the momentum equations and a first order 

temporal discretization was used. The flow equations were solved in a segregated manner. 

The continuity and momentum equations were linked with a predictor-corrector approach. 

The pressure field is solved by using SIMPLE algorithm which is based on pressure-velocity 

coupling. All governing equations are discretized using a cell based finite volume method and 

the advection terms are discretized with a first-order upwind interpolation scheme. 

The computational domain was discretized by three dimensional finite volume cells and 

appropriate mesh structure was created around the hull using hexahedral elements and 

trimmer meshing was applied. Systematic studies were then performed in order to carry out a 

grid sensitivity study and to predict the numerical uncertainties. For this purpose, three 

different types of mesh refinements were tested given in Table 2. A mesh refinement factor, 

was chosen as 2  .  

Table 2: Total resistance results for different number of cells. 

Mesh Number of Cells Viscous Resistance [N] 

Finer 4.64E+06 5.991 

Fine 2.37E+06 5.972 

Medium 1.21E+06 5.945 

In order to estimate uncertainties of numerical model, a verification study should be 

carry out on grid structure.  The Grid Convergence Index (GCI) method can be employ for 

monotonically convergent cases. In this method, ,  

represent the solution of  key parameter at corresponding grid type. If the convergence 

condition ( ) is between 0 and 1, this means that the solution is monotonically 

convergent [61]. In the present study, the convergence condition is calculated as 0.7 from 

Table 2. The discretization uncertainty of numerical model is evaluated as % 2.28. As a result, 

the fine mesh configuration is selected which shows the best compromise between the 

accuracy and run-time. Detailed information of GCI procedure can be found in [64]. 

 Subsequently, double-body, fully turbulent viscous flow computations were performed 

for all of the variant hull forms. The usage of double-body model is preferred, since the 

present study particularly aims at obtaining optimal forms for minimum viscous resistance. 

Thus, the investigation of wave resistance is excluded from the meta-modeling and from the 

optimization procedure to see the net viscous pressure effect of the variant hull forms.  

The computation time was about an hour approximately for one case via using 

computational fluid dynamics software CD-Adapco’s Star-CCM+ with Intel Xeon i7 2.4GHz 

CPU with 64 GB of RAM. Three residuals monitored for convergence: continuity, forces 

acting on the hull and velocity values. The convergence criteria is selected as 0.0001 for all 

these residuals for all hull variant analysis. 
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3.3 Design Space and Sensitivity Analysis 

Firstly, sensitivity analysis was carried out to determine the location of the control 

points defining the surface patch of the optimization region. We sought for the points of 

which their small variations end up with greater resistance changes. The main idea in the 

selection procedure of control points via sensitivity analysis is based on the approach that the 

search is made to figure out the control points having significant effects on viscous resistance 

when small geometric variations are applied transverse-wise. Then the location of control 

points is rearranged in a way that they concentrated around the points having greater changes 

(sensitivity) in resistance due to small changes in transverse-wise variation. 

From the surface view of the hull it can be seen that the two lines (1-3-6 and 2-4-5) are 

the two sensitive directions along which the geometry is changed rapidly. 6 control points 

were selected for this purpose, depicted in Figure 3. 12 variant hull forms were then created 

by allowing ± 10 % changes horizontally (by the width) to the original hull form (Form0). For 

a producible hull surface, we confine the transverse-wise changes by ± 10 % of the original 

offsets. 

 
Figure 3: Initial position of control points on the original hull form. 

The results of the sensitivity analyses of the control points with respect to viscous 

resistance by RANS computations can be seen in Table 3. As a descriptive example; the hull 

variant y-1_0.9 means that the first control point moves 10% of the original half-breadth 

inwards and y-1_1.1 means moving again the first point 10% outwards of the hull.  
 

Table 3: Computational results for sensitivity. 

Variant 

Names 

Vis.Pres. 

[N] 

Shear 

[N] 

Net 

[N] 

Difference in Viscous 

Resistance (%) 

Form0 1.18 4.79 5.97 - 

y-1_0.9 1.24 4.79 6.03 -1.01 

y-1_1.1 1.15 4.80 5.95 0.34 

y-2_0.9 1.22 4.80 6.01 -0.67 

y-2_1.1 1.17 4.80 5.97 0.00 

y-3_0.9 1.14 4.80 5.94 0.50 

y-3_1.1 1.43 4.79 6.21 -4.02 

y-4_0.9 1.13 4.80 5.93 0.67 

y-4_1.1 1.42 4.78 6.20 -3.85 

y-5_0.9 1.20 4.80 6.00 -0.50 

y-5_1.1 1.20 4.80 6.00 -0.50 

y-6_0.9 1.19 4.79 5.98 0.17 

y-6_1.1 1.26 4.80 6.06 1.51 

 

As can be seen from Table 3, the considerable differences in viscous resistance are due 

to the changes in the 3rd and 4th control points. One can see in Figure 4 how effectively the 

changes in 3rd and 4th points result in the flow pattern on the hull surface.  Accordingly, the 

distribution of control points was re-arranged in a way that they are positioned by taking into 

account of the effectiveness and importance of the 3rd and 4th points. The new distribution and 

location of the control points are given in Figure 5.  
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 (a)  

   (b)  

    (c) 
 

Figure 4: Limiting streamlines on the hull surface; a) Form0, b) y-3_1.1, c) y-4_1.1. 

 

 

Figure 5: Re-distribution of control points on the hull surface according to sensitivity analysis. 
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Table 4: Initial and revised points coordinates. 

Initial Points Revised Points 

x y z x y z 

-14.09 -6.482 -1.985 -12.47 -3.927 -3.761 

-13.76 -2.422 -5.409 -10.25 -1.869 -4.333 

-9.994 -1.541 -4.700 -8.691 -1.676 -3.462 

-10.23 -5.064 -2.198 -6.905 -3.427 -1.769 

-6.912 -0.797 -4.202 -6.912 -0.797 -4.202 

-6.905 -3.427 -1.769 -10.23 -5.064 -2.198 

From Table 4, initial and revised control point distribution can be compared numerically 

according to the aft extremity of the hull form. 

As a next step; using the 6 control points, a set of design of experiments were created by 

randomly varying their half-breadths ±10%, which contains 280 number of hull variants non-

dimensionalized with respect to Form0 given in Figure 6. This figure summarizes the results 

of the design-of-experiments-study obtained by the computational evaluation of the variant 

hull forms. 

 

 

 

 

 

 

 

 

  

 Figure 6: Non-dimensionalized design of experiments. 

3.4 Training of the Metamodel 

The training output of Kriging is given in Table 5. From Table 5, it is obvious that 

increasing the number of training points affects the correlation coefficient greatly. According 

to the general understanding when the correlation coefficient is greater than the 0.8 the 

metamodel is assumed to be satisfactory [54]. From the Table 5, 140 training data points 

almost doubled the correlation coefficient which implies that there should at least be around 

170 training input data to receive a satisfactory prediction from the Kriging metamodel in its 

present form. It is concluded from the table that, metamodel is very sensitive to the additional 

new data at first which means the surrogate model need more data to represent the relation 

between the control points variation and the corresponding resistance results to find a 

satisfactory minimum for the output. As we know from the literature every engineering 

problem has a saturation point where no more data can increase the approximation accuracy 

[54]. Thus it is concluded to continue the metamodeling with 240 data points for training.  

Table 5: Training the metamodel and its results. 

 

 

 

 

Total # of 

Points 

Training 

Data 

 

Test Data 

Correlation 

Coefficient 

 

RMSE 

120 100 20 0.4004 0.2395 

165 140 25 0.7524 0.1698 

200 170 30 0.7938 0.1141 

280 240 40 0.8185 0.1561 
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4. Optimization and Results  

Training the metamodel properly makes the procedure ready to go for the optimization 

stage. We restrict the transverse-wise variations within ±10% of the original offsets. The 

optimization process for minimum viscous resistance is performed by genetic algorithm (GA). 

GA solver, utilized from the Matlab library in the present study, is a commonly used 

optimization solver based on genetic algorithms, [65, 66]. The basic components common to 

almost all genetic algorithms are; a fitness function for optimization, a population of 

chromosomes, a selection of which chromosomes will reproduce, crossover to produce next 

generation of chromosomes and random mutation of chromosomes in new generation [62]. 

In the genetic algorithm, the evolution begins with a population of randomly generated 

individuals. In each generation, the fitness of every individual in the population is evaluated; 

multiple individuals are selected from the current population according to fitness and 

modified to form a new population. Then, new population is used in the next iteration stage of 

the algorithm. The algorithm terminates by achieving the maximum number of generations or 

by exceeding a satisfactory fitness level for the population. 

The present optimization study started with a set of data, x1 to x6, which correspond to 

multidimensional design input of each variant hull form, with observed responses, R 

(presently the viscous resistance). The lower bound is 0.9 and the upper bound 1.1 for x1 to x6 

that we restrict the variation of points ±10% by the width of the hull model. Then the 

metamodeling stage started to find an expression for a predicted value at a new point (x1
*, … 

,x6
*). The basis function of the Kriging is given in (1). In this equation Y values are the 

observed data (viscous pressure results) which corresponds to the related set of control points 

x1 to x6 (half-breadth values of the selected design space) data set points. In the present GA 

optimization; the population type is taken as double vector, the population size is selected as 

50. The other main parameters are the number of generations, taken as 100, and the 

tournament size, taken as 5, [54].  

The optimization results correspond to various levels of training data are given in Table 

6. The table particularly shows how the level of the number of training data contributes to the 

output of the optimization procedure.  

Table 6: Scaled optimized parameters. 

Training 

Data x1 x2 x3 x4 x5 x6 

Reductions in Viscous 

Resistance (%) 

Viscous 

Resistance [N] 

100 1.0297 0.0724 0.9486 0.9483 0.9440 0.9714 7 1.0986 

140 0.9514 0.9728 0.9700 0.9377 0.9341 0.9500 11 1.0513 

170 0.9514 1.000 0.9729 0.9257 0.9372 0.9330 11 1.0478 

240 1.0882 1.0370 0.9517 0.9740 0.9986 0.9465 12 1.0395 

  

The percent gains in Table 6 were obtained as pointed out from the optimization 

procedure which depends on the metamodel. But post-CFD analyses show that the reduction 

attained by the optimal form in viscous pressure is 5% only instead of 12 % given in Table 6. 

Note that the optimal control points (half-breadths) in the table are normalized with respect to 

the original values (Form0) in Table 7.  

Table 7: Original (Form0) design variant. 

Form0 x1 x2 x3 x4 x5 x6 Viscous Resistance 

 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.18 [N] 

 

Sectional views of the optimal form and the initial form (Form0) are given in Figure 7 

for comparison. The gain in viscous pressure resistance could not exceed 5%, though in 
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Figure 8 the separation problem on the hull surface is improved in considerable amount. 

Besides the differences in the predictions of the flow solver and the surrogate model on the 

resistance values, there is a good agreement between the surrogate model and the flow solver 

on the flow characteristics. In addition, from the viscous resistance results, we can say that the 

optimal aft is able to make the flow relatively better streamlined as compared to Form0. One 

can conclude that, on the other hand, the present metamodel should further be studied to make 

the training process of the algorithm by fewer data.  

 

Figure 7: Geometrical comparison of Form0 and optimal hull. 

 
Figure 8: Comparison of the streamlines on the hull surface  

(Top: Form0 Bottom: optimal form.) 

5. Conclusions 

The present work attempts to introduce an optimization procedure to optimize aft body 

of a ship for minimum viscous resistance by employing metamodeling of the viscous solver. 

Accordingly, the approach adopted here points out that the metamodel approach presented 

here can drastically reduce the computation time and is able to arrive at sound results from 

viscous resistance point of view. 

According to established methodology, it can be concluded that Kriging is a convenient 

interpolation model for multidimensional hull form optimization problem. It can be seen from 
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the results that the separation problem is reduced in considerable amount and 5 % decrease in 

viscous pressure resistance is achieved in the end. Although this figure (5%) seems to be 

relatively small one, the present study demonstrates the capability of optimizing the aft form 

of ships for minimum viscous resistance by means of metamodeling techniques – employing 

Kriging interpolation presently. 

On the other hand, it is understood from the results that further improvement in the 

prediction performance of the present metamodel using Kriging interpolation is necessary 

such as examining the effect of using different sampling type or adding some descriptive 

information such as gradient or hessian in the interpolation algorithm. The inclusion of the 

flow uniformity in the propeller disk in the optimization procedure may be taken as a future 

work as well as more powerful metamodeling techniques which are able to give higher 

sensitivity with less data.  
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