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Context-Aware Kubernetes Scheduler for
Edge-native Applications on 5G

Michael Chima Ogbuachi, Anna Reale, Péter Suskovics, and Benedek Kovécs

Abstract—This paper is an extension of work originally pre-
sented in SoftCOM 2019 [1]. The novelty of this work reside in
its focused improvement of our scheduling algorithm towards its
usage on a real 5G infrastructure. Industrial IoT applications
are often designed to run in a distributed way on the devices
and controller computers with strict service requirements for
the nodes and the links between them. 5G, especially in con-
comitance with Edge Computing, will provide the desired level of
connectivity for these setups and it will permit to host application
run-time components in edge clouds. However, allocation of the
edge cloud resources for Industrial IoT (IIoT) applications, is
still commonly solved by rudimentary scheduling techniques (i.e.
simple strategies based on CPU usage and device readiness, em-
ploying very few dynamic information). Orchestrators inherited
from the cloud computing, like Kubernetes, are not satisfying
to the requirements of the aforementioned applications and are
not optimized for the diversity of devices which are often also
limited in capacity. This design is especially slow in reacting to
the environmental changes. In such circumstances, in order to
provide a proper solution using these tools, we propose to take
the physical, operational and network parameters (thus the full
context of the IloT application) into consideration, along with
the software states and orchestrate the applications dynamically.

Index Terms—Edge, I1oT, Kubernetes, 5G.

I. INTRODUCTION

HE 5G and Edge Computing paradigms [2], [3] reflect

the current direction of both industry and academia,
towards highly responsive, so-called edge-native applications
[4]. Edge-native applications, are the subset of cloud native
applications requiring proximity to the users, thus Edge, and
5G capabilities: greater data-bandwidth, ultra-low-latency or
massive/continuous communication.

The definition applies for highly demanding settings that
cannot rely on data-centers because of the inherent latency
caused by their physical distance [5]: autonomous vehicles
and industry 4.0 manufacturing; advanced media use cases
like real-time gaming, augmented reality, virtual/mixed reality
and tele-holo-phoning. The 3GPP community refers to these
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requirements as the Ultra Reliable Low Latency and develops
a network standard to fulfill these in both the RAN and core
network parts. [6]

Furthermore, in some specific setups, it may be important
to run different logic and service parts in the same distributed
cluster, e.g. for a distributed robotic control application in a
smart factory.

The purpose of this work is to define how to ensure de-
ployment and orchestration of edge-native applications when
the cluster is spread among communicating devices at the
edge, keeping in mind the peculiarities and challenges of
such a new infrastructure. We treat such scenarios as resource
management and allocation problems for distributed clusters.

In previous work [1] we proposed an initial scheduling
algorithm for Kubernetes that integrates real-time information
about the edge devices in the cluster. We validated it on a lim-
ited setup, a WiFi-based cluster of Raspberry Pis, comparing
its performance to the default solution.

Leveraging on the learning from our first experiments, we
reformulated the scheduling scoring system and finalized a
new algorithm. The new verification setup in this paper uses
real 4G and 5G connectivity, a 5G New Radio together with
a functional non-standalone (NSA) 5G core network and
corresponding hardware infrastructure. We also present an
upgraded profiling tool, to allow Network Address Translation
traversal for edge devices.

In fact, the main unique contributions of this paper are:
(i) a lightweight CoAP-based tool to collect cluster metrics,
able to traverse Network Address Translation when UEs act
as modems for devices in the network (i.e. tethering); (ii)
an improved design of a Kubernetes compatible scheduler,
still based on real-time application context information, but
with a more aggressive scoring mechanism to prioritize the
balance of resources usages all over the cluster. (iii) tests
and measurements on a Kubernetes cluster deployed in a
real 5G access and non-standalone core network. (iiii) an
extended analysis of the Kubernetes default scheduler trough
three categories of IIoT use cases.

Our solution reduces the overall scheduling and application
startup time, without increasing resource degradation.

The paper is structured as follows: after putting our paper
into the perspective of other related works (Section I-A); in
Section II the concept of 5G, Edge Computing and orches-
tration in relation to IIoT are briefly presented. An extended
discussion on IIoT use case simulations is in Appendix A.
In Section III the shortcomings of the Kubernetes scheduler
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are analyzed with a brief description of its algorithm. Our
edge scheduler implementation is described in Section IV. We
validate our solution with new tests in Section V. Conclusions
and future objectives are in Section VI while a richer analysis
of the default scheduler is in Appendix B.

A. Related Works

Only the sum of requested resources in each node of a
cluster is taken into consideration by the default scheduler
in Kubernetes. This is not effective enough when resource
optimization should also account for potential sudden and
drastic performance degradation. Despite that, there are not
too many works focusing mainly on the improvement of the
scheduling process in Kubernetes.

Specifying only limits for resource utilization is not enough
to avert the risk of resource contention, as shown in [7]. The
authors explored the problem and proposed as a result the
software architecture for a scheduler which tries to avoid the
issue by characterizing the “incoming” applications. Briefly,
the scheduler makes an effort to put containers that are charac-
terized by high resource usage in different host machines. The
scheduling time also happened to get an improvement in speed
that was around 20%, compared to the default scheduler, in a
few test scenarios. Similarly to our approach, the authors tried
to actualize a balanced distribution of tasks, but the overall
speed improvement is not significantly strong and there was
no dynamic input taken into consideration.

A close approach to ours in introducing better multi-
objective scheduling in Kubernetes has been published in
2019 [8]. The authors formulated energy efficiency as a multi-
objective optimization problem between maximal use of green
energy, optimal performance with minimal interference, and
overall energy minimization. The ILP problem is solved via
Mosek Solver.

The orchestration concept based on Kubernetes has been
extended to fog computing in [9]. Authors designed a set of
labels for the default scheduler to addresses the application de-
ployment challenges in fog set-ups: distribution, connectivity,
availability, heterogeneity, and real-time.

Also [10] extends the basic K8s scheduler with labels:
applications are classified depending on which resource they
use more intensively — CPU, I/O disk , network bandwidth,
or memory bandwidth. The score of a node at scheduling
time is penalized if similar labels are already present on that
node. This ensures that the resulting Kubernetes scheduler can
balance the number of applications in each node while still
minimizing the degradation caused by resource competition.
The overall execution time of the experiment is about eight
minutes. This value is only 20% better than the mean time
of the Kubernetes scheduler. The total time is similar to the
best case of the default scheduler and overall the scheduling
process has a lower time variance.

Similar efforts to reduce resource degradation have been
expressed in [11]. Authors define a Reference Net (a Petri
net) to model performance and management of resources for
Kubernetes, identifying different operational states associated
with “pods”, containers and their shared resources. Such

a model may be potentially used to calculate interference
generated from certain deployments.

A network-aware scheduling approach for container-based
applications in Smart City deployments is proposed in [12].
The Kubernetes scheduler is configured to make use of nodes
RTT labels to decide where they are suitable to deploy a
specific service with the target location specified on the pod
configuration file. After completion of the scheduling request,
the available bandwidth is updated on the corresponding node
label. The objective of this scheduler is not to reduce strains
on nodes nor to reduce the scheduling time, but to enhance
the deployment performance by choosing nodes closer to the
target of the service. In fact, the overall time of scheduling is
slightly increased compared to the default scheduler.

The monitoring mechanism in [13] takes both system
resource utilization and application QoS metrics into ac-
count. However it is not lightweight since it is composed
of a container-based cluster-monitoring tool for Kubernetes, a
database designed to store time series data and a visualization
application. The authors also provide a dynamically config-
urable resource provisioning algorithm for K8s. As mentioned
in [8] these tools occupy a great number of resources in the
cluster.

A notable example of a custom scheduling mechanism that
can be installed as a plug-in into Kubernetes is the Poseidon-
Firmament Scheduler [14], which tries to solve the scheduling
problem by modeling a graph of the network flow, on which
it runs its the optimization. It is therefore meant to solve the
issue of optimal allocation only in regards to the network
performance, which anyway proved to be good enough as
an approach to make it 50%-80% faster than the Kubernetes
default scheduler in the process of binding a pod to a node.

VM placement [15], such as cloud resource manage-
ment [16], can be considered to be the traditional ingredients”
in the field of provisioning for resilient online services, which
had a strong influence in the research related to scheduling and
placement of containers. A very informative listing of several
solutions for VM placement can be found in [17]. These
solutions are categorized by the objective they want to fulfill,
in terms of resource usage optimization, and the categorization
underlines the fact that these solutions are specific for a single
or very restrictive set of parameters. Our study, on the other
hand, was conducted with a different mindset, aiming to design
a solution that would allow the infrastructure owner to directly
control how many parameters are taken into consideration
for the system optimization. In [18] a thorough analysis
of weight computation formulas, related to multi-objective
optimizations, is presented, especially for tasks like dynamic
and automated strategies for decision making.

The paper by Parest [19] shows several other methodologies
to accomplish similar estimations, nonetheless, both this and
the aforementioned work do not present approaches that make
use of online scoring and dynamic weight attribution.

II. BACKGROUND

In Industrial IoT (IIoT) scenarios such as collaborative
robotics, remote robot controlling, flexible reconfiguration of
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manufacturing pipeline , etc. introduce new challenges for the
involved resources management functions.

It is likely in these scenarios that an Edge instance on the
premises will host not only the software in charge of mobile
connectivity, but also the orchestration logic.

The general role of an Orchestrator is to handle the ap-
plications life-cycles (actions like service binding, querying,
copying, updating and deleting). Scheduling configurations are
usually simplistic since there is seldomly distribution of the
computational resources: quite often Virtual Machines with
very similar baseline characteristics and hosted in the same
datacenter. The devices that will compose the orchestrated
cluster in our IIoT case scenarios are diverse in capabilities,
resources, availability, life-time, supported temperatures and
SO on.

Cloud-native orchestrator solutions need to be adapted and
customized towards this context. In the next section we will
briefly explain how IIoT applications benefit from 5G and
Edge computing infrastructures and what characteristics of
current orchestration solution made us verge towards Kuber-
netes as a starting point for IIoT edge-native applications
orchestration.

A. 5G and Edge Computing in Industrial loT

Employing wireless systems for IIoT has been a challenge:
the classical wireless technologies used on information sensing
do not satisfy the requirements of ultra-reliable low-latency
communication (URLLC), deep coverage, ability to scale-up
deployments and efficient distributed operations for factory
plants.

Applications of 5G communication technology in robotics
are demonstrated in [20], especially how the URLLC capa-
bilities of the 5G can facilitate a distributed robotics control
system.

Authors in [21] list several use cases and technical require-
ments for the main three capabilities of 5G applied to IIoT
[22]: Infrastructure retrofit, Mobile robots, Inbound logistics
for manufacturing, flexible and modular assembly area, plug-
and-produce, Massive wireless sensor network, and process
monitoring.

As a further example, in fault detection and diagnostics
(FDD) systems data transmission latency usually needs to be
maintained at the scale of milliseconds, which can hardly be
met through classical wireless networking technologies [23].

URLLC, is one of several different types of use cases
supported by the 5G.

Many 5G URLLC designs and experiments have been
conducted in this direction [24]-[26].

From the network architectural perspective, Edge Comput-
ing (and it’s variations [27]: Fog computing [28], Mobile
Cloud Computing (MCC), cloudlet computing, MEC [29]...)
can help even further in reducing overall latency, by allowing
computational capacity to sit right next to the non standalone
5GNR and the IIoT devices. According to the maturity of 5G
standards and the implementation, we’ve chosen the 5G NSA
deployment to validate our proposal.

B. Non-standalone 5G

5G standard for future networks has two versions: Non-
Standalone 5G (NSA) and Standalone 5G. The specifications
indeed provide a general technology framework that addresses
different and, in some cases, conflicting 5G requirements and
is forward compatible to accommodate future applications and
use cases [30].

Non-Standalone 5G primarily focuses on enhanced mobile
broadband (eMBB), where the 5G supported mobiles will use
mm-Wave frequencies for increased data capacity but will use
existing 4G infrastructure for voice communications.

C. Kubernetes as Orchestrator for lloT

Among the prominent orchestrator solutions of this years
we identified: Docker Swarm [31], Openstack [32] and Ku-
bernetes [33].

Kubernetes (K8s) can be considered as an orchestrator since
it is able to automate deployment, scaling, and management
of containerized applications. In the cluster a master node
instantiates services and deployments aggregating containers
into Pods. Pods are indivisible units running at the worker
nodes. Containers in a pod, thus, share resources, filesystem,
kernel namespaces, and an IP address. [34]:

Docker Swarm and Kubernetes are good tools to prototype
container run-times [35]. Although easy to deploy, Docker
is not a scalable product solution for enterprise applications
and large deployment like those that we envision in an
IIoT context. OpenStack is not meant to be run on limited
devices [36], which is also the scope of this work; thus, the
choice fell on Kubernetes. The current market also confirms
our choice, since Kubernetes retains the largest cut and is a
de facto standard [37].

It is important to state that from March 2019, a stripped
down version of Kubernetes for IoT and Edge application has
been released: K3s [38]. Scheduling, network and cluster logic
are kept the same and only the kubelet size is significantly
reduced through a reorganized plugin structure and a less
resource-intensive database (sqlite3). When faced with the
choice between K3s and KS8s, the latter was still preferred,
considered the following:

1) The K3s project was fairly too recent and not
production-ready, not enough information was available
online;

2) The scheduler component was identical in both Kuber-
netes;

3) K3s does not allow multiple masters, so if the master
goes down the whole cluster is lost;

4) a K3s cluster is not compatible with K8s, adding unnec-
essary complexity in the case of multilayered orchestra-
tion, to enable aggregated control of clusters located in
distributed facilities.

III. KUBERNETES SCHEDULER

For our specific scenario, we found that the most lacking
orchestration feature in K8s was related to the scheduling
techniques. As expressed in Appendix B, the amount of
time spent scheduling and rescheduling a pod may grow
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significantly, with service disruptions up to a minute in case of
node death. In the default K8s scheduler nodes are evaluated
at scheduling time; when the user creates a new pod and
assigns it to the Kubernetes cluster, the pod gets into the event
stream (Object Store) with a “Pending” status. The scheduler
watches constantly for this type of event and decides the most
appropriate binding to a node.At first, a subset of feasible
schedules, containing only those nodes that are satisfying the
given constraints for the deployment are collected; Then the
scheduler computes a subset called viable schedules, which
ranks the selected nodesbased on scoring functions:

1) PodFitsResources: If the free amount of CPU and mem-

ory on a given node is enough

2) NoDiskConflict: if a pod can fit due to the volumes it

requests

3) NoVolumeZoneConflict: checks possible zone restric-

tions.

4) PodFitsHostPorts: check if the needed port is free

5) CheckNodeMemoryPressure and CheckNodeDiskPres-

sure: if a pod can be allocated on a node reporting
memory pressure condition or disk pressure condition.

6) MatchNodeSelector (Affinity/Anti-Affinity): By using

node selectors (labels), it is possible to define that a
given pod can only run on a particular set of nodes or
that it cannot be allocated on a node that has already
certain pods deployed (pod-anti-affinity).
The scheduler also uses “general-purpose” cloud computing
scheduling criteria, called priorities: for example ImageLocal-
ityPriority ranks according to the location of the requested pod
container images.

Our own scheduler implementation is a hybrid between
multi-step [39] and single-step scheduling. Multi-step schedul-
ing is the approach of KS8s default scheduler: each pod is
considered independently to provide a local optimum for
each allocation process. Overall this technique requires more
maintenance processes, especially in case of rearrangements
based on pod priorities, pod preemption and reassignment.

In our case we do not perform exactly Single-step schedul-
ing since the optimum is calculated every batch of pods.

IV. EDGE CLOUD SCHEDULER IMPLEMENTATION

There was a possibility to instantiate the custom scheduler
as a pod on the master node to profit from the virtual network
built up by K8s. Our version does run in the master node
of the cluster, however, it is outside of K8s control, to avoid
delays and interference from the default scheduler. Hence we
preferred to handle the communication separately and make
use of an external asynchronous module, so that the scheduler
itself can operate without an excessive computational over-
head.

The status data fed by the nodes of the cluster are input to
the scheduler for node score computation. The requirements
of a Pod also influence the choice.

The scheduling mechanism is able to dynamically adapt to
the changes, and its fair since it distributes workloads based
on the actual node status.

The motivation behind our approach also relies on the
observation that the existing scheduler does not fully satisfy

the need to preserve the health of the cluster and its services.
Sharing physical resources among containers might lead to
a degradation in the performance of the applications running
inside them [10]. Kubernetes resource reservation mechanism
is only available for CPU and RAM. However other resources
are shared such as bandwidth and network access [40].

In the following paragraphs, we will first describe our
improved tool to collect information about network and cluster
context (IV-A),finally the scheduler algorithm described (IV-B)
: first the task prioritization and candidates selection are
summarized, then the new score computation rationale is
presented.

A. Monitoring Agents

The limited resources on our minion nodes required a
stripped-down solution to monitor their resources. Kubernetes
monitoring solutions mostly employ greater resources since
they rely on multiple containers and more complex network-
ing. In our solution monitoring agents were added to the
minion nodes for reporting run-time data of the edge devices
to the edge-cloud network management system. The agent
uses CoAP (Constrained Application Protocol) [41] for the
communication between client and servers. When gathering
data, the master node acts as the client and edge devices
act as the servers.Low message overhead, low latency and
high efficiency in comparison [42] with other IoT commu-
nication protocols such as MQTT and DDS, made us verge
toward this solution. CoAP follows a Client-Server model, our
implementation takes advantage of an asynchronous function
facility in python, asyncio, which facilitates execution of
concurrent operations. The client sends multiple requests to
all the connected servers and collects the responses, then
exposes the collected data on localhost. This simplified service
is always available for the custom scheduler to gather data
simultaneously from all nodes.

Such a solution is completely independent of K8s, so it
can be replaced and maintained without having to update the
cluster, which is often an expensive and error prone task.

The client can choose what parameters to request, via
command-line. The frequency of the collection of all pa-
rameters can be adjusted dynamically. On the edge devices,
a server-like application handles GET request, and is able
to measure the temperature of the CPU and its usage; total
amount of free and used physical memory, and total amount
of swap memory. Network parameters are: latency, jitter and
packet loss. In the case of NAT, a login mode can be activated
to initiate an ACK sequence from the device to the master.
This will ensure that any farther communication can transverse
NAT.

B. Customized Scheduler

To integrate to the default scheduler our customized version
will fetch nodes and pods through Python Kubernetes APIs,
then select pods with “phase=Pending” and matching in the
schedulerName property.

As for our previous experiments [1] the‘hybrid’ single-
step scheduling optimizes the pods globally, as a single-step
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scheduler would do, but it categorizes the pods and arranges
them locally.

The specification of resource requirements in the Pod influ-
ence the allocation. Memory and CPU and any other custom
label can be easily specified for this phase, just like in the
default scheduler.

The scheduler will however take also inputs data from the
metric agents and its finals scores may be influenced by the
infrastructure owner as he sees fit.

The list of pods to deploy will be ordered from the most
resource-intensive pod to the least one. Pods with no require-
ments remain in an untouched order on a separate list.

Ordering by resource consumption is a powerful way to
simplify the knapsack problem [43] towards a greedy solution.

Nodes are first classified based on their Usability for that
specific scheduling time: Liveness (is it responding to ALIVE
probes), CPU and Memory (are enough and available for the
job).

To build the priority list nodes receive a score based on
their run-time state.

In the investigation from [18] multiple automated placement
decision algorithms are compared and ranked. Among those,
our improved score computation solution is close to the Co-
efficient of Variation (CV) weighting method, combined with
Multiplicative Exponent Weighting (MEW). This upgrade was
done based on the observation that this combination was the
one resulting with a greater influence towards highly volatile
parameters.

The properties that are considered are formulated so that
their minimizations correspond to an increased health for the
system.

The new score formulation is:

1P|

—w;
score = H (M) (D)
=1\ Pi

For each parameter related to the context of the scheduling,
P := set of parameters, the stream of values received from
the devices is a time series data. The weighted scores will
be W := set of weights of the parameters with [W| =
|P| ; so that each p, parameter data from a node device, is
normalized by the minimum value it historically reached for
that node; and with w; the weight assigned to it.

For this multi-objective problem the weight aggregation
strategy is kept as in our previous algorithm [1]:

o2

w; = D; = —* (2
Hin
The weight is the index of dispersion of the values taken by
the parameters of a node at run-time. The scheduler will use
the weights to compute how compromised is the operational
state of a certain node.Since the computation is based on
time series, the longer the scheduler runs, the stronger the
influence of the diverging parameters will be, ensuring the
balance between the different objective functions.
Since the history of the parameters is linearly growing
we simplify the complexityvia anonline update, or recursive
estimation of the mean, as shown below:

V. SETUP AND EVALUATION CRITERIA

The scheduler and the metrics component were imple-
mented in two versions each. Two different Setups where
tested. An Old Setup [1] within WiFi and a New Setup em-
ploying 2 kinds of cellular networks: 4G and non-standalone
5G.

A. OIld Setup: Baseline Experiments and Preliminary Results

Fig. 1. Preliminary setup

The objective of the first testbed was to simulate an indus-
trial setting where the devices composing the cluster would be
heterogeneous and reflecting the ideas of Industry 4.0 [44].

The master node was an HP Elitebook 8560w, while the
worker nodes Raspberry Pi minicomputers (models 3B and
3B+) as shown in Figurel. Limitations of this first trial were
that: the responsiveness of the cluster was reduced by the
WiFi connection. The network setup was over-simplistic since
devices were in the same subnet and had static IPs.

TO simulate an intensive work, multiple batches of pods
were deployed at the same time: first 2 replicas, then 10, 20,
30 and 40, The application was a small Python Flask web
server. For higher numbers of simultaneous pods there was a
risk that the cluster would start to resent both schedulers and
nodes would shut down just because the requested resources
were too high.

To compare the two schedulers we analyzed the pod distri-
bution, the time to schedule and the delta of the temperature
of the CPUs pre and post scheduling.

This last metric is an observational indicator for cluster
health, since it is a parameter indicating the usage of the nodes
not considered in the allocation by our scheduler.

Nodes overheating happened a few times with the default
scheduler.

The average temperature and delta of both schedulers re-
sulted similar, with custom scheduler being 64% faster in case
of 40 pods deployments.
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B. New Improved Setup

To further explore the IIoT use-case, the second cluster was
built on top of a real 4G/5G cellular network. This end-to-
end verification system is built up by using 5G NSA core,
and an Edge network with Kubernetes cluster that operates
across the wireless connectivity. The connectivity between
core and edge is established via a high-performance 100G
router. The core network provides 4G and 5G connectivity
with the following main components, installed in a virtualized
environment: Evolved packet gateway (EPG), 3GPP compliant
Policy and Charging Rules Function (PCRF) [45] and Policy
Control Function(PCF), Mobility Management Entity (MME),
Home Subscriber Server (HSS), User Database compliant
to 3GPP User Data Convergence standard [46]. The setup
operates in NSA mode, which means the control plane uses 4G
control functions, while the user plane is provided by 5G. The
Edge network is distributed, the master node is instantiated in
a VM close the core network, while the 4G, and 5G worker
nodes are connected to the Kubernetes cluster via 4G and
5G connectivity, respectively. The worker nodes types are
Raspberry Pi model 3B and 3B+, two of them can perform
4G attach to the test APN of the core via 4G USB modems
(Huawei e3372) and the other two via 5G modem through
USB tethering.

Fig. 2. Second setup

This configuration allows the nodes to have access to the
internet (dashed line in Figure 3), for example to access
a datacenter or to download container images needed for
deployments.

Mobile connectivity, however, introduces in the cluster the
issue of Network address translation (NAT) . The mobile nodes
are not physically in the same subnet and cannot be pinged
by the master on the server nor can they communicate with
each other using their internal addresses. This is against basic
requirements of a Kubernetes network [34]:

1) any two containers should be able to communicate
without NAT

2) any node should communicate with all containers with-
out NAT

3) the IP that a container sees itself as must be the same
IP others can use to reach it

As shown in Figure 3 the K8s cluster will have to rely on
a Container Network Interface plugin. Pods are connected
to the node network namespace with a virtual Ethernet pair:
two namespaces with an interface on each end (vethO in the
root node namespace, and ethO within the pod). Pods in the
same node are connected to each other and to the node’s ethO
interface via a bridge: docker0. The mapping of virtual IPs to
pod IPs within the cluster is coordinated by the kube-proxy
process on each node. This process sets up iptables. In our
cluster setup we used Flannel [47] as the plugin to configure
the layer 3 IPv4 network fabric for Kubernetes.

NODE/POD NET

POD1

ETHO

N
K8S MASTER

=
COAP
APl SERVER
\ Y i - -

((T))§ NeASs |/

Fig. 3. Network Setup-2

Any deployment or service inside the cluster will not be
influenced by NAT since it will follow this virtual network
(orange line), however, our monitoring tool being outside K8s
namespace, had to be adapted to overcome the NAT (blue
line). Our approach consisted in having the Server side on the
Raspberry pis to send an ACK as soon as the tool starts. Since
only the minion nodes are behind the NAT, they can see and
have access to the Master node. After the client side on the
K8s node receives the ACK, his address will be resolved in
the NAT tables of the modems attached to the Raspberry pi.
From now on the VM hosting the master node will be able to
act as a client as described in Section IV-A.

C. New Test Results

Compared to the previous implementation [1], the current
custom scheduler applies an algorithm that makes it more
sensitive to environment and application changes. This enabled
us to extend the limits of nodes capabilities, which is especially
important in the case of Edge Computing.

In the new test setup the number of pods allocated per
node is less balanced, as expected from the algorithm of our
scheduler (Table I). This results in a variation of the overall
cluster temperature that is also less linear: nodes get the chance
to cool down and “rest”. When actuating the allocation of
a significant number of pods, the custom scheduler becomes
faster, not only at selecting nodes but also for what matters:
the overall completion time of the deployments. In our test
cases this improvement in performance showed itself starting
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TABLE I
POD ALLOCATION PER NODE

Allocated pods per node
Default scheduler Custom scheduler
Total # pods | knl | kn2 | kn3 | kn4 | knl | kn2 | kn3 | kn4
2 1 0 1 0 0 1 1 0
10 2 3 2 3 2 3 3 2
20 5 5 5 5 3 8 6 3
30 7 8 8 7 5 8 10 7
40 10 10 10 10 14 10 8 8
50 13 12 13 12 11 16 14 9
60 - - - - 13 20 15 12
120
109
100
80
g 60 18 . 58
= 38
T 40 //
30 - 45
/ 35
9 12
0
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Fig. 4. Time of scheduling deployments
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Fig. 5. Average cluster temperature deltas

from the deployment of 30 pods, as visible in Figure 4. This
confirms that when the devices are under stress, our scheduler
performs better by choosing less overwhelmed nodes. The
result becomes even more interesting when considering the
allocation of 50 pods onward. In this instance, the time spent
by the default scheduler resulted being 109 seconds, against
the 55 seconds taken by ours.

The main reason for this is the fact that, while the default
scheduler prioritizes strongly the balance in the allocation of
the pods (mostly by number), ours tries to preserve a safe
operational state of the devices. The default scheduler then
had issues optimizing the allocation when the Kubernetes
core agent running in the worker nodes started reporting that
the devices were in risky states”, but since each of them
would sporadically report something similar (because a very

similar number of pods was being allocated), it found itself
having to adjust its decision several times per pod, before
actually binding them to a node. All this added to the fact that
some nodes probably weren’t capable of reporting themselves
correctly to the master node, again due to pressure, as defined
in point 5 of Section III.

As further proof for that, the custom scheduler managed
to successfully allocate 60 pods on the Raspberry Pis, while
the default one made the entire cluster crash (the devices
overheated and stopped working), as visible in Table I.

VI. CONCLUSION AND FUTURE WORKS

In this work we improve our scheduler presented in [1]. the
current custom scheduler applies an algorithm that makes it
more sensitive to environmental and application changes. This
enabled us to extend the limits of nodes capabilities, especially
scheduling edge-native applications.

A fully functioning 5G and Edge computing network was
build, complete with 5G radio and connectivity located in the
proximity of the IoT devices. All the LTE virtualized functions
are hosted at the same server rack as the Kubernetes cluster,
as per the definition of Edge Computing.

Our solution is capable of adjusting jobs allocations over
the nodes, balancing not only memory and CPU usage, but
also multiple specific network and infrastructure parameters.

Points of improvement regard the speed and efficiency of the
scheduling process in case of stressful deployments: starting
from 30 pods onward, the application is ready to run earlier
for the custom scheduler. At 50 pods the time of scheduling
is cut in a half compared to the default scheduler. While the
custom scheduler also manages to allocate up to 60 pods, the
default one causes all the devices to overheat and shut down
even before completing container creation. In the next works
we plan to reduce the sampling of the nodes and network
status. Each parameter should have a separate sampling rate,
adapted according to the application dynamic behavior and
previous footprint in the score calculation. The idea is to
further shrink down the impact of the metric agents on the
nodes and the network, intending to shorten the reaction time
of the scheduler.

APPENDIX A
SIMULATING IIOT APPLICATIONS

To perform the tests three different use cases were produced,
having the purpose of emulating different main category
scenarios that could occur in an Industrial IoT setting.

The use cases are simulated by applications manipulating
the 3D model of a car with high polygon count (190426), an
object that could be used within the construction pipeline of
an automotive industrial plant.

All the use cases represent execution scenarios that are run
and combined during the scheduling trials. The purpose is to
evaluate how the scheduling decisions are influenced and how
some parameters of the nodes, related to their longevity, are
being preserved.
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1) CPU Load - 3D Model Rotation: This use case has
been simulated by generating a lengthy CPU-bound set of
operations, to create a load that could strongly influence the
scheduling process: the rotation of the 3D model. Since it is
a geometric transformation that consists completely of matrix
multiplication.

2) Memory Load - Loading a Set 3D Models: The method
to perform this simulation consisted of loading what would
conceptually be considered as a 3D scene containing multiple
copies of the car model used for this test. The number of cars
that have been used in this test scenario was limited to 5,
for a total memory consumption of 118.45MB. This choice
was dictated by the necessity of creating a substantial memory
load in an environment that was already constrained, without
making a node unusable for scheduling already before the
beginning of the tests.

3) Network Load - Streaming a 3D Model File: To simulate

this use case, the 3D model file has been sent across the
network on which the cluster is running, in order to generate
some relevant network load. More in detail, the master node
of the cluster acts as server for the worker nodes, which will
stream the file from it. This streaming has been cycled to
consume network space throughout the scheduling process,
and the transmission has been set to happen in chunks of 1MB
at a time.
The main reason for choosing the master node as the streaming
server was its high capacity network interface (supporting Gi-
gabit Ethernet), which makes it capable of supporting multiple
streams of the aforementioned chunk size.

APPENDIX B
TESTING KUBERNETES DEFAULT SCHEDULER

The tests were conducted by performing the deployment of
a Deployment object which is configured to issue 40 replicas
of a small Python Flask webserver Pod to the cluster.

For the first phase this deployment was run and one or
more nodes were “killed” before it completed, to see how the
scheduler reacted to the change and how much time passed
before it realized what happened. This phase was intended to
be independent of the use cases.

For the second phase, the Deployment was created and deleted
(to perform a new scheduling from scratch, each time) for
every use case, in order to consider 7 total scenarios deriving
from all the possible diverse combinations of the 3 use cases:

« CPU load only (1 node);

e Memory load only (1 node);

o Network load only (1 node);

o CPU + Memory load (2 nodes);

e CPU + Network load (2 nodes);

o Memory + Network load (2 nodes);

o CPU + Memory + Network load (3 nodes).

The first test was to measure the behavior of the default
scheduler at the most normal circumstances, which means that
all the nodes are available at the beginning of the process and
no node died during the scheduling process. The “Time taken”
row in the following tables represent the time needed to fully
complete the scheduling of all 40 replicas.

TABLE 11
BEHAVIOR OF THE DEFAULT SCHEDULER IN NORMAL CONDITIONS

Deployment test 1 - Default scheduler

Nodes knodel [ knode2 [ knode3 [ knoded
Time taken 34s
# Pods 10 10 10 10
CPU temperature | 50.5 °C | 50.5 °C | 51.0 °C | 54.5 °C
Memory usage 397MB 383MB 412MB 391MB
Network latency 1.83ms 3.54ms 3.95ms 4.47ms

As it is visible, from Table 11, the default scheduler tries to

put the same number of pods in each node. That’s its main
way of performing load balancing, in the most general case.
Thus, this type of result was expected.
The following cases saw the default scheduler of Kubernetes
acting the same way even when one or more nodes stopped
responding for a short period (both at the beginning and during
the scheduling process). The pods assigned to that node would
remain in a Pending state until the node started responding
again, resulting only in a slight increase of the scheduling
time. The results are shown in the tables below. The simulation
of the dead node was done by disabling its network interface,
making it impossible for the master node to communicate with
it, in 2 steps: first for 10 seconds, then for 20 seconds. In the
following table, knode4 was “’killed” for the aforementioned
amounts of time.

TABLE IIT
BEHAVIOR OF THE DEFAULT SCHEDULER - 1 NODE DIED FOR 10s

Deployment test 2 - Default scheduler

Nodes knodel [ knode2 [ knode3 [ knoded
Time taken 42s
# Pods 10 10 10 10
CPU temperature | 50.5 °C | 49.2 °C | 51.2°C | 555 °C
Memory usage 389MB 381MB 412MB 396MB
Network latency 2.87ms 3.21ms 3.94ms 8.37ms
TABLE IV

BEHAVIOR OF THE DEFAULT SCHEDULER - 1 NODE DIED FOR 20S

Deployment test 3 - Default scheduler

Nodes knodel [ knode2 [ knode3 [ knoded
Time taken 47s
# Pods 10 10 10 10
CPU temperature | 51.5 °C | 51.5°C | 51.5°C | 57.5°C
Memory usage 400MB 386MB 414MB 399MB
Network latency 3.27ms 2.41ms 2.91ms 5.36ms

The same test was performed by “killing” two nodes for
the same two periods of time. The result was a slight increase
to 56 seconds overall for the entire scheduling process in
the case of the two nodes dying for 10 seconds, visible in
Table V. The nodes that were disconnected were knode3 and
knode4. In the case of the two nodes getting disconnected for
20 seconds, a very similar situation occurred, with a further
increase in scheduling time. It is important to notice that the
core temperatures are quite stable across different scenarios.
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Lab environment at the garage.

TABLE V
BEHAVIOR OF THE DEFAULT SCHEDULER - 2 NODES DIED FOR 108

Deployment test 4 - Default scheduler
Nodes knodel [ knode2 [ knode3 [ knode4
Time taken 56s

# Pods 10 10 10 10
CPU temperature | 50.5 °C | 51.0 °C | 52.1 °C | 54.8 °C
Memory usage 402MB 388MB 418MB 399MB
Network latency 3.48ms 2.51ms 2.91ms 4.86ms

TABLE VI

BEHAVIOR OF THE DEFAULT SCHEDULER - 2 NODES DIED FOR 20S

(1]

(2]

(3]

(4]

[5]

(6]

(71

(8]

(91

[10]

[11]

Deployment test 5 - Default scheduler
Nodes knodel [ knode2 [ knode3 [ knode4
Time taken 63s

# Pods 10 10 10 10
CPU temperature | 51.5 °C | 52.1 °C | 542 °C | 58.0 °C
Memory usage 402MB 388MB 418MB 399MB
Network latency 2.15ms 3.27ms 2.84ms 4.21ms
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