
Tehnički vjesnik 27, 2(2020), 411-422 411

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20191130092745
Original scientific paper

A Fibrational Method of Indexed Coinductive Data Types

Decheng MIAO, Chaoyang WANG, Xinsheng LIU, Yonglin LIANG

Abstract: As a fundamental issue in type theory, indexed coinductive data types (ICDT, for short) is of crucial importance, which is essentially semantic computing problem
in programming. Based on fibrational method, this paper analyses semantic behaviours of ICDT and describes their universal coinductive rules. We executed some works
in semantic computing and program logic of ICDT including their math structures and categorical properties. Example analyses prove the effectiveness of the proposed
fibrational method and its applicability in program languages. Our work is based on fibration; a general math setting that can compute semantics automatically rather than
depend on particular computing environments and syntactic forms of ICDT.

Keywords: category; coinductive data types; computation; fibration; programming

1 INTRODUCTION

The coinductive data type [1] analyses the semantic
behaviours of data types in program languages and type
theory; it is a dual concept of inductive data types with
coalgebra as its math support [2, 3]. It observes the
dynamic behaviours of languages during program
execution. Inductive and coinductive data types form a
complementary solution to improve the abilities of syntax
construction and the semantic computation of program
languages. ICDT, one kind of coinductive data type, has
more semantic computing power and is capable of dealing
with more complex data structures in programming. ICDT
is an important part of programming and type theory.
Traditional methods of ICDT, including category theory
and coalgebra, make type theory models in the local
Cartesian closed category, which then gives rise to two
consequences: one is that indexed coinductive data types
and the relation categories which describe their semantics
co-exist in the same category together; another is that
functor and its lifting are identical. Thus, this has some
limitations to analyse semantic behaviours and depict
coinductive rules.

Fibrations are a recently emerging trend in computer
science, especially in categorical methods; they have many
applications, such as database system modelling [4, 5],
software specifications [6], and programming [7, 8]. In a
fibrational setting, depicting the semantic behaviours of
ICDT is no longer restricted to functions or morphisms, but
is generalized to objects in a total category. More
importantly, ICDTs and relation categories do not coexist
in the same category any longer, but the latter constructs
functor which is lifted in corresponding total categories to
represent its abstracted semantic computing and program
logic of ICDT. Hermida and Jacobs performed a great deal
of work in this field [9].

We used fibrations to discuss ICDT in our works,
firstly taking it to be the object set in the base category and
taking its semantic behaviours to be the object set in total
category; next we established the responsible relations in
program logic directly between the ICDT and its semantic
behaviours using an equation and quotient functor; lastly,
we constructed the ICDT corecursive operations to
describe abstract coinductive rules with universality using
selffunctor constructed in base category and their

corresponding lifting equation-preserving in the total
category.

Our primary works have researched the semantic
behaviours of ICDT and its coinductive rules using
fibrations. The rest of the structure of our paper is as
follows. In Section 2, we study some current related works.
In Section 3 we introduce some basic concepts, such as the
bifibration and reindexed functor. In Section 4, we present
a single-sorted indexed fibration on slice categories to
analyse the semantic behaviour of single-sorted ICDT and
abstractly depict its coinductive rule with universality. In
Section 5, we extend a discrete indexed object to the
indexed category, developing single-sorted indexed
fibration to many-sorted indexed fibration, and analysing
the semantic behaviours of many-sorted ICDT and
abstractly depicting its coinductive rule with universality.
Lastly, we summarize our conclusions and discuss future
researching work.

2 RELATED WORKS

As a coinductive data type whose abilities of semantic
computation are stronger, ICDT takes coalgebra as its math
foundation, introducing tools such as terminality and
bisimulation to type theory, which has particular
advantages in analyzing and describing the dynamic
semantic behaviors of programming. From the perspective
of document retrieval, Hagino maybe is the first one who
worked on relationship between inductive and coinductive
data type systematically using the dialgebras structure in
[10]; his work laid the research foundation of the
coinductive data type. However, there exist certain
deficiencies in the polymorphism type system, the
relationship between syntax construction and dynamic
behaviors, the applications of coinduction data types.

Scholars' joint efforts provided the impetus for the
further development of coinductive data types. Nogueira
studied the relationship between inductive and coinductive
data types and their application in polymorphism
programming using bialgebra in [11]. Authors in [12]
further melted the inductive and coinductive data type by
λ bialgebra and distributive laws, which explored the
relationship between syntax construction and dynamic
behaviors of data types. Poll et al. extended the works of
Hagino based on sub-type and inheritance, and they
obtained results on the connections of inductive and

Decheng MIAO et al.: A Fibrational Method of Indexed Coinductive Data Types

412 Technical Gazette 27, 2(2020), 411-422

coinductive data types using the dual properties of algebra
and coalgebra [13]. Greiner et al. brought coinductive
principles in program languages. They studied coinductive
data types in programming [1, 14]. Authors in [15]
described indexed coinduction by co-recursion. All of the
above results solved the aforementioned questions to some
extent. Meanwhile, in the field of applications of
coinductive data types, Gimenez studied some applications
by Coq, the formal theory proof tool in [16]. Vene
researched coinductive data types in the functional
program language Haskell [17]. Most of the above results
applied the methods of category theory and coalgebra, and
those based on fibrations only focused on certain respects,
such as the logic reason of coinductive data types and the
validations of coinductive rules. For example, Hermida
demonstrated the coinductive rules of final coalgebra with
quotient types in [9]. Subsequently, Ghani et al. broke
through the limitations of polynomial functors in [9], and
developed their work to generic functors. Recently, they
also presented λ1 - fibration, constructed parameterized
units of measure fibration UoM, and proved basic
propositions of [18]. Based on [9], [19] proved the
soundness of bisimulation coinduction in a fibrational
setting, and provided a new categorical method of weak
bisimulation by changing parameters. Chen and Urbatput
forward a categorical method of automata theory, applied
partial order set opfibration to study some concepts of the
theory of algebraic automata in [20]. Based on seminal
work by Worrell in [21], Hasuo et al. discussed coinductive
predicates and final sequences in a fibration in [22], they
identified some categorical 'size restriction' axioms that
guarantee stabilization of final sequences after ω steps.

The current studies focus largely on coinductive data
types; and the research on ICDT is still in its preliminary
stage.There are many interesting questions in the field of
semantics and programming; for instance, analyzing
semantics behaviors and representing coinductive rules,
particularly the latter are almost produced automatically.
Those automatically produced coinductive rules lack a
stable mathematical basis and concise formal specification.
Our work focuses on semantics behaviors and coinductive
rules of ICDT through fibrations. Comparing with
conventional methods such as coalgebra and categoretical
theory, this paper achieved the following: it analyzed
semantic behaviors of ICDT succinctly using fibrations, it
improved program languages processing and proving
abilities for the semantic behaviors of ICDT, and it
presented and described the coinductive rule with
universality of ICDT. Meanwhile, all such works do not
depend on specific computing enviroment, but they supply
a sturdy mathematic basis as well as brief and unified
description modes to semantics computing and logic of
programming.

Using fibrational methods to study ICDT in formal
languages extends and deepens the conventional ways of
coinductive data types at categoretical theory, especially
after coalgebras emerged, combining dually some category
notions, including the fibration and the opposite fibration,
reindexed functor and opposite reindexed functor, presents
powerful vitality for fibrations in researching ICDT. There
are wide development prospects in computer science
theory foundations and engineering practice. Moreover,
using fibrational method to research ICDT in formal

semantics is not purely math research, but from the
perspective of soft theory, integrating fibration method to
the up-to-date results of type theory, formal languages and
monads, this collaborates with fundamental study
systematically and deeply for certain ICDT kernel
problems including category interpreting of key notions,
semantics behaviors and formal rules.

3 FIBRATION AND OPFIBRATION
3.1 Fibration and Reindexed Functor

We assume readers have some categorical
foundations, such as functor, adjunction,and natural
transformation. Considering they have not presupposed the
set theoretical models based on mathematical logic, some
current basic math literature does not require all morphisms
to be set when category is defined, but rather analyzing
from the practical application perspective of computer
science, we deem it is reasonable to confine all morphisms
to a set. If all objects and morphisms can form two sets,
respectively, in a category, the category is called a small
category in [23]. The whole objects discussed in our works
are in view of the concept of small category; readers can
find other details for fibrations in [23-25]. For a category
 , let Obj  to be the objects set, Mor  to be the

morph isms set.
Definition 1. Let : P →  be a functor between two

small categories  and  , : f C D→ ∈ orM  and
()P Y D= . A morphism : u X Y or→ ∈ M  is a Cartesian

arrow of f and Y, if the following three are satisfied: (1)
P(u) = f. (2) For : v Z Y or∀ → ∈ M  , : ()h P Z C or∀ → ∈ M  ,
the diagram commutes, i.e. ()f h P v⋅ = .(3) There exists a
unique : w Z X or→ ∈ M  such that u w v⋅ = and P(w) = h.

For the Cartesian arrow u of f and Y, we say u lies
above f; similarly, Y lies above D. If u is a cone [23] in
category  , then by the uniqueness of the cones morphism
w, the Cartesian arrow u in Definition 1 is also a universal
cone i  ,namely, the limit cone. Accordingly, the vertex X
of universal cone u is the terminal object of u [26]. Then
by the universal properties of universal cones, the
Cartesianarrow u is an isomorphism. We denote Yf

↓ for
the Cartesian arrow u of f and Y in Definition 1 for
simplification.

Definition 2. Let : P →  be a functor between two
small categories  and  . If there exists a Cartesian arrow

Yf
↓ of f and Y for Y bj∀ ∈O  and : ()f C P Y or∀ → ∈ M  ,

then we call P a fibration.
Using Definition 2, a fibration is a functor that ensures

a large number of Cartesian arrows. For a fibration
: P →  ,  is called base category,  total category of

P. For any object C in bjO  , X bj∃ ∈O  and k or∈ M  , if
satisfying P(X) = C and P(k) = idc, then the sub-category

C of  composed of X and k is called a fiber over C [23],
and k is a vertical morphism. In fact, fiber C is a full
subcategory of the total category .

Example 1. Let Set be the set category, X bj et∀ ∈O S , a
predicate over X is a two-tuples < X, P >, : P X et→ S . For

x X∀ ∈ , P(x) forms a set, which describes the semantic
behaviors of x, and X is called the domain of predicate< X,

Decheng MIAO et al.: A Fibrational Method of Indexed Coinductive Data Types

Tehnički vjesnik 27, 2(2020), 411-422 413

P >. The predicates morphism from <X, P> to <X', P'>, is
an ordered pair (,): < , > ', ~f f X P X P'→< > , where

: f X X '→ is a function in relevant predicate domain, and
for , : () (())~x X f P x P' f x∀ ∈ → , P(x) is mapped to P'(f(x)).
Predicates and their morphisms form the predicate
category  , and then predicate fibration : Pre Set→
maps object < X, P > in total category  to X.

Let : g X Y→ be a morphism in the base category etS
on the predicate fibration Pre in Example 1, for

, Y Q bj< >∈O  . We write Id for the identify functor, then a

Cartesian arrow , Y Qg↓
< > of g and < Y, Q > on the predicate

category Pre is (,): etg Id Qg Q→S .

Example 2. Write → for the arrow category, domain
functor dom: → →  maps an object : f X Y→ in →
to object X in  . We call dom a domain fibration above 
. Functor cod: → →  maps an object : f X Y→ in →
to the object Y in  . If  has pullbacks [23], then we call
cod the codomain fibration.

For object : f X Y→ in fiber Y
→ on Y, we have

morphism in the base category: : f ' X ' Y or→ ∈ M  , so a
Cartesian arrow of f' and f on the codomain fibration cod is
a pullback square of f along f'.

Example 3. Let category  have pullbacks, then
()Sub  is a category constituted by the sub-objects of  ;

that is, objects of ()Sub  are mono-morphism equivalence
classes. For []: ()f X I bj Sub>→ ∈O  and another object
[]: g Y J>→ , the morphism from [f] to [g] is
(): [] [] ()I J f g or Sub→ → ∈ M  . We write : I Jα → , : X Yβ →

, thus it satisfies diagram commuting, i.e., [] []f gα β⋅ = ⋅ .
Sub-object fibration : ()S Sub →  , maps a mono-
morphism equivalence class [f] to its codomain.

Write ()*f Y for domain of Cartesian arrow Yf
↓ , then

()f Y∗ lies over C; that is, DY bj∈O  , () C
*f Y bj∈O  .

Therefore we have the definition of a reindexed functor.
Definition 3. If a morphism : f C D→ in the base

category  is extended to be a functor : D C
*f → 

between fibers D and C , then we call *f a reindexed
functor induced by f.

Morphism f is the relationship between ICDTs in the
base category, and reindexed functor *f is a lifting of f in
the total category, which is related to their semantic
behaviors.

3.2 Opfibration and Opposite Reindexed Functor

Definition 4. Let : P →  be a functor between two
small categories  and  ; : f C D or→ ∈ M  ,

: u X Y or→ ∈ M  . The morphism u is called to be an
opposite Cartesian arrow of f and X if three following
conditions hold. (1) P(u) = f. (2) For : v X Z or∀ → ∈ M  and

: ()h D P Z or∀ → ∈ M  , this satisfies diagram commuting,
that is, ()h f P v⋅ = . (3) There exists a unique

: w Y Z or→ ∈ M  such that w u v⋅ = and P(w) = h.

Similar to Definition 1, if u is a cocone [23] in category
 , then the opposite Cartesian arrow u in Definition 4 is a
universal cocone in  through the uniqueness of the
cocones morphism w, namely, the colimit cocone.
Accordingly, the vertex Y of the universal cocone u is the
initial object of u in [26], while the opposite Cartesian
arrow u is an isomorphism by the universal properties of
universal cocones.

Definition 5. Let : P →  be a functor between two
small categories  and  . If for X bj∀ ∈O  and

: f P(X) D or∀ → ∈ M  , there exists an opposite Cartesian
arrow of f and X, then we call P an opfibration.

Definition 6. If the functor : P →  between two
small categories  and  is a fibration and an opfibration
simultaneously, then it is a bifibration. Write Xf↓ for the
opposite Cartesian arrow u of f and X in Definition 4. Let

()* Xf be the codomain of Xf↓ . Then we say ()* Xf lies

above D, i.e., CX bj∈O  , () D
* bjf X ∈O  .

Definition 7. If a morphism : f C D→ in the base
category  is extended to be a functor : C D

* f → 

between fibers C and D , then * f is an opposite
reindexed functor induced by morphism f.

3.3 Adjoint Properties of Reindexed and Opposite

Reindexed Functor

Definition 8. If F : G →  is a pair of adjoint
functors, η, ε is the unit and counit, respectively, and for

X bj∀ ∈O  , Y bj∀ ∈O  , : ()f F X Y or∃ → ∈ M  ,
: ()g X G Y or∃ → ∈ M  , the transpose of f and g are G(f)ηX

and εYF(g), respectively.
Theorem 1. Let : P →  be a fibration between the

two small categories  and  , then P is a bifibration iff
: f C D or∀ → ∈ M  , *f has a left adjoint functor* f .

Proof. ⇒ . Let * f : C D
*f →  be a pair of adjoint

functors, let η be the unit, ε be the counit, and : P → 
be a fibration between two small categories  and  . Then

Y bj D∃ ∈O  ; we can construct a Cartesian arrow

: ()*
Yf f Y Y↓ → whose codomain is Y. CX bj∃ ∈O  , let

: ()*l X f X→ be the morphism above f. In the following, we
prove that l is an opposite Cartesian arrow above f. This
satisfies () X* f Xl f η↓= ⋅ by the adjoint property of * f *f ,
see Fig. 1. We write id for the identify morphism. If

: g X Y→ is another morphism above f, let :)(*X f Yφ → be
the vertical morphism in C , then we have () CP idφ = . By

Definition 1, we have that Yg f φ↓= ⋅ , where Cartesian

arrow Yf
↓ is a universal cone, whose universal property

ensures φ is the unique morphism from g to Yf
↓ . Let φ

∧
 be

the transpose of φ under the adjunction * f *f . Then

(): ()*
X

*
Y f f Yφ ε φ

∧
= →⋅ , and ()*

Xf φ η φ
∧

⋅ = . The universal

Decheng MIAO et al.: A Fibrational Method of Indexed Coinductive Data Types

414 Technical Gazette 27, 2(2020), 411-422

property of universal cone Yf
↓ ensures the unique existence

of ()*f φ
∧

; it satisfies diagram commuting, that is,

() ()* f X Y
*ff f φφ ↓ ↓

∧∧
=⋅ ⋅ . Therefore, there exist equations

() ()*
* f X X Y X Yfl f f f gη φ ηφ φ φ

∧
↓ ↓ ↓

∧ ∧
= = ⋅ =⋅ ⋅ ⋅ ⋅ = ⋅ ,i.e. g lφ

∧
= ⋅ .

Then the transpose φ
∧

 of φ is the unique morphism from l

to g, and ()
D

P idφ
∧
= . Then by Definition 4, l is an opposite

Cartesian arrow Xf↓ above f.

Figure 1 Proof of opposite Cartesian arrow

⇐ . We assume : g X Y or→ ∈ M  lies above f, write

(, ())*
C X f Y for the set composed of morphisms above C

in fiber C , ((),)*
DT f X Y for the set composed of

morphisms above D in fiber D . For : Ck X ' X or∀ → ∈ M  ,
: Dh Y Y ' or∀ → ∈ M  ; because : P →  is a bifibration, it

has an one-to-one corresponding map

, : ((),) (, ()).* *
X Y D Cf X Y X f Yϕ →  We write

: C
opk X X ' or→ ∈ M  for an opposite morphism of k. This

satisfies that ()op X op X 'op * opk f f f k↓ ↓⋅ = ⋅ and

()
op op

* Y Y Yf Y
id f f id↓ ↓⋅ = ⋅ . Consequently, the left part of

diagram in Fig. 2 commutes. Similarly, we have

()* f X
X X

X
op opid f f id↓ ↓⋅ = ⋅ and ()*

Y 'Y
op opff h f ↓↓⋅ = , i.e., the

right part of diagram in Fig. 2 also commutes. Hence ϕx, y

is a natural isomorphism. We thus prove * f *f by
definition of adjoint functors in [26].

Figure 2 Proof of adjunction property

Remark 1. Theorem 1 gives a condition for
determining if a functor is a bifibration. It also combines
the adjoint property of the reindexed functor *f and the
opposite reindexed functor * f in the fibrational settings.

4 SEMANTIC BEHAVIOURS OF SINGLE-SORTED ICDT

AND ITS COINDUCTIVE RULE

From the viewpoint of fibrations, single-sorted ICDT
is an ICDT with discrete indexed objects, such as streams,

lists, and trees. Based on the results from [27] and [28], this
section constructs single-sorted indexed fibration by
fibrations, analyzes semantic behaviors of single-sorted
ICDT, and presents a coinductive rule of single-sorted
ICDT with universality.

4.1 Semantic Behaviours of Single-Sorted ICDT
4.1.1 Truth Functor and Relation Fibration

Definition 9. Let : P →  be a fibration between two
small categories  and  . For D bj∀ ∈O  , if D Dbj∃ ∈O1  is
a terminal object in fiber D , and for : f C D or∀ → ∈ M  ,

()D
*f 1 is a terminal object in fiber C , i.e., the reindexed

functor *f preserves terminal objects, then we state that
fibration P has fibered terminal objects.

The fibered terminal object of predicate fibration Pre
in Example 1 is a function map of all elements in the set X
to a singleton set. The fibered terminal object of the
codomain fibration cod in Example 2 is an identity
function. The sub-object fibration S in Example 3 is an
equivalence class of identity function.

Definition 10. Let : P →  be a fibration between
two small categories  and  , and the functor : PT → 
maps C bj∀ ∈O  to a terminal object in fiber C . Then TP is
a truth functor of fibration P. If TP has one right adjoint
functor {−}, then we call{−} a comprehension functor of
P.

Let 1 and 1 be the terminal objects of the base
category  and the total category  , respectively. Then

()P =1 1  . For C bj∀ ∈O  , there exists a unique morphism

: u C → 1 such that () ()*
PT C u≅ 1 . For : f C D or∀ → ∈ M  ,

we have (()) ()*
P Pf T D T C≅ , and the truth functor TP maps f

to its Cartesian arrow ()T DP
f ↓ in total category  .

Definition 11. Let : P →  be a fibration between
two small categories  and  ; its base category  has
products. Let Δ: →  be a diagonal endo-functor above
 , which maps C Obj∀ ∈  to the product object C × C.
Then the pullback of P along Δ forms fibration

(): ()Rel P Rel →  , Rel(P) is called to be a relation
fibration of P.

The object of the total category ()Rel  on Rel(P) is
relation (C, D); for another object (C', D'), let : f C C '→

and : g D D'→ be two morphisms. Then
, : (,) (,) ()()f g C D C ' D' or Rel→ ∈ M  . The relation fibration

Rel(P) in Fig. 3 maps the relation (C, D) to object C in the
base category  ; functor Π maps (C, D) to object D in 
, and P(D) = Δ(C). Moreover, the property pullback-
preserving of Definition 11 ensures that fiber ()CRel 

above C on Rel(P) is an isomorphism to fiber C C× above
C × C on P, i.e., ()C C CRel ×≅  .

Figure 3 Relation fibration Rel(P) for P

Decheng MIAO et al.: A Fibrational Method of Indexed Coinductive Data Types

Tehnički vjesnik 27, 2(2020), 411-422 415

The procedure of building new fibration using specific
fibration is called to be change of base. For instance, we
can build Rel(P) using the change of base from P in
Definition 11. The change of base keeps construction
including preserving fibered terminal objects in [26]; if the
fibration P has one truth functor TP, then its relation
fibration Rel(P) has truth functor TRel(P). Meanwhile,we can
gain TRel(P)(C) = TP (C × C). The predicate fibration Pre in
Example 1 constructs a relation fibration Rel(Pre) using a
change of base, and its truth functor maps set X to a two-
tuple relation : R X X et× → S , i.e., it maps each ordered pair
(x, x') to a singleton set {*}.

Theorem 2. Let : P →  be a bifibration between
two small categories  and  ; base category  has
pullbacks. If for each pullback square in  , natural
transformation * * * *s t g f⋅ → ⋅ is an isomorphism, then P
satisfies Beck-Chevalley condition.

Proof. Let ηf be the unit of the adjoint functor * f *f

, and let εs be the counit of the adjoint functor * s *s (Fig.
4). Then f Id Bη =  , s Id Cε =  . The following equation

holds: () () ()* * * * * *
fs t s t f fη⋅ = ⋅⋅ ⋅ ⋅ , and the pullback square

in Fig. 4 satisfies diagram commuting: f t g s⋅ = ⋅ , and s is
a pullback of f along g, t is a pullback of g along f. Using
the pullback property of the reindexed functor, we have

* * * *t f s g≅⋅ ⋅ . So
() () () ()* * * * * * * * * * * *s t f f s t f f s s g f⋅ ⋅ ⋅⋅ = ⋅ ≅ ⋅⋅ ⋅ ⋅ , and

() () () () ()* * * * * * * * * * * *
ss s g f s s g f g f g fε⋅ ⋅ = =⋅ = ⋅⋅ ⋅ ⋅ ⋅ ⋅ , that is,

* * * *s t g f⋅ ≅ ⋅ . Hence the natural transformation
* * * *s t g f⋅ → ⋅ is an isomorphism.

Figure 4 A pullback square in base category 

Remark 2. In other word, based on the pullback square

in the base category on a bifibration, Theorem 2 defines a
natural transformation whose functors preserve the
structure between corresponding fibers in the total category
 . The theorem further ensures the reindexed functor and
the opposite reindexed functor satisfy appropriate
properties of diagram commuting. For example, the
predicate fibration Pre in Example 1 and the codomain
fibration cod in Example 2 both satisfy the Beck-Chevalley
condition in Theorem 2.

Definition 12. Let : P →  be a bifibration which is
satisfying the Beck-Chevalley condition; the base category
 has products, furthermore, TP is one truth functor of P.
For any C bj∀ ∈O  the active function : C C C Cδ → × of
natural transformations : Idδ ∆→ on C extend one

opposite reindexed functor *δ . Meanwhile,

: ()PEq Rel→  is one equation functor of P, we can

obtain *
P PEq Tδ= ⋅ .

The truth functor TP of T is mapping C to one terminate
object TP(C) in fiber C . From Definition 11, we can
obtain that Rel(P) is the change of base of P along Δ. So if
fibration P has one fibered terminate object, then its
relation fibration Rel(P) has one fibered terminate object
too. If the opposite reindexed functor*δ can map terminate
object TP(C) to the (())*

PT Cδ , then

(()) (())*
P C C CT C bj Relδ ×∈ ≅O   , and the equation functor

PEq of P also map f or∀ ∈ M  to only one unique

morphism on f × f which is determined by δf and ()()T CP
Cδ ↓ .

The intuitional implication of the equation functors is that
identical parameters have identical results [9]. Take the
predicate fibration Pre in Example 1 as an example; the
object in its fiber ()CRel  is the equation relation

: R X X et× → S , and ()(,) 1PreEq C x x' = if 'x x≠ ; and
()(,) 0PreEq C x x' = if otherwise.

4.1.2 Single-Sorted Indexed Fibration and its Equation

Functor

Theorem 3. Let : P →  be a fibration or bifibration
between two small categories  and  . Then : PT →  is
one truth functor for P. So, I bj∃ ∈O  , I is one discrete
indexed target on the base category  . Assume the single-
sorted indexed functor P / I, ()P/ T I / I→  tobe

() (): ()P / I u P u P Y I bj / I= → ∈O  ,for : () ()P Pu Y T I bj / T I∀ → ∈O  .
Then the single-sorted indexed functor P / I is also a
fibration or bifibration.

Figure 5 Cartesian morphism ¯

Xf of P / I above f

Proof. For : f C D or∀ → ∈ M  , we can get one

Cartesian arrow : ()*
Xf f X X↓ → on f about fibration P,

which satisfies P(X) = D. We also obtain an only morphism
: () ()*

Pw T I f X→ so have Xv f w↓= ⋅ and ()P v f h= ⋅ (Fig. 5).
On the supposition that we have : D I bj / Iα → ∈O  ,

: C I bj / Iβ → ∈O  . So : () ()P u P Y D or / Iγ α→ = → ∈ M  ,
: () ()P u P Y C or / Iδ β→ = → ∈ M  , and the diagram commutes:

fγ δ= ⋅ . In the total category ()P/ T I on functor P / I,

: () ()P Ps X T I bj / T I→ ∈O  , : () () ()*
P Pt f X T I bj / T I→ ∈O  ,

we have : ()Pg u s Y X or / T I→ = → ∈ M  . So we can obtain
an only morphism, such that the diagram commutes, i.e.

Decheng MIAO et al.: A Fibrational Method of Indexed Coinductive Data Types

416 Technical Gazette 27, 2(2020), 411-422

xg f k↓= ⋅ . By Definition 1 xf
↓ is a Cartesian arrow of f on

functor P / I. So if P is a fibration, then the single-sorted
functor P / I is also a fibration.

Let () ()P Pm : Z T I bj / T I→ ∈O  . So P / I (m) = α using

functor P / I. Meanwhile, assume : ()Z *f Z f Z↓ → one
oppositive cartesian arrow for f about P (Fig. 6). The
commuting diagrams in the slice categories / I ,

fα β= ⋅ , and we can obtain one only morphism
: () ()*

Pn f Z T I→ in the total categories ()P/ T I over

functor P / I such that the diagrams commute, Zm n f↓= ⋅ . By

Definition 4, Zf↓ is an opposite Cartesian arrow of f on
functor P / I. Namely, if P is an opposite fibration, then the
single-sorted indexed functor P / I is also an opposite
fibration.

Therefore, if P is a fibration or bifibration, then the
single-sorted indexed functor P / I is also a fibration or
bifibration.

Figure 6 Opposite Cartesian morphism

Zf
↓ of /P I above f

Remark 3. Theorem 3 proves that the single-sorted

indexed fibration P / I and fibration P have the same
properties of fibration or bifibration; we also provide the
definition of a single-sorted indexed fibration. In fact, a
change of base of P along the domain functor
dom : / I →  in Example 2 can construct a single-sorted
indexed fibration : ()PP / I / T I / I→  . For

: C I bj / Iα∀ → ∈O  , the fiber C above C on P is an
isomorphism to the fiber (())/ T I α above α on P / I [28],
and if P has a truth functor, then the single-sorted indexed
fibration P / I constructed by P also has a truth functor.

Any : C I bj / Iα∀ → ∈O  , we presume two pull-backs
of α along α to be i and j, separately. So the productive
object of α × α is iα ⋅ or jα ⋅ . Namely, the productive
object / I in those slice categories is ascertained by the
pullback. Analogously, for definition 11, the subsequent
result is the concept of a relation fibration of the single-
sorted indexed fibration P / I.

Definition 13. Assume : ()PP / I / T I / I→  to be a
single-sorted indexed fibration. The base categories / I
have product. Presume Δ : / I / I / I→  to be one
bidiagonal selffunctor in the sliced category / I . So Δ / I
mapping / Iα∀ ∈  to the product object α × α. Then
pullbacks of P / I along Δ / I makes one fibration

(): (())PRel P / I Rel / T I / I→  . At the same time, Rel(P /
I) is one relation fibration for P / I.

For an object (())PR bj Rel / T I∈O  above α on Rel(P /
I), an object ()PR' bj / T I∈O  above α × α on P / I and an

object R'' bj∈O  above dom(α × α) on P, there exists the
isomorphism R R' R''≅ ≅ in [28]. The action function of α
on the natural transformation : Δ/ I/ I Id / Iδ → is
() : ()/ I C domαδ α α→ × .Then the intuitional meaning of the
natural transformation δ / I is a morphism from one object
to another object in the slice category / I . Similarly, for
Definition 12, the following defines the equation functor of
a single-sorted indexed fibration P / I.

Definition 14. Let : P →  be a bifibration satisfying
Beck-Chevalley condition between two small categories
 and  , where P has the truth functor, and base category
 has the product. Let the truth functor of a single-sorted
index fibrations P / I be TP/I. So

() : (())*
P / I P / I PEq / I T / I Rel / T Iδ= ⋅ →  is called to be

one equation functor for P / I.
The equation functor EqP/I maps the object : C Iα → in

the slice category / I to a unique morphism

() () ()*
P / I P/ I T C T Iαδ →⋅ above α × α. The following

constructs the quotient functor using the single-sorted
indexed fibration P / I.

4.1.3 Quotient Functor and its Lifting

Let truth functor : PT →  of fibration : P →  be
substituted with the equation functor : ()PEq Rel→  of P.
P is displaced by its relation fibration Rel(P). Next,
applying Theorem 3, we make another fibration, i.e.,

() : () ()PRel P / I Rel / Eq I / I→  , any ()R bjRel∀ ∈O  . Here,
Rel(P) / I can map : ()PR Eq Iα → to be : ' QR Iα → , and α'
is one transpose of α to the adjoint functors Q EqP.

Definition 15. Assume adjoint functors τ
: (()) () ()P PRel / T I Rel / Eq Iσ →  satisfy commuted

diagrams, namely, () ()Rel P / I Rel P / I τ= ⋅ , and
() ()Rel P / I Rel P / I σ= ⋅ . Meanwhile, ()Rel P / I have the

right adjoint functors Eq(P/I) such that
()P / I P / IEq Eqτ= ⋅ .Then ()Rel P / I τ⋅ ()P / IEqσ ⋅ . And
()Rel P / I σ⋅ is called to be the quotient functor of the

single-sorted indexed fibration P / I, We write ()Rel P / I τ⋅

to QP/I. And we have QP/I EqP/I.

Figure 7 Construction of quotient functor QP/I

Let (,) (())PR C D bj Rel / T I∀ = ∈O  . Then
(,)P / IQ C D C= (Fig. 7). We have (,)C D DΠ = , for an object

Decheng MIAO et al.: A Fibrational Method of Indexed Coinductive Data Types

Tehnički vjesnik 27, 2(2020), 411-422 417

: () ()P Pf D T I bj / T I→ ∈O  ; we have () ()P / I f P D I= → ,
and there exists an object : g C I bj / I→ ∈O  ,

/ ()I g g g∆ = × ; therefore: dom(g × g) = P(D).
Definition 16. Let : P →  be one bi-fibration

satisfies Beck-Chevalley requirement with a truth functor

PT among small category  and  . Base categories 
have product and pullback. The functor

: ()PP / I / T I / I→  is a single-sorted index fibration for
P . We make a relational fibration Rel(P / I), an equational
functors EqP/I with a quotient functor QP/I of P / I. Presume
F to be one self functor into the base categories / I over
Rel(P / I). Then F ⊥ is a self functor into the total categories

(())PRel / T I over Rel(P / I). In case F ⊥ is satisfying

commuted diagrams, i.e., () ()Rel P / I F F Rel P / I⊥⋅ = ⋅ , some
isomorphism expresses satisfy, P / I P / IEq F F Eq⊥≅⋅ ⋅ and

P / I P / IF Q Q F ⊥⋅ ≅ ⋅ .Then we call F ⊥ one lifting which is
equation-preserving for F on Rel(P / I) into total category

(())PRel / T I .

4.1.4 Semantic Behaviours of Single-Sorted ICDT

Any : C I bj / Iα∀ → ∈O  , one F coalgebras
(, : ())r Fα α α→ is made using action of selffunctor F. We
call α the carrier of F coalgebras, the morphism between
(α, r) and another F - coalgebra (, : ())t Fβ β β→ is the
morphism : f α β→ between their carriers, which satisfies
the diagram commutes; that is, ()t f F f r⋅ = ⋅ . F -
coalgebras category is composed of F - coalgebras and
corresponding morphisms, writes ColagF. If the terminal F
- coalgebra (, : ())F out F F Fν ν ν→ exists, it is up to a unique
isomorphism with the universal properties, which are
determined by terminal coalgebra. The universal properties
are our primary tool to research the semantic behaviors and
coinductive rules of ICDT.

The single-sorted ICDT vF, which is also the carrier of
final F - coalgebras, is the max fixed points of the functor
F. The functor F is the syntax destructors of vF. The
corresponding morphism out describes a type of semantic
behavior of vF during the syntax destruction externally.
We apply equation functors EqP/I of the single-sorted
indexed fibration P / I, it mapped F – coalgebra (α, r) to an
F ⊥ - coalgebra,

(,) ((), (): () (())P / I P / I P / I P / I P / IEq r Eq Eq r Eq Eq Fα α α α= →

()))(P / IF Eq α⊥≅ . Accordingly, EqP/I(vF) is the carrier of

terminal F ⊥ - coalgebra. Therefore, the equation functor
EqP/I preserves terminal objects.

Write Coalg(EqP/I) for the functor from CoalgF to

F
Coalg ⊥ ,which maps all objects and their morphisms in the

base category / I over relation fibration Rel(P / I) to
ones into the total categories (())PRel / T I using the
equation functor EqP/I. Then the functor Coalg(EqP/I)
establishes a relationship between CoalgF and

F
Coalg ⊥ .

If ((), : () (()))P / I P / I P / IEq F out Eq F F Eq Fν ν ν⊥ ⊥→ is a

final F ⊥ - coalgebras into the total categories (())PRel / T I

over relation fibration Rel(P / I), then the out⊥ is one
homo-morphism image for out with the act of the
corresponding functor Coalg(EqP/I), namely, we have

()()P / ICoalg Eq out out⊥= . The final properties of final F ⊥ -

coalgebras ensure out⊥ determines an only isomorphism,
providing convenience in analyzing semantic behaviors
accurately and exactly depicting the coinductive rule of
single-sorted ICDT.

Figure 8 Adjoint properties of Coalg(EqP/I) and Coalg(QP/I)

Similarly, write Coalg(QP/I) for the functor from

F
Coalg ⊥ to CoalgF. Then we have Coalg(QP/I)

Coalg(EqP/I) by the adjoint property of the adjoint functor
[9]. For each F ⊥ - coalgebra
(, : ()), : () (())P Pq F X T I bjRel / T Iω ω ω ω⊥→ → ∈O  ,

((())()()) ()) (Q Q Q QP / I P / I P / I P / ICoalg q F F ωω ω⊥= → ≅ , that is,
Coalg(QP/I)(q)= QP/I(q). So QP/I(q) be one of homo-
morphism images of q with the act of the functor
Coalg(QP/I) (Fig. 8). If the morphism : ()P / Ig Eqω α→ is a

F ⊥ - coalgebras morphism from q to EqP/I(r), then the F -
coalgebras morphism : ()QP / Ih ω α→ from QP/I(q), to r is
an F - coalgebras homomorphisms about g. Similarly, g is
an F ⊥ - coalgebra homomorphism above h.

The left adjoint Coalg(QP/I) of functors Coalg(EqP/I)
causes a presentative mutual deduction relations among F
- coalgebras whose carrier is QP/I(ω), F ⊥ - coalgebras
whose carriers are ω, providing a concise and uniform
model ways to the math specification of the coinductive
rule of a single-sorted ICDT. The single-sorted ICDT vF is
the carrier of terminal coalgebra, if functor Coalg(EqP/I)
preserves terminal objects, then the lifting equation-
preserving F ⊥ of F on Rel(P / I) generates a sound
coinductive rule.

4.2 Coinductive Rule of Single-Sorted ICDT

One fibration equipping a quotient functor and
equation functor, the math specifiction of coinductive rule
is coherent to its semantics behaviors analysis of ICDT on
this fibration [9]. If : P →  and : ()PP / I / T I / I→ 
content the conditions of Definition 16, and let F be a self
functor into the base category / I over the relation
fibration Rel(P / I) for P / I, let vF be one carrier of final F

Decheng MIAO et al.: A Fibrational Method of Indexed Coinductive Data Types

418 Technical Gazette 27, 2(2020), 411-422

- coalgebras, F have its lifting which is equation-preserving
F ⊥ , then P / I have the coinductive rules whose carrier is
the single-sorted ICDT vF. This provides a sound basis of
validity judgment for F ⊥ applying F - coalgebra to
generate a coinductive rule on a single-sorted ICDT. That
is, if the single-sorted index fibration P / I equipping
quotient functor and equation functor depicts semantics
behaviors of the single-sorted ICDTs, their coinductive
rules on account of final F - coalgebras are available in the
procedure of semantics behaviors descrition in program.
Now we can obtain an universal coinductive rule which is
provided abstractly into fibrational settings for a single-
sorted ICDT.

On the basis of categoretical theory, the corecursive
computing of a coinductive data types rises in final
coalgebras semantic [2]. Any : C I bj / Iα∀ → ∈O  , for

F bj / Iν ∈O  , we use F to make the corecursive
manipulation (())unfold : F Fα α α ν→ → → to single-sorted
ICDT into the base categories / I . Any an F -coalgebras
(, : ())r Fα α α→ , unfold r is mapping r to a sole F -
coalgebras morphism : unfold r Fα ν→ , which is from (α,
r) to the final F -coalgebra (vF, out) (Fig. 9). Co-recursive
manipulation unfold origining in final coalgebras semantic
is a corecursive parameterized manipulation of the ICDT
in nature. The corecursive computings have many well-
defined properties such as exact semantical description,
adaptable expansibility and brief expressing.

Figure 9 F -coalgebra morphisms

In Definition 16, we have)) (())(P / I P / IEq F(F Eqα α⊥≅ ,

()) (())P / I P / IEq F(F F Eq Fν ν⊥≅ , and the equation functor
EqP/I, preserves terminal objects. Clearly EqP/I(vF) is one
carrier of final F ⊥ -coalgebras, writting it for

()P / IF Eq Fν ν⊥ = , let ()P / IX Eq α= . Using selffunctor F ⊥
makes the corecursive manipulation

(())unfold : X F X X Fν⊥ ⊥→ → → for a single-sorted ICDT
in the total categories ())PRel / T (I) (Fig. 10).

Figure 10 F ⊥ -coalgebra morphisms

An F ⊥ - coalgebras (, : ())X q X F X⊥→ , and unfold q is

mapping q to a sole F ⊥ - coalgebras morphism unfold q
X Fν ⊥→ from F ⊥ - coalgebras (X, q) to the final F ⊥ -

coalgebras ()F out,ν ⊥ ⊥ . For bj / Iα∀ ∈O  , X bj∃ ∈O

(())PRel / T I , we can obtain an universal coinductive rule
for a single-sorted ICDT.

(()) (): Uni P / ICoind X F X X Eq Fν⊥→ → → .

If (, : ())X q X F X⊥→ is a F ⊥ - coalgebra over F -

coalgebras (, : ())r Fα α α→ , so CoindUniXq is a F ⊥ -
coalgebras homo-morphism on unfold r.

4.3 Instance Analysis of Single-Sorted ICDT

Example 4. The type of element of a stream or an
infinite sequence is designated by index I, such as the
natural number Nat, integer Int and character Char,

I bj∀ ∈O  . For any stream : S I bj / Iα → ∈O  , selffunctor
: F Iα α→ × over / I , the operation : head Iα → is head

function, another operation : tail α α→ is tail function after
erasing the first item. Any streams properties

(())PR bj Rel / T I∈O  into the total categories (())PRel / T I
over the relation fibration Rel(P / I) for the single-sorted
index fibration P / I, for instance, bisimulation. For the
other stream object : S ' Iβ → into / I , the coinduction
for α and β about bisimulation property R is as follows: R
will be a relationship of bisimulation among two different
streams, i.e., α and β, if and only if (,) Rα β∀ ∈ , for
((), ())tail tail Rα β ∈ , there exsits head(α) = head(β).

If stream data Stream(I) is the carrier vF of final F -
coalgebras (, : ())F out F F Fν ν ν→ into the base categories

/ I , then for every F - coalgebras (, : ())r Fα α α→ , then
it will be lifted to be an F ⊥ - coalgebras (, : ())X q X F X⊥→

using relation fibration Rel(P / I), that is satisfying
commutive diagrams, namely,

(/)() (/) ()F Rel P I X Rel P I F X⊥⋅ = ⋅ . The terminal properties
of final F - coalgebras define a corecursive manipulation
unfold r about Stream(I) that implements the determinism
for the single-sorted ICDTs Stream(I). The other
corecursive manipulation for terminality of final F ⊥ -
coalgebras depicts the semantics behaviors for Stream(I).
If q lies above r, then CoindUniXq is a F ⊥ - coalgebra
homomorphism on unfold r, and traversing every property
R into the total categories (())PRel / T I over corresponding
relation fibration Rel(P / I), for PR bj Rel(/ T (I))∈O  , we
can then have a semantics set
{ (,) (), }P / IR X X | X Eq / Iα α= ∀ ∈Obj  ,that represents
behavior of Stream(I).

Taking Example 4 for an instance, unfold r represents
the map relation among stream α and its semantics
behaviors vividly. The availablity of unfold r supplies an
intuitive way to homo-morphism from coalgebras to final
coalgebras, so we can establish the coinduction definition
principle. To define function : ()unfold r Stream Iα → , we
only need to construct the corresponding operation r on α,
and let (α, r) be an F - coalgebra with F(α) = I × α.
Meanwhile, we can prove two homomorphisms are
equivalent given the uniqueness of unfold r. So we have
coinduction proof principle to demonstrate

, : ()m n Stream Iα → is equivalent to each other, we just

Decheng MIAO et al.: A Fibrational Method of Indexed Coinductive Data Types

Tehnički vjesnik 27, 2(2020), 411-422 419

demonstrate m and n are homo-morphism from the
identical coalgebras (α, r) to the final F - coalgebras
((), : () (()))Stream I out Stream I F Stream I→ as well, m and n are
also the same to unfold r.

Example 4 presents some fibrational tools, including
single-sorted indexed fibration, equation and quotient
functor to analyze semantic behaviors deeply and
coinductive rule of stream using fibrations, which
establishes a mathematical foundation for researching
semantic computing and the logic of program languages.

5 SEMANTIC BEHAVIORS AND COINDUCTIVE RULE OF

MANY-SORTED ICDT

Modeling based on the slice category / I analyzes
semantic behaviors and describes the coinductive rule of
single-sorted ICDT indexed by I. But I is only aimed at a
single-sorted ICDTs, so hardly to process a more
complicated many-sorted ICDTs effectively including
reciprocal recursion types. On the basis of work ahead, we
have extended the discrete indexed object I to an indexed
category , constructed a many-sorted indexed fibration,
described a many-sorted ICDT in  indexed by bjO  ,
made a semantic behavior model of the many-sorted
ICDTs in the indexed category  based on fibration

:G →  and chose different program logics for different
indexes.

5.1 Fibered Fibration

Definition 17. Let : P →  and : P' ' →  be two
fibrations between small categories. Also, let a fibered
functor : F '→  from P to P' above the base category 
satisfy diagram commuting, P P ' F= ⋅ . Then F preserves the
Cartesian arrow.

Definition 18. Let : F '→  and : G ' →  be two
fibered functors above the base category  . The fibred
functor G is a right fibered adjoint functor to F, and F G
is a pair of fibred adjunction above  , if G is a right adjoint
functor to F, and the unit or counit of F G is vertical.

Definition 17 and Definition 18 lift standard category
structures to fibered structures; it is easy to process many
practical problems of many-sorted ICDTs with different
discrete indexed objects in computer science. Using
fibrational tools, such as truth and quotient functors in the
base category, we can combine many-sorted ICDTs with
their semantic behaviors. Applying reindexed and opposite
reindexed functors between fibers in the total category in
order to analyze the deeply semantic behaviors of many-
sorted ICDTs, in order to construct corecursive operations
on many-sorted ICDTs to abstractly describe coinductive
rules with universality. This does not depend on particular
computing environments, but improves the cohesion of
many-sorted ICDTs, and further enhances the
independence of program languages.

Let : P →  and : G →  be two fibrations between
small categories. Given the composed property that
composition of two fibrations is a fibration [23], GP is a
fibration. For a bj∀ ∈O  , a is a fiber in the total category
 on fibration GP over a. The restriction : a a aP →  of
P at a is a pullback of P along the including functor

: aInc →  , and a is a fiber in the total category  on
fibration G over a. Then given the structure-preserving
property of pullbacks [23], Pa is also a fibration.

Each Pa deals with different indexed object a. Let P
have a truth functor, so Pa also has a truth functor, denoted
as Ta. For a bifibration P that satisfies the Beck-Chevalley
condition in Theorem 2, the right adjoint of the reindexed
functor preserves terminal objects. When a iterates each
indexed object in the indexed category  , a set of Ta
constructs the truth functor TP, that is, { }.P aT T a bj| ∈= ∀ O 

Differing from TP constructed by Ta, each restriction
Pa of P has the truth and comprehension functor, we do not
determine P itself has a truth and comprehension functor;
otherwise, P has truth and comprehension functor, we also
do n'ot determine its restriction Pa has a truth and
comprehension functor. In the following, we introduce the
definition of a fibered fibration and demonstrate the
decidability of P and its restriction Pa about the existences
of the truth and comprehension functor.

Definition 19. Let : P →  and : G →  be two
fibrations between small categories, let : PT →  be a
truth functor for P, let TP have one fibered right adjoint
functors { }: GP G→− , and {−} preserves the Cartesian
arrow, then P is a fibered fibration with a truth functor TP
and a comprehension functor {−} over G.

Given Definition 18 and Definition 17, the truth
functor : PT G GP→ of P is a fibered fibration, TP is fibered
right adjoint of P, P preserves the opposite Cartesian arrow
and TP preserves the Cartesian arrow. Consequently, it is
equivalent that P is a fibered fibration over G and that P is
a fibration with a truth and comprehension functor. Then
according to Theorem 4 below, we delve deeper into the
decidability of fibered fibration P and its restriction Pa at
a.

Theorem 4. Let : P →  and : G →  be two
fibrations between small categories, let P be a fibered
fibration over G. Then for a bj∀ ∈O  , a restriction

: a a aP →  of P at a is also a fibered fibration.

Figure 11 Truth functor aT preserves Cartesian arrows

Proof. Let the fibered adjunction TP {−} be the truth

and comprehension functor of the fibered fibration P,
respectively. For a bj∀ ∈O  , Ta and {−}a is the restriction
of TP and {−} at a, respectively. With regard to any
morphism : f a b or→ ∈ M  , : ()*

Y af f Y Y or↓ → ∈ M  is a
Cartesian arrow of f on fibration G. Now we prove that

()a YT f ↓ is also a Cartesian arrow of f on fibration GP, i.e.,

Decheng MIAO et al.: A Fibrational Method of Indexed Coinductive Data Types

420 Technical Gazette 27, 2(2020), 411-422

truth functor Ta preserves the Cartesian arrow.
: g c a or∃ → ∈ M  , let : ()a al X T Y or→ ∈ M  lies above fg

(Fig. 11).
Let : { }a aa Tη → −1 and : { }a a aTε − → 1 be two natural

transformations, and let the transpose { }Y al lε
∧
= of l lies

above fg. Next, in fiber a there exists a unique morphism

: { } ()*
a av X f Y or→ ∈ M  over g such that Yf v l

∧
↓ =⋅ .

Henceforth, in fiber a we obtain a unique morphism

: (()) (())*
a X a aT v X T f Y orη → ∈ M  over g, such that

() (())a Y a XT f T v lη↓ ⋅ = . So ()a YT f ↓ is a Cartesian arrow of f
on the fibration GP. Namely, the truth functor Ta preserves
the Cartesian arrows. Similarly, we can also prove the
comprehension functor {−}a preserves the opposite
Cartesian arrows by dual principles in [26].

Therefore, we proved Ta {−}a, η and ε are the unit
and counit of this adjunction, and η is the vertical
morphism; the restriction : a a aP →  of P at a is also a
fibered fibration.

Remark 4. Fibration : G →  depicts the indexed
type, and Theorem 4 ensures if : P →  is a fibered
fibration over G, then for a bj∀ ∈O  , the restriction

: a a aP →  of P at a is also a fibered fibration with a truth
functor Ta and a comprehension functor{−}a, and Ta
{−}a. In fact, Pa is a subfibration of P [29], i.e., Pa and P
have the same fibration structures, semantic behaviors and
logical properties. Similarly to subsection 4.1.2 and 4.1.3,
the following are some tools of fibration, including:
equation functor, quotient functor and lifting equation-
preserving of many-sorted indexed fibration Pa.

5.2 Semantic Behaviours of Many-Sorted ICDT

Definition 20. Let : P →  be a bifibration satisfying
Beck-Chevalley condition, let Pa be the restriction of P at
a. Base category  has products and pullbacks, : G → 
is a fibration in the indexed category , and P is a fibered
fibration on G with truth functor TP and comprehension
functor {−}. The diagonal endo-functor : G a a∆ → 
maps aC bj∀ ∈O  to C × C, the change of base of Pa along
ΔG constructs a relation fibration (): ()G a G a aRel P Rel → 

on G. Let : G GaIdδ ∆→ be natural transformation, the

equation functor : ()Pa a G aEq Rel→  of Pa on G maps C

to ()*
G aT Cδ ⋅ . If EqPa has a left adjoint QPa, i.e., QPa

EqPa, then QPa is the quotient functor of Pa on G.
Definition 21. For a bj∀ ∈O  is an indexed object, the

many-sorted indexed fibration : a a aP →  is the
restriction of P at a. Let : a aF →  be an endo-functor in

fiber a , : () ()G G a G aF Rel Rel⊥ →  be a lifting equation-
preserving of F on RelG(Pa). If it satisfies diagram
commuting, i.e., () (),GG a G aRel P F F Rel P⊥⋅ = ⋅ then

GPa PaEq F F Eq⊥≅⋅ ⋅ and GPa PaQ F F Q⊥ ≅ ⋅⋅ .

Figure 12 Adjoint properties of Coalg(EqPa) and Coalg(QPa)

For aD bj∀ ∈O  , we can construct an F - coalgebra

(, : ())D D F Dϕ → through the action of endo-functor F. The
equation functor EqPa of the many-sorted indexed fibration
Pa maps (,)D ϕ to a GF ⊥ - coalgebra

((), () (()))GPa Pa PaEq D Eq D F Eq D⊥→ . If vFa have a carrier of
final F - coalgebras (: ()), a a a aF out F F Fν ν ν→ . Then the
action of vFa by EqPa, namely, EqPa(vFa) is the carrier of
terminal GF ⊥ - coalgebra (: ()), G G G G GF out F F Fν ν ν⊥ ⊥ ⊥ ⊥ ⊥→
since the equation functor EqPa preserves terminal objects.
Similarly for subsection 4.1.4, we write Coalg(EqPa) for
the functor from CoalgF to

GF
Coalg ⊥ , Coalg(EqPa)

() aaout out⊥= ; aout⊥ is the isomorphism mapping to aout with
the acting on the functor Coalg(EqPa).

For any GF ⊥ - coalgebra (, : ())GY Y F Yφ ⊥→ , the quotient
functor QPa of the many-sorted indexed fibration Pa maps
(,)Y φ to a F - coalgebra
((), (): () (()))Q Q Q QPa Pa Pa PaY Y F Yφ → (Fig. 12). Let

: ()Pan Y Eq D→ be an GF ⊥ - coalgebras morphism from φ to
EqPa(ϕ), so its corresponding F - coalgebras morphism

: ()QPam Y D→ from QPa(ϕ), to ϕ is a F - coalgebra

homomorphism over n. Similarly, n is a GF ⊥ - coalgebra
homomorphism over m. Functor Coalg(QPa). from

GF
Coalg ⊥ to CoalgF establishes an intuitive mutual

derivation relationship between GF ⊥ - coalgebra, whose
carrier is Y and F - coalgebra whose carrier is QPa(Y). This
presents a succinct and coherent model for describing
coinductive rule of many-sorted ICDTs, with vFa as the
carrier of terminal F - coalgebra. If the functor Coalg(EqPa)
preserves terminal objects, then the lifting equation-
preserving GF ⊥ of F on RelG(Pa) generates a sound
coinductive rule.

5.3 Coinductive Rule of Many-Sorted ICDT

Let : P →  and : G →  satisfy the requirements
of Definition 20 and Definition 21; let : a aF →  be an
endo-functor in fiber a , and vFa is a carrier of final F -
coalgebras. Each lifting which is equation-preserving

: G a aF⊥ →  of F has a sound coinductive rule about vFa,
so it ensures the validity of the coinductive rule generated
by the many-sorted indexed fibration Pa on a many-sorted

Decheng MIAO et al.: A Fibrational Method of Indexed Coinductive Data Types

Tehnički vjesnik 27, 2(2020), 411-422 421

ICDT. Next we will present and describe the coinductive
rule of many-sorted ICDTs with universality in the settings
of fibrations.

For a bj∀ ∈O  , aD bj∀ ∈O  , (, : ())D D F Dϕ → is a F -
coalgebra in fiber a . We construct a corecursive
operation : (()) aunfold D F D D Fν→ → → of a many-sorted
ICDT in the base category a on relation fibration
RelG(Pa), and unfold ϕ maps ϕ to a sole F - coalgebras
morphism : aunfold D Fϕ ν→ from (D, ϕ) to its final F –
coalgebras (vFa, outa).

Given property that the equation functor EqPa
preserves terminal objects, and EqPa(vFa) is the carrier of
terminal GF ⊥ - coalgebra, write = ()a Pa aF Eq Fν ν⊥ . The
isomorphism expression is as the following:

(()) (())= ()G G aPa a Pa aEq F F F Eq F F Fν ν ν⊥ ⊥ ⊥≅ . A corecursive
operation of a many-sorted ICDT

: (())G aunfold Y F Y Y Fν⊥ ⊥→ → → is constructed by GF ⊥ in the
total category ()G aRel  on relation fibration RelG(Pa). For

any GF ⊥ - coalgebra (, : ())GY Y F Yφ ⊥→ , unfold φ maps φ

to a unique GF ⊥ - coalgebra morphism : aunfold Y Fφ ν ⊥→

from (, Y)φ to terminal GF ⊥ - coalgebra

(, : ())a Ga a aF out F F Fν ν ν⊥ ⊥ ⊥ ⊥ ⊥→ . For aD bj∀ ∈O  , a bj∀ ∈O  ,
()G aY bj Rel∃ ∈O  , a coinductive rule of many-sorted ICDT

with universality is as follows:
(()) (): GUni Pa aCoind ' Y F Y Y Eq Fν⊥→ → → .

If : ()GY F Yφ ⊥→ is an GF ⊥ - coalgebra over the F -

coalgebra (, : ())D D F Dϕ → , then UniCoind ' Y φ is a GF ⊥ -
coalgebra homomorphism over unfold ϕ.

5.4 Instance Analysis of Many-Sorted ICDT

Example 5. For any set A, let = NL L Lω∞
 be the partial

order set, including all elements of A, where LN is an
infinite set and Lω is a finite set. In turn, we have taken
corresponding elements from the even and odd position of
L∞ to form two partial order sets EVEN and ODD, with two
functions : even L EVEN∞ → and : odd L ODD∞ → . Then EVEN
and ODD are mutual recursive many-sorted ICDTs. Let a,
b be two indexed objects only in the indexed category ,
a is the indexed object of EVEN, and b is the indexed
object of ODD. We have defined the endo-functor

: × ×F →    in the base category ×  , which is a binary
production. For E EVEN∀ ∈ , O ODD∀ ∈ , we have

(,) (,)F E O O E= . Write • for the merging operation of
elements; we have defined the merging property

: (,) (,)merge merge x EVEN ODD x merge ODD EVEN⋅ = ⋅ ,
((,))even merge EVEN ODD EVEN= and
((,))odd merge EVEN ODD ODD= . Therefore, the relation on

carrier L∞ of F - coalgebra
{(, ((,)))}R EVEN even merge EVEN ODD= and
{(((,)))}S ODDodd merge EVEN ODD= are a bisimulation.
Let (EVEN, ODD) be the carrier (vFE, vFO) of terminal

F - coalgebra over binary productions in the base category

on relation fibration (RelG(Pa), RelG(Pb)) of the many-
sorted indexed fibration(Pa, Pb). For any F - coalgebra
((), : (,) (,))E,O m E O F E O→ , is lifted to be a GF ⊥ - coalgebra

((,), : (,) (,))GY Y ' Y Y ' F Y Y 'φ ⊥→ by (RelG(Pa), RelG(Pb)).
This satisfies diagram commuting
(((), ()))(,) (((), ()) (,))GG a G b G a G bF Rel P Rel P R S Rel P Rel P F R S⊥⋅ = ⋅

. A corecursive operation unfold ϕ is defined by the
terminality of terminal F - coalgebra on (EVEN, ODD),
executing the judgment of a many-sorted ICDT(EVEN,
ODD); another corecursive operation defined by the
terminality of terminal GF ⊥ - coalgebra depicts semantic
behaviors of(EVEN, ODD). If φ lies above ϕ, then

(,)UniCoind ' R S φ is an GF ⊥ - coalgebra homomorphism
over unfold ϕ. When iterating each property

(), (), , G a G bR bj Rel S bj Rel a b bj∈ ∈ ∀ ∈O O O   in the total
category ((), ())G a G bRel Rel  on relation fibration
(RelG(Pa), RelG(Pb)), we obtain the semantic set describing
properties of (EVEN, ODD), that is,
{((), ()) (), ()}Pa PbR Y S Y ' | Y Eq E Y ' Eq O= = .

The mutual recursive type is a complex many-sorted
ICDT. Traditional methods, including algebras and
category theory, are difficult when effectively processing
their semantic computing and program logic. Example 5
analyzes the deeply semantic properties of mutual
recursive type using fibrations. The fibrational method is
not strictly dependent on particular methods or tools, such
as predicate logic or set theory, and abstractly depicts its
coinductive rule with universality. Example 5 expands and
deepens traditional methods in the level of category theory.
It deals with the semantic computation of the mutual
recursive type in the uniform settings of fibrations, and
further develops the width and depth of traditional methods
of ICDT in math.

6 CONCLUSIONS

Fibrations integrate conventional ideology regarding
programming, with special ideas and studying methods,
such as highly abstract, nimble development and brief
description, produces a robust and significant effect on
program languages and formal semantics, and boosts the
application of categoretical theory in computer science.
There is little literature on fibrations in computer science,
especially regarding systematical and deep research aiming
at programming; there is even less literature relating to its
formal semantics. Fibrations have special superiorities in
resolving the represention of speculative matters. At the
same time, they are important in the application of
theoretical computer science. This paper executed some
preliminary works in analyzing semantical behaviors,
coinductive rules representation of ICDTs. In general, we
expect this work can promote interest for academics
particularly in China regarding fibrational method,
promoting the prospects of fibration itself and their
applications in computer science.

Our future work will be a preliminary discussion on
the soundness, completeness, and consistency of a formal
system consisting of ICDT and its coinductive rule.
Furthermore, we are expanding our ICDT work to include

Decheng MIAO et al.: A Fibrational Method of Indexed Coinductive Data Types

422 Technical Gazette 27, 2(2020), 411-422

2-categories using fibrations, with deep discussion
regarding math structures and the categorical properties of
syntax construction, semantics computation, behavoirs
description and programming logic in 2-categories.

Acknowledgements

Our works are supported by the GuangDong
Provincial Natural Science Foundations, China PRC (No:
2018 A0303130274), GuangDong Provincial Institutions
of Higher Learning Prominent Youth Teachers Train
Project, China PRC (No: YQ2014155).

7 REFERENCES

[1] Greiner, J. (1992). Programming with inductive and

coinductive types. Pittsburgh, USA: Carnegie Mellon
University. https://doi.org/10.21236/ADA249562

[2] Rutten, J. J. M. M. (2000). Universal coalgebra: a theory of
systems.Theoretical Computer Science, 249(1), 3-80.
https://doi.org/10.1016/s0304-3975(00)00056-6

[3] Zhou, X. C. & Shu, Z. M. (2003). A survey on the
coalgebraic methods in computer science. Journal of
Software, 14(10), 1661-1671.

[4] Johnson, M. & Rosebrugh, R. (2007). Fibrations and
universal view updatability. Theoretical Computer Science,
388(1-3), 109-129. https://doi.org/10.1016/j.tcs.2007.06.004

[5] Johnson, M., Rosebrugh, R., & Wood, R. J. (2012). Lenses,
fibrations and universal translations.Mathematics Structure
in Computer Science, 22(1), 25-42.
https://doi.org/10.1017/s0960129511000442

[6] Tews, H. (2002). Coalgebra method for object-oriented
specification. Dresden, Germany: Institute Theoretische
Informatik, Technischen Universiy.

[7] Ghani, N., Johann P., & Fumex, C. (2012). Generic
fibrational induction. Logical Methods in Computer Science,
8(2), 1-27. https://doi.org/10.2168/lmcs-8(2:12)2012

[8] Miao, D. C., Xi, J. Q., Jia, L. Y., & Liu, Y. (2011). Formal
language algebraic model. Journal of South China
University of Technology (Natural Science Edition), 39(10),
74-78.

[9] Hermida, C. & Jacobs, B. (1998).Structural induction and
coinduction in a fibrational setting. Information and
Computation, 145(2), 107-152.
https://doi.org/10.1006/inco.1998.2725

[10] Hagino, T. (1987). A categorical programming language.
Edinburgh, UK: University of Edinburgh.
https://doi.org/10.1016/B978-0-12-037104-4.50012-8

[11] Nogueira, P. & Moreno-Navarro, J. (2008). Bialgebra views:
a way for polytypic programming to cohabit with data
abstract. Proceedings of the ACM SIGPLAN Workshop on
Generic Programming. Victoria, BC: Canada, 61-73.
https://doi.org/10.1145/1411318.1411327

[12] Su, J. D. & Yu, S. S. (2011). Coinductive data types and their
applications in programming languages. Computer Science,
38(11), 114-118.
https://doi.org/10.1007/s00466-010-0527-8

[13] Poll, E. (1998). Subtyping and inheritance for categorical
datatypes. RIMS Lecture Notes, 1023, 112-125.

[14] Hinze, R. (2010). Reasoning about codata. Lecture Notes in
Computer Science, 6299, 42-93.
https://doi.org/10.1007/978-3-642-17685-2_3

[15] Miao, D. C. & Xi, J. Q. (2018). Indexed coinduction in a
fibrational setting. Lecture Notes in Computer Science,
11338, 10-16. https://doi.org/10.1007/978-3-030-05234-8_2

[16] Gimenez, E. & Casteran, P. (1998). A turorial on coinductive
types in Coq. Retrieved from http:www.labri.fr/perso/
casteran/RecTutorial.pdf, 1998

[17] Vene V. (2000). Categorical programming with inductive
and coinductive types. Tartu, Estonia: University of Tartu.

[18] Ghani, N., Revell, T., & Atkey, R. (2015). Fibrational units
of measure. Retrieved from

 https://personal.cis.strath.ac.uk/neil.ghani/pub.html.
[19] Bonchi, F., Petrisan, D., & Pous, D. (2014). Coinduction up-

to in a fibrational setting. Proceedings of the Joint Meeting
of the 23rd EACSL Annual Conference on Computer Science
Logic and the 29th Annual ACM/IEEE Symposium on Logic
in Computer Science. New York, 1-18.
https://doi.org/10.1145/2603088.2603149

[20] Chen, L.T. & Urbat, H. (2015). A fibrational approach to
automata theory. The 6th International Conference on
Algebra and Coalgebra in Computer Science. Dagstuhl,
Germany, 50-65.

[21] Worrell, J. (2005). On the final sequence of a finitary set
functor. Theoretical Computer Science, 338(1-3), 184-199.
https://doi.org/10.1016/j.tcs.2004.12.009

[22] Hasuo, I., Kataoka, T., & Cho, K. (2018). Coinductive
predicates and final sequences in a fibration. Mathematics
Structure in Computer Science, 28(4), 562–611.
https://doi.org/10.1017/s0960129517000056

[23] Barr, M. & Wells, C. (1990). Category Theory for
CompuerScience. NewYork: Prentice-Hall Books.

[24] Pavlovic, D. (1990). Predicates and fibrations. Utrecht,
Nederland: University of Utrecht.

[25] Jacobs, B. (2001). Categorical Logic and Type Theory.
Amsterdam, Nederland: Elsevier Science Books.

[26] He, W. (2006). Category Theory. Beijing: Science Press
Books.

[27] Morris, P. & Altenkirch, T. (2009). Indexed containers.
Proceedings of the 24th Annual IEEE Symposium on Logic in
Computer Science. Los Angeles: CA, 277-285.
https://doi.org/10.1109/lics.2009.33

[28] Ghani, N., Johann, P., & Fumex, C. (2013). Indexed
induction and coinduction, fibrationally. Logical Methods in
Computer Science, 9(3-6), 1-31.
https://doi.org/10.2168/lmcs-9(3:6)2013

[29] Hermida, C. (1993). Fibrations, Logical predicates and
indeterminates. Edinburgh, UK: University of Edinburgh.
https://doi.org/10.7146/dpb.v22i462.6935

Contact information:

Decheng MIAO, professor
(Corresponding author)
School of Information Science and Engineering, Shaoguan University,
No. 288, Daxue Road, Zhenjiang District, Shaoguan, China
E-mail: tony10860@126.com

Chaoyang WANG, master candidate
School of Journalism and Communication, Guangzhou University,
No. 230, Waihuanxi Road, Panyu District,Guangzhou, China
E-mail: wcy604484222@163.com

Xinsheng LIU, lecturer
Army Artillery and Air Defense Force Academy,
No. 31, Dongdaying Road, Shenhe District, Shenyang, China
E-mail: waddddaw@126.com

Yonglin LIANG, associate professor
School of Information Science and Engineering, Shaoguan University,
No. 288, Daxue Road, Zhenjiang District, Shaoguan, China
E-mail: liangyonglin@126.com

https://doi.org/10.1016/j.tcs.2007.06.004

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

