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Abstract: As a fundamental issue in type theory, indexed coinductive data types (ICDT, for short) is of crucial importance, which is essentially semantic computing problem 
in programming. Based on fibrational method, this paper analyses semantic behaviours of ICDT and describes their universal coinductive rules. We executed some works 
in semantic computing and program logic of ICDT including their math structures and categorical properties. Example analyses prove the effectiveness of the proposed 
fibrational method and its applicability in program languages. Our work is based on fibration; a general math setting that can compute semantics automatically rather than 
depend on particular computing environments and syntactic forms of ICDT. 
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1 INTRODUCTION 
 

The coinductive data type [1] analyses the semantic 
behaviours of data types in program languages and type 
theory; it is a dual concept of inductive data types with 
coalgebra as its math support [2, 3]. It observes the 
dynamic behaviours of languages during program 
execution. Inductive and coinductive data types form a 
complementary solution to improve the abilities of syntax 
construction and the semantic computation of program 
languages. ICDT, one kind of coinductive data type, has 
more semantic computing power and is capable of dealing 
with more complex data structures in programming. ICDT 
is an important part of programming and type theory. 
Traditional methods of ICDT, including category theory 
and coalgebra, make type theory models in the local 
Cartesian closed category, which then gives rise to two 
consequences: one is that indexed coinductive data types 
and the relation categories which describe their semantics 
co-exist in the same category together; another is that 
functor and its lifting are identical. Thus, this has some 
limitations to analyse semantic behaviours and depict 
coinductive rules. 

Fibrations are a recently emerging trend in computer 
science, especially in categorical methods; they have many 
applications, such as database system modelling [4, 5], 
software specifications [6], and programming [7, 8]. In a 
fibrational setting, depicting the semantic behaviours of 
ICDT is no longer restricted to functions or morphisms, but 
is generalized to objects in a total category. More 
importantly, ICDTs and relation categories do not coexist 
in the same category any longer, but the latter constructs 
functor which is lifted in corresponding total categories to 
represent its abstracted semantic computing and program 
logic of ICDT. Hermida and Jacobs performed a great deal 
of work in this field [9]. 

We used fibrations to discuss ICDT in our works, 
firstly taking it to be the object set in the base category and 
taking its semantic behaviours to be the object set in total 
category; next we established the responsible relations in 
program logic directly between the ICDT and its semantic 
behaviours using an equation and quotient functor; lastly, 
we constructed the ICDT corecursive operations to 
describe abstract coinductive rules with universality using 
selffunctor constructed in base category and their 

corresponding lifting equation-preserving in the total 
category. 

Our primary works have researched the semantic 
behaviours of ICDT and its coinductive rules using 
fibrations. The rest of the structure of our paper is as 
follows. In Section 2, we study some current related works. 
In Section 3 we introduce some basic concepts, such as the 
bifibration and reindexed functor. In Section 4, we present 
a single-sorted indexed fibration on slice categories to 
analyse the semantic behaviour of single-sorted ICDT and 
abstractly depict its coinductive rule with universality. In 
Section 5, we extend a discrete indexed object to the 
indexed category, developing single-sorted indexed 
fibration to many-sorted indexed fibration, and analysing 
the semantic behaviours of many-sorted ICDT and 
abstractly depicting its coinductive rule with universality. 
Lastly, we summarize our conclusions and discuss future 
researching work. 
 
2 RELATED WORKS 
 

As a coinductive data type whose abilities of semantic 
computation are stronger, ICDT takes coalgebra as its math 
foundation, introducing tools such as terminality and 
bisimulation to type theory, which has particular 
advantages in analyzing and describing the dynamic 
semantic behaviors of programming. From the perspective 
of document retrieval, Hagino maybe is the first one who 
worked on relationship between inductive and coinductive 
data type systematically using the dialgebras structure in 
[10]; his work laid the research foundation of the 
coinductive data type. However, there exist certain 
deficiencies in the polymorphism type system, the 
relationship between syntax construction and dynamic 
behaviors, the applications of coinduction data types. 

Scholars' joint efforts provided the impetus for the 
further development of coinductive data types. Nogueira 
studied the relationship between inductive and coinductive 
data types and their application in polymorphism 
programming using bialgebra in [11]. Authors in [12] 
further melted the inductive and coinductive data type by 
λ bialgebra and distributive laws, which explored the 
relationship between syntax construction and dynamic 
behaviors of data types. Poll et al. extended the works of 
Hagino based on sub-type and inheritance, and they 
obtained results on the connections of inductive and 
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coinductive data types using the dual properties of algebra 
and coalgebra [13]. Greiner et al. brought coinductive 
principles in program languages. They studied coinductive 
data types in programming [1, 14]. Authors in [15] 
described indexed coinduction by co-recursion. All of the 
above results solved the aforementioned questions to some 
extent. Meanwhile, in the field of applications of 
coinductive data types, Gimenez studied some applications 
by Coq, the formal theory proof tool in [16]. Vene 
researched coinductive data types in the functional 
program language Haskell [17]. Most of the above results 
applied the methods of category theory and coalgebra, and 
those based on fibrations only focused on certain respects, 
such as the logic reason of coinductive data types and the 
validations of coinductive rules. For example, Hermida 
demonstrated the coinductive rules of final coalgebra with 
quotient types in [9]. Subsequently, Ghani et al. broke 
through the limitations of polynomial functors in [9], and 
developed their work to generic functors. Recently, they 
also presented λ1 - fibration, constructed parameterized 
units of measure fibration UoM, and proved basic 
propositions of [18]. Based on [9], [19] proved the 
soundness of bisimulation coinduction in a fibrational 
setting, and provided a new categorical method of weak 
bisimulation by changing parameters. Chen and Urbatput 
forward a categorical method of automata theory, applied 
partial order set opfibration to study some concepts of the 
theory of algebraic automata in [20]. Based on seminal 
work by Worrell in [21], Hasuo et al. discussed coinductive 
predicates and final sequences in a fibration in [22], they 
identified some categorical 'size restriction' axioms that 
guarantee stabilization of final sequences after ω steps. 

The current studies focus largely on coinductive data 
types; and the research on ICDT is still in its preliminary 
stage.There are many interesting questions in the field of 
semantics and programming; for instance, analyzing 
semantics behaviors and representing coinductive rules, 
particularly the latter are almost produced automatically. 
Those automatically produced coinductive rules lack a 
stable mathematical basis and concise formal specification. 
Our work focuses on semantics behaviors and coinductive 
rules of ICDT through fibrations. Comparing with 
conventional methods such as coalgebra and categoretical 
theory, this paper achieved the following: it analyzed 
semantic behaviors of ICDT succinctly using fibrations, it 
improved program languages processing and proving 
abilities for the semantic behaviors of ICDT, and it 
presented and described the coinductive rule with 
universality of ICDT. Meanwhile, all such works do not 
depend on specific computing enviroment, but they supply 
a sturdy mathematic basis as well as brief and unified 
description modes to semantics computing and logic of 
programming. 

Using fibrational methods to study ICDT in formal 
languages extends and deepens the conventional ways of 
coinductive data types at categoretical theory, especially 
after coalgebras emerged, combining dually some category 
notions, including the fibration and the opposite fibration, 
reindexed functor and opposite reindexed functor, presents 
powerful vitality for fibrations in researching ICDT. There 
are wide development prospects in computer science 
theory foundations and engineering practice. Moreover, 
using fibrational method to research ICDT in formal 

semantics is not purely math research, but from the 
perspective of soft theory, integrating fibration method to 
the up-to-date results of type theory, formal languages and 
monads, this collaborates with fundamental study 
systematically and deeply for certain ICDT kernel 
problems including category interpreting of key notions, 
semantics behaviors and formal rules. 
 
3 FIBRATION AND OPFIBRATION 
3.1 Fibration and Reindexed Functor 
 

We assume readers have some categorical 
foundations, such as functor, adjunction,and natural 
transformation. Considering they have not presupposed the 
set theoretical models based on mathematical logic, some 
current basic math literature does not require all morphisms 
to be set when category is defined, but rather analyzing 
from the practical application perspective of computer 
science, we deem it is reasonable to confine all morphisms 
to a set. If all objects and morphisms can form two sets, 
respectively, in a category, the category is called a small 
category in [23]. The whole objects discussed in our works 
are in view of the concept of small category; readers can 
find other details for fibrations in [23-25]. For a category 
 , let Obj   to be the objects set, Mor   to be the 

morph isms set. 
Definition 1. Let : P →  be a functor between two 

small categories  and  , : f C D→ ∈ orM   and 
( )P Y D= . A morphism : u X Y or→ ∈ M  is a Cartesian 

arrow of f and Y, if the following three are satisfied: (1) 
P(u) = f. (2) For : v Z Y or∀ → ∈ M  , : ( )h P Z C or∀ → ∈ M  , 
the diagram commutes, i.e. ( )f h P v⋅ = .(3) There exists a 
unique : w Z X or→ ∈ M  such that u w v⋅ = and P(w) = h. 

For the Cartesian arrow u of f and Y, we say u lies 
above f; similarly, Y lies above D. If u is a cone [23] in 
category  , then by the uniqueness of the cones morphism 
w, the Cartesian arrow u in Definition 1 is also a universal 
cone i  ,namely, the limit cone. Accordingly, the vertex X 
of universal cone u is the terminal object of u [26]. Then 
by the universal properties of universal cones, the 
Cartesianarrow u  is an isomorphism. We denote Yf

↓ for 
the Cartesian arrow u of f and Y in Definition 1 for 
simplification. 

Definition 2. Let : P →  be a functor between two 
small categories  and  . If there exists a Cartesian arrow 

Yf
↓  of f and Y for Y bj∀ ∈O  and : ( )f C P Y or∀ → ∈ M  , 

then we call P a fibration. 
Using Definition 2, a fibration is a functor that ensures 

a large number of Cartesian arrows. For a fibration
: P →  ,   is called base category,   total category of 

P. For any object C in bjO  , X bj∃ ∈O   and k or∈ M  , if 
satisfying P(X) = C and P(k) = idc, then the sub-category 

C of   composed of X and k is called a fiber over C [23], 
and k is a vertical morphism. In fact, fiber C is a full 
subcategory of the total category . 

Example 1. Let Set be the set category, X bj et∀ ∈O S , a 
predicate over X is a two-tuples < X, P >, : P X et→ S . For

x X∀ ∈ , P(x) forms a set, which describes the semantic 
behaviors of x, and X is called the domain of predicate< X, 
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P >. The predicates morphism from <X, P> to <X', P'>, is 
an ordered pair ( ,  ): < ,  > ', ~f f X P X P'→< > , where 

: f X X '→  is a function in relevant predicate domain, and 
for , : ( ) ( ( ))~x X f P x P' f x∀ ∈ → , P(x) is mapped to P'(f(x)). 
Predicates and their morphisms form the predicate 
category  , and then predicate fibration : Pre Set→  
maps object < X, P > in total category   to X. 

Let : g X Y→  be a morphism in the base category etS  
on the predicate fibration Pre in Example 1, for 

, Y Q bj< >∈O  . We write Id for the identify functor, then a 

Cartesian arrow , Y Qg↓
< > of g and < Y, Q >  on the predicate 

category Pre is ( , ): etg Id Qg Q→S . 

Example 2. Write → for the arrow category, domain 
functor dom: → →   maps an object : f X Y→  in →  
to object X in  . We call dom a domain fibration above 
. Functor cod: → →   maps an object : f X Y→  in →  
to the object Y in  . If   has pullbacks [23], then we call 
cod the codomain fibration. 

For object : f X Y→  in fiber Y
→  on Y, we have 

morphism in the base category: : f ' X ' Y or→ ∈ M  , so a 
Cartesian arrow of f' and f on the codomain fibration cod is 
a pullback square of f along f'. 

Example 3. Let category   have pullbacks, then
( )Sub   is a category constituted by the sub-objects of  ; 

that is, objects of ( )Sub   are mono-morphism equivalence 
classes. For [ ]: ( )f X I bj Sub>→ ∈O   and another object 
[ ]: g Y J>→ , the morphism from [f] to [g] is 
( ): [ ] [ ] ( )I J f g or Sub→ → ∈ M  . We write : I Jα → , : X Yβ →

, thus it satisfies diagram commuting, i.e., [ ] [ ]f gα β⋅ = ⋅ . 
Sub-object fibration : ( )S Sub →  , maps a mono-
morphism equivalence class [f]  to its codomain. 

Write ( )*f Y  for domain of Cartesian arrow Yf
↓ , then 

( )f Y∗  lies over C; that is, DY bj∈O  , ( ) C
*f Y bj∈O  . 

Therefore we have the definition of a reindexed functor. 
Definition 3. If a morphism : f C D→  in the base 

category  is extended to be a functor : D C
*f →   

between fibers D  and C , then we call *f  a reindexed 
functor induced by f. 

Morphism f is the relationship between ICDTs in the 
base category, and reindexed functor *f  is a lifting of f in 
the total category, which is related to their semantic 
behaviors. 
 
3.2 Opfibration and Opposite Reindexed Functor 
 

Definition 4. Let : P →  be a functor between two 
small categories  and  ; : f C D or→ ∈ M  ,

: u X Y or→ ∈ M  . The morphism u is called to be an 
opposite Cartesian arrow of f and X if three following 
conditions hold. (1) P(u) = f. (2) For : v X Z or∀ → ∈ M  and

: ( )h D P Z or∀ → ∈ M  , this satisfies diagram commuting, 
that is, ( )h f P v⋅ = . (3) There exists a unique 

: w Y Z or→ ∈ M  such that w u v⋅ =  and P(w) = h. 

Similar to Definition 1, if u is a cocone [23] in category
 , then the opposite Cartesian arrow u in Definition 4 is a 
universal cocone in   through the uniqueness of the 
cocones morphism w, namely, the colimit cocone. 
Accordingly, the vertex Y of the universal cocone u is the 
initial object of u in [26], while the opposite Cartesian 
arrow u is an isomorphism by the universal properties of 
universal cocones. 

Definition 5. Let : P →  be a functor between two 
small categories  and  . If for X bj∀ ∈O  and

: f P( X ) D or∀ → ∈ M  , there exists an opposite Cartesian 
arrow of f and X, then we call P an opfibration. 

Definition 6. If the functor : P →   between two 
small categories   and   is a fibration and an opfibration 
simultaneously, then it is a bifibration. Write Xf↓ for the 
opposite Cartesian arrow u of f and X in Definition 4. Let 

( )* Xf be the codomain of Xf↓ . Then we say ( )* Xf  lies 

above D, i.e., CX bj∈O  , ( ) D
* bjf X ∈O  . 

Definition 7. If a morphism : f C D→  in the base 
category   is extended to be a functor : C D

* f →   

between fibers C and D , then * f  is an opposite 
reindexed functor induced by morphism f. 
 
3.3 Adjoint Properties of Reindexed and Opposite 

Reindexed Functor 
 

Definition 8. If F : G →   is a pair of adjoint 
functors, η, ε is the unit and counit, respectively, and for

X bj∀ ∈O  , Y bj∀ ∈O  , : ( )f F X Y or∃ → ∈ M  ,
: ( )g X G Y or∃ → ∈ M  , the transpose of f and g are G(f)ηX 

and εYF(g), respectively. 
Theorem 1. Let : P →  be a fibration between the 

two small categories   and  , then P is a bifibration iff 
: f C D or∀ → ∈ M  , *f has a left adjoint functor* f . 

Proof. ⇒ . Let * f : C D
*f →   be a pair of adjoint 

functors, let η be the unit, ε be the counit, and : P →   
be a fibration between two small categories  and  . Then 

Y bj D∃ ∈O  ; we can construct a Cartesian arrow 

: ( )*
Yf f Y Y↓ →  whose codomain is Y. CX bj∃ ∈O  , let 

: ( )*l X f X→ be the morphism above f. In the following, we 
prove that l is an opposite Cartesian arrow above f. This 
satisfies ( ) X* f Xl f η↓= ⋅  by the adjoint property of * f *f , 
see Fig. 1. We write id for the identify morphism. If 

: g X Y→  is another morphism above f, let : )(*X f Yφ → be 
the vertical morphism in C , then we have ( ) CP idφ = . By 

Definition 1, we have that Yg f φ↓= ⋅ , where Cartesian 

arrow Yf
↓  is a universal cone, whose universal property 

ensures φ is the unique morphism from g to Yf
↓ . Let φ

∧
 be 

the transpose of φ under the adjunction * f *f . Then

( ): ( )*
X

*
Y f f Yφ ε φ

∧
= →⋅ , and ( )*

Xf φ η φ
∧

⋅ = . The universal 
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property of universal cone Yf
↓ ensures the unique existence 

of ( )*f φ
∧

; it satisfies diagram commuting, that is, 

( ) ( )* f X Y
*ff f φφ ↓ ↓

∧∧
=⋅ ⋅ . Therefore, there exist equations 

( ) ( )*
* f X X Y X Yfl f f f gη φ ηφ φ φ

∧
↓ ↓ ↓

∧ ∧
= = ⋅ =⋅ ⋅ ⋅ ⋅ = ⋅ ,i.e. g lφ

∧
= ⋅ . 

Then the transpose φ
∧

 of φ is the unique morphism from l 

to g, and ( )
D

P idφ
∧
= . Then by Definition 4, l is an opposite 

Cartesian arrow Xf↓  above f. 
 

 
Figure 1 Proof of opposite Cartesian arrow 

 
⇐ . We assume : g X Y or→ ∈ M  lies above f, write 

( , ( ))*
C X f Y for the set composed of morphisms above C

in fiber C , ( ( ), )*
DT f X Y  for the set composed of 

morphisms above D in fiber D . For : Ck X ' X or∀ → ∈ M  ,
: Dh Y Y ' or∀ → ∈ M  ; because : P →   is a bifibration, it 

has an one-to-one corresponding map 

, : ( ( ), ) ( , ( )).* *
X Y D Cf X Y X f Yϕ →   We write 

: C
opk X X ' or→ ∈ M   for an opposite morphism of k. This 

satisfies that ( )op X op X 'op * opk f f f k↓ ↓⋅ = ⋅  and 

( )
op op

* Y Y Yf Y
id f f id↓ ↓⋅ = ⋅ . Consequently, the left part of 

diagram in Fig. 2 commutes. Similarly, we have 

( )* f X
X X

X
op opid f f id↓ ↓⋅ = ⋅  and ( )*

Y 'Y
op opff h f ↓↓⋅ = , i.e., the 

right part of diagram in Fig. 2 also commutes. Hence ϕx, y 

is a natural isomorphism. We thus prove * f *f  by 
definition of adjoint functors in [26]. 
 

Figure 2 Proof of adjunction property 
 

Remark 1. Theorem 1 gives a condition for 
determining if a functor is a bifibration. It also combines 
the adjoint property of the reindexed functor *f  and the 
opposite reindexed functor * f  in the fibrational settings. 
 
4 SEMANTIC BEHAVIOURS OF SINGLE-SORTED ICDT 

AND ITS COINDUCTIVE RULE 
 

From the viewpoint of fibrations, single-sorted ICDT 
is an ICDT with discrete indexed objects, such as streams, 

lists, and trees. Based on the results from [27] and [28], this 
section constructs single-sorted indexed fibration by 
fibrations, analyzes semantic behaviors of single-sorted 
ICDT, and presents a coinductive rule of single-sorted 
ICDT with universality. 
 
4.1 Semantic Behaviours of Single-Sorted ICDT 
4.1.1 Truth Functor and Relation Fibration 
 

Definition 9. Let : P →  be a fibration between two 
small categories  and  . For D bj∀ ∈O  , if D Dbj∃ ∈O1   is 
a terminal object in fiber D  , and for : f C D or∀ → ∈ M  ,

( )D
*f 1  is a terminal object in fiber C , i.e., the reindexed 

functor *f  preserves terminal objects, then we state that 
fibration P has fibered terminal objects. 

The fibered terminal object of predicate fibration Pre 
in Example 1 is a function map of all elements in the set X 
to a singleton set. The fibered terminal object of the 
codomain fibration cod in Example 2 is an identity 
function. The sub-object fibration S in Example 3 is an 
equivalence class of identity function. 

Definition 10. Let : P →  be a fibration between 
two small categories  and  , and the functor : PT →   
maps C bj∀ ∈O  to a terminal object in fiber C . Then TP is 
a truth functor of fibration P. If TP has one right adjoint 
functor {−}, then we call{−} a comprehension functor of 
P. 

Let 1  and 1  be the terminal objects of the base 
category   and the total category  , respectively. Then 

( )P =1 1  . For C bj∀ ∈O  , there exists a unique morphism 

: u C → 1 such that ( ) ( )*
PT C u≅ 1 . For : f C D or∀ → ∈ M  , 

we have ( ( )) ( )*
P Pf T D T C≅ , and the truth functor TP maps f 

to its Cartesian arrow ( )T DP
f ↓  in total category  . 

Definition 11. Let : P →  be a fibration between 
two small categories   and  ; its base category   has 
products. Let Δ: →   be a diagonal endo-functor above
 , which maps C Obj∀ ∈  to the product object C × C. 
Then the pullback of P along Δ forms fibration 

( ): ( )Rel P Rel →  , Rel(P) is called to be a relation 
fibration of P. 

The object of the total category ( )Rel  on Rel(P) is 
relation (C, D); for another object (C', D'), let : f C C '→

and : g D D'→ be two morphisms. Then 
, : ( , ) ( , ) ( )( )f g C D C ' D' or Rel→ ∈ M  . The relation fibration 

Rel(P) in Fig. 3 maps the relation (C, D) to object C in the 
base category  ; functor Π maps (C, D)  to object D in 
, and P(D) = Δ(C). Moreover, the property pullback-
preserving of Definition 11 ensures that fiber ( )CRel 

above C on Rel(P) is an isomorphism to fiber C C× above 
C × C on P, i.e., ( )C C CRel ×≅  . 

 

 
Figure 3 Relation fibration Rel(P) for P 
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The procedure of building new fibration using specific 
fibration is called to be change of base. For instance, we 
can build Rel(P) using the change of base from P in 
Definition 11. The change of base keeps construction 
including preserving fibered terminal objects in [26]; if the 
fibration P has one truth functor TP, then its relation 
fibration Rel(P) has truth functor TRel(P). Meanwhile,we can 
gain TRel(P)(C) = TP (C × C). The predicate fibration Pre in 
Example 1 constructs a relation fibration Rel(Pre) using a 
change of base, and its truth functor maps set X to a two-
tuple relation : R X X et× → S , i.e., it maps each ordered pair 
(x, x') to a singleton set {*}. 

Theorem 2. Let : P →   be a bifibration between 
two small categories   and  ; base category   has 
pullbacks. If for each pullback square in  , natural 
transformation * * * *s t g f⋅ → ⋅  is an isomorphism, then P 
satisfies Beck-Chevalley condition. 

Proof. Let ηf be the unit of the adjoint functor * f *f

, and let εs be the counit of the adjoint functor * s *s  (Fig. 
4). Then f Id Bη =  , s Id Cε =  . The following equation 

holds: ( ) ( ) ( )* * * * * *
fs t s t f fη⋅ = ⋅⋅ ⋅ ⋅ , and the pullback square 

in Fig. 4 satisfies diagram commuting: f t g s⋅ = ⋅ , and s is 
a pullback of f along g, t is a pullback of g along f. Using 
the pullback property of the reindexed functor, we have 

* * * *t f s g≅⋅ ⋅ . So 
( ) ( ) ( ) ( )* * * * * * * * * * * *s t f f s t f f s s g f⋅ ⋅ ⋅⋅ = ⋅ ≅ ⋅⋅ ⋅ ⋅ , and 

( ) ( ) ( ) ( ) ( )* * * * * * * * * * * *
ss s g f s s g f g f g fε⋅ ⋅ = =⋅ = ⋅⋅ ⋅ ⋅ ⋅ ⋅ , that is,

* * * *s t g f⋅ ≅ ⋅ . Hence the natural transformation 
* * * *s t g f⋅ → ⋅  is an isomorphism. 
 

 
Figure 4 A pullback square in base category   

 
Remark 2. In other word, based on the pullback square 

in the base category on a bifibration, Theorem 2 defines a 
natural transformation whose functors preserve the 
structure between corresponding fibers in the total category 
 . The theorem further ensures the reindexed functor and 
the opposite reindexed functor satisfy appropriate 
properties of diagram commuting. For example, the 
predicate fibration Pre in Example 1 and the codomain 
fibration cod in Example 2 both satisfy the Beck-Chevalley 
condition in Theorem 2. 

Definition 12. Let : P →   be a bifibration which is 
satisfying the Beck-Chevalley condition; the base category 
  has products, furthermore, TP is one truth functor of P. 
For any C bj∀ ∈O   the active function : C C C Cδ → ×  of 
natural transformations : Idδ ∆→  on C extend one 

opposite reindexed functor *δ . Meanwhile, 

: ( )PEq Rel→   is one equation functor of P, we can 

obtain *
P PEq Tδ= ⋅ . 

The truth functor TP of T is mapping C to one terminate 
object TP(C) in fiber C . From Definition 11, we can 
obtain that Rel(P) is the change of base of P along Δ. So if 
fibration P has one fibered terminate object, then its 
relation fibration Rel(P) has one fibered terminate object 
too. If the opposite reindexed functor*δ can map terminate 
object TP(C) to the ( ( ))*

PT Cδ , then

( ( )) ( ( ) )*
P C C CT C bj Relδ ×∈ ≅O   , and the equation functor 

PEq of P also map f or∀ ∈ M  to only one unique 

morphism on f × f which is determined by δf and ( )( )T CP
Cδ ↓ . 

The intuitional implication of the equation functors is that 
identical parameters have identical results [9]. Take the 
predicate fibration Pre in Example 1 as an example; the 
object in its fiber ( )CRel  is the equation relation 

: R X X et× → S , and ( )( , ) 1PreEq C x x' =  if 'x x≠ ; and 
( )( , ) 0PreEq C x x' =  if otherwise. 

 
4.1.2 Single-Sorted Indexed Fibration and its Equation 

Functor 
 

Theorem 3. Let : P →  be a fibration or bifibration 
between two small categories  and  . Then : PT →  is 
one truth functor for P. So, I bj∃ ∈O  , I is one discrete 
indexed target on the base category  . Assume the single-
sorted indexed functor P / I, ( )P/ T I / I→  tobe

( ) ( ): ( )P / I u P u P Y I bj / I= → ∈O  ,for : ( ) ( )P Pu Y T I bj / T I∀ → ∈O  . 
Then the single-sorted indexed functor P / I is also a 
fibration or bifibration. 
 

 
Figure 5 Cartesian morphism ¯

Xf  of P / I above f 

 
Proof. For : f C D or∀ → ∈ M  , we can get one 

Cartesian arrow : ( )*
Xf f X X↓ → on f about fibration P, 

which satisfies P(X) = D. We also obtain an only morphism 
: ( ) ( )*

Pw T I f X→  so have Xv f w↓= ⋅ and ( )P v f h= ⋅  (Fig. 5). 
On the supposition that we have : D I bj / Iα → ∈O  ,

: C I bj / Iβ → ∈O  . So : ( ) ( )P u P Y D or / Iγ α→ = → ∈ M  ,
: ( ) ( )P u P Y C or / Iδ β→ = → ∈ M  , and the diagram commutes: 

fγ δ= ⋅ . In the total category ( )P/ T I on functor P / I,

: ( ) ( )P Ps X T I bj / T I→ ∈O  , : ( ) ( ) ( )*
P Pt f X T I bj / T I→ ∈O  , 

we have : ( )Pg u s Y X or / T I→ = → ∈ M  . So we can obtain 
an only morphism, such that the diagram commutes, i.e. 
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xg f k↓= ⋅ . By Definition 1 xf
↓  is a Cartesian arrow of f on 

functor P / I. So if P is a fibration, then the single-sorted 
functor P / I is also a fibration. 

Let ( ) ( )P Pm : Z T I bj / T I→ ∈O  . So P / I (m) = α using 

functor P / I. Meanwhile, assume : ( )Z *f Z f Z↓ →  one 
oppositive cartesian arrow for f about P (Fig. 6). The 
commuting diagrams in the slice categories / I , 

fα β= ⋅ , and we can obtain one only morphism 
: ( ) ( )*

Pn f Z T I→  in the total categories ( )P/ T I over 

functor P / I such that the diagrams commute, Zm n f↓= ⋅ . By 

Definition 4, Zf↓  is an opposite Cartesian arrow of f on 
functor P / I. Namely, if P is an opposite fibration, then the 
single-sorted indexed functor P / I is also an opposite 
fibration. 

Therefore, if P is a fibration or bifibration, then the 
single-sorted indexed functor P / I is also a fibration or 
bifibration. 
 

 
Figure 6 Opposite Cartesian morphism

Zf
↓ of /P I above f  

 
Remark 3. Theorem 3 proves that the single-sorted 

indexed fibration P / I and fibration P have the same 
properties of fibration or bifibration; we also provide the 
definition of a single-sorted indexed fibration. In fact, a 
change of base of P along the domain functor 
dom : / I →  in Example 2 can construct a single-sorted 
indexed fibration : ( )PP / I / T I / I→  . For 

: C I bj / Iα∀ → ∈O  , the fiber C  above C on P is an 
isomorphism to the fiber ( ( ))/ T I α  above α on P / I [28], 
and if P has a truth functor, then the single-sorted indexed 
fibration P / I constructed by P also has a truth functor. 

Any : C I bj / Iα∀ → ∈O  , we presume two pull-backs 
of α along α to be i and j, separately. So the productive 
object of α × α is iα ⋅  or jα ⋅ . Namely, the productive 
object / I in those slice categories is ascertained by the 
pullback. Analogously, for definition 11, the subsequent 
result is the concept of a relation fibration of the single-
sorted indexed fibration P / I. 

Definition 13. Assume : ( )PP / I / T I / I→  to be a 
single-sorted indexed fibration. The base categories / I
have product. Presume Δ : / I / I / I→  to be one 
bidiagonal selffunctor in the sliced category / I . So Δ / I  
mapping / Iα∀ ∈  to the product object α × α. Then 
pullbacks of P / I along Δ / I makes one fibration 

( ): ( ( ))PRel P / I Rel / T I / I→  . At the same time, Rel(P / 
I) is one relation fibration for P / I. 

For an object ( ( ))PR bj Rel / T I∈O   above α on Rel(P / 
I), an object ( )PR' bj / T I∈O  above α × α on P / I and an 

object R'' bj∈O   above dom(α × α) on P, there exists the 
isomorphism R R' R''≅ ≅  in [28]. The action function of α  
on the natural transformation : Δ/ I/ I Id / Iδ →  is
( ) : ( )/ I C domαδ α α→ × .Then the intuitional meaning of the 
natural transformation δ / I is a morphism from one object 
to another object in the slice category / I . Similarly, for 
Definition 12, the following defines the equation functor of 
a single-sorted indexed fibration P / I. 

Definition 14. Let : P →  be a bifibration satisfying 
Beck-Chevalley condition between two small categories 
  and  , where P has the truth functor, and base category 
  has the product. Let the truth functor of a single-sorted 
index fibrations P / I be  TP/I. So

( ) : ( ( ))*
P / I P / I PEq / I T / I Rel / T Iδ= ⋅ →  is called to be 

one equation functor for P / I. 
The equation functor EqP/I maps the object : C Iα →  in 

the slice category / I  to a unique morphism 

( ) ( ) ( )*
P / I P/ I T C T Iαδ →⋅ above α × α. The following 

constructs the quotient functor using the single-sorted 
indexed fibration P / I. 
 
4.1.3 Quotient Functor and its Lifting 
 

Let truth functor : PT →   of fibration : P →   be 
substituted with the equation functor : ( )PEq Rel→  of P. 
P is displaced by its relation fibration Rel(P). Next, 
applying Theorem 3, we make another fibration, i.e.,

( ) : ( ) ( )PRel P / I Rel / Eq I / I→  , any ( )R bjRel∀ ∈O  . Here, 
Rel(P) / I can map : ( )PR Eq Iα →  to be : ' QR Iα → , and α' 
is one transpose of α to the adjoint functors Q  EqP. 

Definition 15. Assume adjoint functors τ
: ( ( )) ( ) ( )P PRel / T I Rel / Eq Iσ →  satisfy commuted 

diagrams, namely, ( ) ( )Rel P / I Rel P / I τ= ⋅ , and
( ) ( )Rel P / I Rel P / I σ= ⋅ . Meanwhile, ( )Rel P / I have the 

right adjoint functors Eq(P/I) such that 
( )P / I P / IEq Eqτ= ⋅ .Then ( )Rel P / I τ⋅ ( )P / IEqσ ⋅ . And 
( )Rel P / I σ⋅ is called to be the quotient functor of the 

single-sorted indexed fibration P / I, We write ( )Rel P / I τ⋅

to QP/I. And we have QP/I  EqP/I. 
 

 
Figure 7 Construction of quotient functor QP/I 

 
Let ( , ) ( ( ))PR C D bj Rel / T I∀ = ∈O  . Then 
( , )P / IQ C D C= (Fig. 7). We have ( , )C D DΠ = , for an object 
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: ( ) ( )P Pf D T I bj / T I→ ∈O  ; we have ( ) ( )P / I f P D I= → , 
and there exists an object : g C I bj / I→ ∈O  , 

/ ( )I g g g∆ = × ; therefore: dom(g × g) = P(D). 
Definition 16. Let : P →  be one bi-fibration 

satisfies Beck-Chevalley requirement with a truth functor 

PT among small category   and  . Base categories   
have product and pullback. The functor 

: ( )PP / I / T I / I→   is a single-sorted index fibration for
P . We make a relational fibration Rel(P / I), an equational 
functors EqP/I with a quotient functor QP/I of P / I. Presume 
F to be one self functor into the base categories / I  over 
Rel(P / I). Then F ⊥  is a self functor into the total categories 

( ( ))PRel / T I  over Rel(P / I). In case F ⊥  is satisfying 

commuted diagrams, i.e., ( ) ( )Rel P / I F F Rel P / I⊥⋅ = ⋅ , some 
isomorphism expresses satisfy, P / I P / IEq F F Eq⊥≅⋅ ⋅ and 

P / I P / IF Q Q F ⊥⋅ ≅ ⋅ .Then we call F ⊥  one lifting which is 
equation-preserving for F on Rel(P / I) into total category 

( ( ))PRel / T I . 
 
4.1.4 Semantic Behaviours of Single-Sorted ICDT 
 

Any : C I bj / Iα∀ → ∈O  , one F coalgebras
( , : ( ))r Fα α α→ is made using action of selffunctor F. We 
call α the carrier of F coalgebras, the morphism between 
(α, r) and another F - coalgebra ( , : ( ))t Fβ β β→ is the 
morphism : f α β→  between their carriers, which satisfies 
the diagram commutes; that is, ( )t f F f r⋅ = ⋅ . F - 
coalgebras category is composed of F - coalgebras and 
corresponding morphisms, writes ColagF. If the terminal F 
- coalgebra ( , : ( ))F out F F Fν ν ν→  exists, it is up to a unique 
isomorphism with the universal properties, which are 
determined by terminal coalgebra. The universal properties 
are our primary tool to research the semantic behaviors and 
coinductive rules of ICDT.  

The single-sorted ICDT vF, which is also the carrier of 
final F - coalgebras, is the max fixed points of the functor 
F. The functor F is the syntax destructors of vF. The 
corresponding morphism out describes a type of semantic 
behavior of vF during the syntax destruction externally. 
We apply equation functors EqP/I of the single-sorted 
indexed fibration P / I, it mapped F – coalgebra (α, r) to an 
F ⊥ - coalgebra, 

( , ) ( ( ), ( ): ( ) ( ( ))P / I P / I P / I P / I P / IEq r Eq Eq r Eq Eq Fα α α α= →  

( )))( P / IF Eq α⊥≅ . Accordingly, EqP/I(vF) is the carrier of 

terminal F ⊥ - coalgebra. Therefore, the equation functor 
EqP/I preserves terminal objects. 

Write Coalg(EqP/I) for the functor from CoalgF to 

F
Coalg ⊥ ,which maps all objects and their morphisms in the 

base category / I  over relation fibration Rel(P / I) to 
ones into the total categories ( ( ))PRel / T I  using the 
equation functor EqP/I. Then the functor Coalg(EqP/I) 
establishes a relationship between CoalgF and 

F
Coalg ⊥ . 

If ( ( ), : ( ) ( ( )))P / I P / I P / IEq F out Eq F F Eq Fν ν ν⊥ ⊥→ is a 

final F ⊥ - coalgebras into the total categories ( ( ))PRel / T I  

over relation fibration Rel(P / I), then the out⊥  is one 
homo-morphism image for out with the act of the 
corresponding functor Coalg(EqP/I), namely, we have

( )( )P / ICoalg Eq out out⊥= . The final properties of final F ⊥ - 

coalgebras ensure out⊥  determines an only isomorphism, 
providing convenience in analyzing semantic behaviors 
accurately and exactly depicting the coinductive rule of 
single-sorted ICDT. 
 

 
Figure 8 Adjoint properties of Coalg(EqP/I) and Coalg(QP/I) 

 
Similarly, write Coalg(QP/I) for the functor from  

F
Coalg ⊥ to CoalgF. Then we have Coalg(QP/I)  

Coalg(EqP/I) by the adjoint property of the adjoint functor 
[9]. For each F ⊥  - coalgebra
( , : ( )), : ( ) ( ( ))P Pq F X T I bjRel / T Iω ω ω ω⊥→ → ∈O  , 

( ( ( ))( )( ) ) ( )) (Q Q Q QP / I P / I P / I P / ICoalg q F F ωω ω⊥= → ≅ , that is, 
Coalg(QP/I)(q)= QP/I(q). So QP/I(q) be one of homo-
morphism images of q with the act of the functor 
Coalg(QP/I) (Fig. 8). If the morphism : ( )P / Ig Eqω α→  is a 

F ⊥  - coalgebras morphism from q to EqP/I(r), then the F - 
coalgebras morphism : ( )QP / Ih ω α→  from QP/I(q), to r is 
an F - coalgebras homomorphisms about g. Similarly, g is 
an F ⊥  - coalgebra homomorphism above h. 

The left adjoint Coalg(QP/I) of functors Coalg(EqP/I) 
causes a presentative mutual deduction relations among F 
- coalgebras whose carrier is QP/I(ω), F ⊥  - coalgebras 
whose carriers are ω, providing a concise and uniform 
model ways to the math specification of the coinductive 
rule of a single-sorted ICDT. The single-sorted ICDT vF is 
the carrier of terminal coalgebra, if functor Coalg(EqP/I) 
preserves terminal objects, then the lifting equation-
preserving F ⊥  of F on Rel(P / I) generates a sound 
coinductive rule. 
 
4.2 Coinductive Rule of Single-Sorted ICDT 
 

One fibration equipping a quotient functor and 
equation functor, the math specifiction of coinductive rule 
is coherent to its semantics behaviors analysis of ICDT on 
this fibration [9]. If : P →   and : ( )PP / I / T I / I→ 
content the conditions of Definition 16, and let F be a self 
functor into the base category / I over the relation 
fibration Rel(P / I) for P / I, let vF be one carrier of final F 
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- coalgebras, F have its lifting which is equation-preserving
F ⊥ , then P / I have the coinductive rules whose carrier is 
the single-sorted ICDT vF. This provides a sound basis of 
validity judgment for F ⊥  applying F - coalgebra to 
generate a coinductive rule on a single-sorted ICDT. That 
is, if the single-sorted index fibration P / I equipping 
quotient functor and equation functor depicts semantics 
behaviors of the single-sorted ICDTs, their coinductive 
rules on account of final F - coalgebras are available in the 
procedure of semantics behaviors descrition in program. 
Now we can obtain an universal coinductive rule which is 
provided abstractly into fibrational settings for a single-
sorted ICDT. 

On the basis of categoretical theory, the corecursive 
computing of a coinductive data types rises in final 
coalgebras semantic [2]. Any : C I bj / Iα∀ → ∈O  , for

F bj / Iν ∈O  , we use F to make the corecursive 
manipulation ( ( ))unfold : F Fα α α ν→ → → to single-sorted 
ICDT into the base categories / I . Any an F -coalgebras
( , : ( ))r Fα α α→ , unfold r is mapping r to a sole F - 
coalgebras morphism : unfold r Fα ν→ , which  is from (α, 
r) to the final F -coalgebra (vF, out) (Fig. 9). Co-recursive 
manipulation unfold origining in final coalgebras semantic 
is a corecursive parameterized manipulation of the ICDT 
in nature. The corecursive computings have many well-
defined properties such as exact semantical description, 
adaptable expansibility and brief expressing. 
 

 
Figure 9 F -coalgebra morphisms 

 
In Definition 16, we have )) ( ( ))(P / I P / IEq F( F Eqα α⊥≅ ,

( )) ( ( ))P / I P / IEq F( F F Eq Fν ν⊥≅ , and the equation functor 
EqP/I, preserves terminal objects. Clearly EqP/I(vF) is one 
carrier of final F ⊥  -coalgebras, writting it for 

( )P / IF Eq Fν ν⊥ = , let ( )P / IX Eq α= . Using selffunctor F ⊥  
makes the corecursive manipulation

( ( ))unfold : X F X X Fν⊥ ⊥→ → → for a single-sorted ICDT 
in the total categories ( ))PRel / T ( I ) (Fig. 10). 
 

 
Figure 10 F ⊥ -coalgebra morphisms 

 
An F ⊥  - coalgebras ( , : ( ))X q X F X⊥→ , and unfold q is 

mapping q to a sole F ⊥  - coalgebras morphism unfold q 
X Fν ⊥→  from F ⊥  - coalgebras (X, q) to the final F ⊥  - 

coalgebras ( )F out,ν ⊥ ⊥ . For bj / Iα∀ ∈O  , X bj∃ ∈O

( ( ))PRel / T I , we can obtain an universal coinductive rule 
for a single-sorted ICDT. 

( ( )) ( ): Uni P / ICoind X F X X Eq Fν⊥→ → → . 

If ( , : ( ))X q X F X⊥→  is a F ⊥  - coalgebra over F - 

coalgebras ( , : ( ))r Fα α α→ , so CoindUniXq is a F ⊥  - 
coalgebras homo-morphism on unfold r. 
 
4.3 Instance Analysis of Single-Sorted ICDT 
 

Example 4. The type of element of a stream or an 
infinite sequence is designated by index I, such as the 
natural number Nat, integer Int and character Char,

I bj∀ ∈O  . For any stream : S I bj / Iα → ∈O  , selffunctor 
: F Iα α→ × over / I , the operation : head Iα → is head 

function, another operation : tail α α→ is tail function after 
erasing the first item. Any streams properties

( ( ))PR bj Rel / T I∈O   into the total categories ( ( ))PRel / T I
over the relation fibration Rel(P / I) for the single-sorted 
index fibration P / I, for instance, bisimulation. For the 
other stream object : S ' Iβ →  into / I , the coinduction 
for α and β about bisimulation property R is as follows: R 
will be a relationship of bisimulation among two different 
streams, i.e., α and β, if and only if ( , ) Rα β∀ ∈ , for 
( ( ), ( ))tail tail Rα β ∈ , there exsits head(α) = head(β). 

If stream data Stream(I) is the carrier vF of final F - 
coalgebras ( , : ( ))F out F F Fν ν ν→ into the base categories 

/ I , then for every F - coalgebras ( , : ( ))r Fα α α→ , then 
it will be lifted to be an F ⊥  - coalgebras ( , : ( ))X q X F X⊥→

using relation fibration Rel(P / I), that is satisfying 
commutive diagrams, namely, 

( / )( ) ( / ) ( )F Rel P I X Rel P I F X⊥⋅ = ⋅ . The terminal properties 
of final F - coalgebras define a corecursive manipulation 
unfold r about Stream(I) that implements the determinism 
for the single-sorted ICDTs Stream(I). The other 
corecursive manipulation for terminality of final F ⊥  - 
coalgebras depicts the semantics behaviors for Stream(I). 
If q lies above r, then CoindUniXq is a F ⊥  - coalgebra 
homomorphism on unfold r, and traversing every property 
R into the total categories ( ( ))PRel / T I  over corresponding 
relation fibration Rel(P / I), for PR bj Rel( / T ( I ))∈O  , we 
can then have a semantics set 
{ ( , ) ( ), }P / IR X X | X Eq / Iα α= ∀ ∈Obj  ,that represents 
behavior of Stream(I). 

Taking Example 4 for an instance, unfold r represents 
the map relation among stream α and its semantics 
behaviors vividly. The availablity of unfold r supplies an 
intuitive way to homo-morphism from coalgebras to final 
coalgebras, so we can establish the coinduction definition 
principle. To define function : ( )unfold r Stream Iα → , we 
only need to construct the corresponding operation r on α, 
and let (α, r) be an F - coalgebra with F(α) = I × α. 
Meanwhile, we can prove two homomorphisms are 
equivalent given the uniqueness of unfold r. So we have 
coinduction proof principle to demonstrate

, : ( )m n Stream Iα → is equivalent to each other, we just 
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demonstrate m and n are homo-morphism from the 
identical coalgebras (α, r) to the final F - coalgebras
( ( ), : ( ) ( ( )))Stream I out Stream I F Stream I→  as well, m and n are 
also the same to unfold r. 

Example 4 presents some fibrational tools, including 
single-sorted indexed fibration, equation and quotient 
functor to analyze semantic behaviors deeply and 
coinductive rule of stream using fibrations, which 
establishes a mathematical foundation for researching 
semantic computing and the logic of program languages. 
 
5 SEMANTIC BEHAVIORS AND COINDUCTIVE RULE OF 

MANY-SORTED ICDT 
 

Modeling based on the slice category / I analyzes 
semantic behaviors and describes the coinductive rule of 
single-sorted ICDT indexed by I. But I is only aimed at a 
single-sorted ICDTs, so hardly to process a more 
complicated many-sorted ICDTs effectively including 
reciprocal recursion types. On the basis of work ahead, we 
have extended the discrete indexed object I to an indexed 
category , constructed a many-sorted indexed fibration, 
described a many-sorted ICDT in  indexed by bjO  , 
made a semantic behavior model of the many-sorted 
ICDTs in the indexed category  based on fibration 

:G →  and chose different program logics for different 
indexes. 
 
5.1 Fibered Fibration 
 

Definition 17. Let : P →   and : P' ' →   be two 
fibrations between small categories. Also, let a fibered 
functor : F '→  from P to P' above the base category   
satisfy diagram commuting, P P ' F= ⋅ . Then F preserves the 
Cartesian arrow. 

Definition 18. Let : F '→  and : G ' →  be two 
fibered functors above the base category  . The fibred 
functor G is a right fibered adjoint functor to F, and F  G 
is a pair of fibred adjunction above  , if G is a right adjoint 
functor to F, and the unit or counit of F  G is vertical.  

Definition 17 and Definition 18 lift standard category 
structures to fibered structures; it is easy to process many 
practical problems of many-sorted ICDTs with different 
discrete indexed objects in computer science. Using 
fibrational tools, such as truth and quotient functors in the 
base category, we can combine many-sorted ICDTs with 
their semantic behaviors. Applying reindexed and opposite 
reindexed functors between fibers in the total category in 
order to analyze the deeply semantic behaviors of many-
sorted ICDTs, in order to construct corecursive operations 
on many-sorted ICDTs to abstractly describe coinductive 
rules with universality. This does not depend on particular 
computing environments, but improves the cohesion of 
many-sorted ICDTs, and further enhances the 
independence of program languages. 

Let : P →  and : G →  be two fibrations between 
small categories. Given the composed property that 
composition of two fibrations is a fibration [23], GP is a 
fibration. For a bj∀ ∈O  , a is a fiber in the total category 
  on fibration GP over a. The restriction : a a aP →  of 
P at a is a pullback of P along the including functor 

: aInc →  , and a  is a fiber in the total category   on 
fibration G over a. Then given the structure-preserving 
property of pullbacks [23], Pa is also a fibration.  

Each Pa deals with different indexed object a. Let P 
have a truth functor, so Pa also has a truth functor, denoted 
as Ta. For a bifibration P that satisfies the Beck-Chevalley 
condition in Theorem 2, the right adjoint of the reindexed 
functor preserves terminal objects. When a iterates each 
indexed object in the indexed category  , a set of Ta 
constructs the truth functor TP, that is, { }.P aT T a bj| ∈= ∀ O  

Differing from TP constructed by Ta, each restriction 
Pa of P has the truth and comprehension functor, we do not 
determine P itself has a truth and comprehension functor; 
otherwise, P has truth and comprehension functor, we also 
do n'ot determine its restriction Pa has a truth and 
comprehension functor. In the following, we introduce the 
definition of a fibered fibration and demonstrate the 
decidability of P and its restriction Pa about the existences 
of the truth and comprehension functor. 

Definition 19. Let : P →  and : G →  be two 
fibrations between small categories, let : PT →  be a 
truth functor for P, let TP have one fibered right adjoint 
functors { }: GP G→− , and {−} preserves the Cartesian 
arrow, then P is a fibered fibration with a truth functor TP 
and a comprehension functor {−} over G. 

Given Definition 18 and Definition 17, the truth 
functor : PT G GP→ of P is a fibered fibration, TP is fibered 
right adjoint of P, P preserves the opposite Cartesian arrow 
and TP preserves the Cartesian arrow. Consequently, it is 
equivalent that P is a fibered fibration over G and that P is 
a fibration with a truth and comprehension functor. Then 
according to Theorem 4 below, we delve deeper into the 
decidability of fibered fibration P and its restriction Pa at 
a. 

Theorem 4. Let : P →  and : G →  be two 
fibrations between small categories, let P be a fibered 
fibration over G. Then for a bj∀ ∈O  , a restriction 

: a a aP →  of P at a is also a fibered fibration. 
 

 
Figure 11 Truth functor aT preserves Cartesian arrows 

 
Proof. Let the fibered adjunction TP {−} be the truth 

and comprehension functor of the fibered fibration P, 
respectively. For a bj∀ ∈O  , Ta and {−}a is the restriction 
of TP and {−} at a, respectively. With regard to any 
morphism : f a b or→ ∈ M  , : ( )*

Y af f Y Y or↓ → ∈ M  is a 
Cartesian arrow of f on fibration G. Now we prove that 

( )a YT f ↓  is also a Cartesian arrow of f on fibration GP, i.e., 
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truth functor Ta preserves the Cartesian arrow.
: g c a or∃ → ∈ M  ,  let : ( )a al X T Y or→ ∈ M   lies above fg 

(Fig. 11). 
Let : { }a aa Tη → −1 and : { }a a aTε − → 1 be two natural 

transformations, and let the transpose { }Y al lε
∧
= of l lies 

above fg. Next, in fiber a there exists a unique morphism 

: { } ( )*
a av X f Y or→ ∈ M   over g such that Yf v l

∧
↓ =⋅ . 

Henceforth, in fiber a we obtain a unique morphism 

: ( ( )) ( ( ) )*
a X a aT v X T f Y orη → ∈ M  over g, such that 

( ) ( ( ) )a Y a XT f T v lη↓ ⋅ = . So ( )a YT f ↓  is a Cartesian arrow of f 
on the fibration GP. Namely, the truth functor Ta preserves 
the Cartesian arrows. Similarly, we can also prove the 
comprehension functor {−}a preserves the opposite 
Cartesian arrows by dual principles in [26].  

Therefore, we proved Ta {−}a, η and ε are the  unit 
and counit of this adjunction, and η is the vertical 
morphism; the restriction : a a aP →  of P at a is also a 
fibered fibration. 

Remark 4. Fibration : G →  depicts the indexed 
type, and Theorem 4 ensures if : P →  is a fibered 
fibration over G, then for a bj∀ ∈O  , the restriction 

: a a aP →  of P at a is also a fibered fibration with a truth 
functor Ta and a comprehension functor{−}a, and Ta 
{−}a. In fact, Pa is a subfibration of P [29], i.e., Pa and P 
have the same fibration structures, semantic behaviors and 
logical properties. Similarly to subsection 4.1.2 and 4.1.3, 
the following are some tools of fibration, including: 
equation functor, quotient functor and lifting equation-
preserving of many-sorted indexed fibration Pa. 
 
5.2 Semantic Behaviours of Many-Sorted ICDT 
 

Definition 20. Let : P →  be a bifibration satisfying 
Beck-Chevalley condition, let Pa be the restriction of P at 
a. Base category   has products and pullbacks, : G → 
is a fibration in the indexed category , and P is a fibered 
fibration on G with truth functor TP and comprehension 
functor {−}. The diagonal endo-functor : G a a∆ →   
maps aC bj∀ ∈O  to C × C, the change of base of Pa along 
ΔG constructs a relation fibration  ( ): ( )G a G a aRel P Rel → 

on G. Let : G GaIdδ ∆→  be natural transformation, the 

equation functor : ( )Pa a G aEq Rel→   of Pa on G maps C 

to ( )*
G aT Cδ ⋅ . If EqPa has a left adjoint QPa, i.e., QPa  

EqPa, then QPa is the quotient functor of Pa on G. 
Definition 21. For a bj∀ ∈O  is an indexed object, the 

many-sorted indexed fibration : a a aP →   is the 
restriction of P at a. Let : a aF →   be an endo-functor in 

fiber a , : ( ) ( )G G a G aF Rel Rel⊥ →   be a lifting equation-
preserving of F on RelG(Pa). If it satisfies diagram 
commuting, i.e., ( ) ( ),GG a G aRel P F F Rel P⊥⋅ = ⋅  then 

GPa PaEq F F Eq⊥≅⋅ ⋅  and GPa PaQ F F Q⊥ ≅ ⋅⋅ . 
 

 
Figure 12 Adjoint properties of Coalg(EqPa) and Coalg(QPa) 

 
For aD bj∀ ∈O  , we can construct an F - coalgebra 

( , : ( ))D D F Dϕ →  through the action of endo-functor F. The 
equation functor EqPa of the many-sorted indexed fibration 
Pa maps ( , )D ϕ  to a GF ⊥  - coalgebra 

( ( ), ( ) ( ( )))GPa Pa PaEq D Eq D F Eq D⊥→ . If vFa have a carrier of 
final F - coalgebras ( : ( )), a a a aF out F F Fν ν ν→ . Then the 
action of vFa by EqPa, namely, EqPa(vFa) is the carrier of 
terminal GF ⊥  - coalgebra ( : ( )), G G G G GF out F F Fν ν ν⊥ ⊥ ⊥ ⊥ ⊥→  
since the equation functor EqPa preserves terminal objects. 
Similarly for subsection 4.1.4, we write Coalg(EqPa) for 
the functor from CoalgF to 

GF
Coalg ⊥ , Coalg(EqPa) 

( ) aaout out⊥= ; aout⊥ is the isomorphism mapping to aout with 
the acting on the functor Coalg(EqPa). 

For any GF ⊥  - coalgebra ( , : ( ))GY Y F Yφ ⊥→ , the quotient 
functor QPa of the many-sorted indexed fibration Pa maps 
( , )Y φ  to a F - coalgebra
( ( ), ( ): ( ) ( ( )))Q Q Q QPa Pa Pa PaY Y F Yφ →  (Fig. 12). Let

: ( )Pan Y Eq D→ be an GF ⊥  - coalgebras morphism from φ to 
EqPa(ϕ), so its corresponding F - coalgebras morphism 

: ( )QPam Y D→  from QPa(ϕ),  to ϕ is a F - coalgebra 

homomorphism over n. Similarly, n is a GF ⊥  - coalgebra 
homomorphism over m. Functor Coalg(QPa). from 

GF
Coalg ⊥  to CoalgF establishes an intuitive mutual 

derivation relationship between GF ⊥  - coalgebra, whose 
carrier is Y and F - coalgebra whose carrier is QPa(Y). This 
presents a succinct and coherent model for describing 
coinductive rule of many-sorted ICDTs, with vFa as the 
carrier of terminal F - coalgebra. If the functor Coalg(EqPa) 
preserves terminal objects, then the lifting equation-
preserving GF ⊥  of F on RelG(Pa) generates a sound 
coinductive rule. 
 
5.3 Coinductive Rule of Many-Sorted ICDT 
 

Let : P →   and : G →   satisfy the requirements 
of Definition 20 and Definition 21; let : a aF →   be an 
endo-functor in fiber a , and vFa is a carrier of final F - 
coalgebras. Each lifting which is equation-preserving 

: G a aF⊥ →   of F has a sound coinductive rule about vFa, 
so it ensures the validity of  the coinductive rule generated 
by the many-sorted indexed fibration Pa on a many-sorted 
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ICDT. Next we will present and describe the coinductive 
rule of many-sorted ICDTs with universality in the settings 
of fibrations. 

For a bj∀ ∈O  , aD bj∀ ∈O  , ( , : ( ))D D F Dϕ → is a F - 
coalgebra in fiber a . We construct a corecursive 
operation : ( ( )) aunfold D F D D Fν→ → → of a many-sorted 
ICDT in the base category a  on relation fibration 
RelG(Pa), and  unfold ϕ maps ϕ to a sole F - coalgebras 
morphism : aunfold D Fϕ ν→ from (D, ϕ) to its final F – 
coalgebras (vFa, outa). 

Given property that the equation functor EqPa 
preserves terminal objects, and EqPa(vFa) is the carrier of 
terminal GF ⊥  - coalgebra, write = ( )a Pa aF Eq Fν ν⊥ . The 
isomorphism expression is as the following:

( ( )) ( ( ))= ( )G G aPa a Pa aEq F F F Eq F F Fν ν ν⊥ ⊥ ⊥≅ . A corecursive 
operation of a many-sorted ICDT 

: ( ( ))G aunfold Y F Y Y Fν⊥ ⊥→ → →  is constructed by GF ⊥  in the 
total category ( )G aRel  on relation fibration RelG(Pa). For 

any GF ⊥  - coalgebra ( , : ( ))GY Y F Yφ ⊥→ , unfold φ  maps φ  

to a unique GF ⊥  - coalgebra morphism : aunfold Y Fφ ν ⊥→  

from ( , Y )φ  to terminal GF ⊥  - coalgebra 

( , : ( ))a Ga a aF out F F Fν ν ν⊥ ⊥ ⊥ ⊥ ⊥→ . For aD bj∀ ∈O  , a bj∀ ∈O  ,
( )G aY bj Rel∃ ∈O  , a coinductive rule of many-sorted ICDT 

with universality is as follows: 
( ( )) ( ): GUni Pa aCoind ' Y F Y Y Eq Fν⊥→ → → . 

If : ( )GY F Yφ ⊥→  is an GF ⊥  - coalgebra over the F - 

coalgebra ( , : ( ))D D F Dϕ → , then UniCoind ' Y φ  is a GF ⊥  - 
coalgebra homomorphism over unfold ϕ. 
 
5.4 Instance Analysis of Many-Sorted ICDT 
 

Example 5. For any set A, let = NL L Lω∞
  be the partial 

order set, including all elements of A, where LN is an 
infinite set and Lω is a finite set. In turn, we have taken 
corresponding elements from the even and odd position of 
L∞ to form two partial order sets EVEN and ODD, with two 
functions : even L EVEN∞ → and : odd L ODD∞ → . Then EVEN 
and ODD are mutual recursive many-sorted ICDTs. Let a, 
b be two indexed objects only in the indexed category ,
a is the indexed object of EVEN, and b  is the indexed 
object of ODD. We have defined the endo-functor 

: × ×F →     in the base category ×  , which is a binary 
production. For E EVEN∀ ∈ , O ODD∀ ∈ , we have

( , ) ( , )F E O O E= . Write •  for the merging operation of 
elements; we have defined the merging property 

: ( , ) ( , )merge merge x EVEN ODD x merge ODD EVEN⋅ = ⋅ ,
( ( , ))even merge EVEN ODD EVEN= and
( ( , ))odd merge EVEN ODD ODD= . Therefore, the relation on 

carrier L∞ of F - coalgebra
{( , ( ( , )))}R EVEN even merge EVEN ODD= and
{( ( ( , )))}S ODDodd merge EVEN ODD= are a bisimulation. 
Let (EVEN, ODD) be the carrier (vFE, vFO) of terminal 

F - coalgebra over binary productions in the base category 

on relation fibration (RelG(Pa), RelG(Pb)) of the many-
sorted indexed fibration(Pa, Pb). For any F - coalgebra 
(( ), : ( , ) ( , ))E,O m E O F E O→ , is lifted to be a GF ⊥  - coalgebra 

(( , ), : ( , ) ( , ))GY Y ' Y Y ' F Y Y 'φ ⊥→  by (RelG(Pa), RelG(Pb)). 
This satisfies diagram commuting 
( ( ( ), ( )))( , ) (( ( ), ( )) ( , ))GG a G b G a G bF Rel P Rel P R S Rel P Rel P F R S⊥⋅ = ⋅

. A corecursive operation unfold ϕ is defined by the 
terminality of terminal F - coalgebra on (EVEN, ODD), 
executing the judgment of a many-sorted ICDT(EVEN, 
ODD); another corecursive operation defined by the 
terminality of terminal GF ⊥  - coalgebra depicts semantic 
behaviors of(EVEN, ODD). If φ lies above ϕ, then 

( , )UniCoind ' R S φ  is an GF ⊥  - coalgebra  homomorphism 
over unfold ϕ. When iterating each property 

( ), ( ), , G a G bR bj Rel S bj Rel a b bj∈ ∈ ∀ ∈O O O    in the total 
category ( ( ), ( ))G a G bRel Rel   on relation fibration 
(RelG(Pa), RelG(Pb)), we obtain the semantic set describing 
properties of (EVEN, ODD), that is,
{( ( ), ( )) ( ), ( )}Pa PbR Y S Y ' | Y Eq E Y ' Eq O= = . 

The mutual recursive type is a complex many-sorted 
ICDT. Traditional methods, including algebras and 
category theory, are difficult when effectively processing 
their semantic computing and program logic. Example 5 
analyzes the deeply semantic properties of mutual 
recursive type using fibrations. The fibrational method is 
not strictly dependent on particular methods or tools, such 
as predicate logic or set theory, and abstractly depicts its 
coinductive rule with universality. Example 5 expands and 
deepens traditional methods in the level of category theory. 
It deals with the semantic computation of the mutual 
recursive type in the uniform settings of fibrations, and 
further develops the width and depth of traditional methods 
of ICDT in math. 
 
6 CONCLUSIONS 
 

Fibrations integrate conventional ideology regarding 
programming, with special ideas and studying methods, 
such as highly abstract, nimble development and brief 
description, produces a robust and significant effect on 
program languages and formal semantics, and boosts the 
application of categoretical theory in computer science. 
There is little literature on fibrations in computer science, 
especially regarding systematical and deep research aiming 
at programming; there is even less literature relating to its 
formal semantics. Fibrations have special superiorities in 
resolving the represention of speculative matters. At the 
same time, they are important in the application of 
theoretical computer science. This paper executed some 
preliminary works in analyzing semantical behaviors, 
coinductive rules representation of ICDTs. In general, we 
expect this work can promote interest for academics 
particularly in China regarding fibrational method, 
promoting the prospects of fibration itself and their 
applications in computer science. 

Our future work will be a preliminary discussion on 
the soundness, completeness, and consistency of a formal 
system consisting of ICDT and its coinductive rule. 
Furthermore, we are expanding our ICDT work to include 
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2-categories using fibrations, with deep discussion 
regarding math structures and the categorical properties of 
syntax construction, semantics computation, behavoirs 
description and programming logic in 2-categories. 
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