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Summary 

The paper presents meshless methods based on the mixed Meshless Local Petrov-
Galerkin approach used for solving linear fourth-order differential equations. In all the 
methods presented here, the primary variable and its derivatives up to the third order are 
approximated separately. Three different mixed meshless methods are derived by different 
choices of test and trial functions and are verified using available analytical and reference 
solutions. The numerical performance of the presented algorithms is demonstrated by several 
representative numerical examples. 
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1. Introduction 
Typical problems described by fourth-order differential equations include the bending 

and buckling of thin beams, plates or shells, as well as nonlocal elasticity and plasticity 
material models based on gradient material theories. In the Finite Element Method (FEM), the 
solution of fourth-order differential equations in general results in complicated formulations 
[1]. If these equations are solved by the primal FEM approaches based on the symmetrical 
weak forms of governing equations, where only the displacement field is approximated, the 
C1 continuous nodal shape functions are required. In FEM, it is fairly complicated to create 
such functions even for two-dimensional (2D) problems [2]. As for three-dimensional (3D) 
problems, deriving efficient C1 FEM formulations is practically beyond feasibility. In the 
mixed FEM methods based on the Lagrange multipliers, the Ladyzhenskaya–Babuška–Brezzi 
(LBB) condition has to be satisfied to ensure the numerical stability. On the other hand, in 
meshless methods, functions with a high order of continuity are created in a simple and 
straightforward manner [3].  

Early studies on solving fourth-order differential equations by means of meshless 
methods included the C1 primal formulations for thin beams and plates, cf.[4, 5]. In order to 
reduce numerical costs and inaccuracies occurring in the C1 formulations, Atluri and Shen [6] 
used the mixed Meshless Local Petrov-Galerkin (MLPG) method, originally proposed in [7], 
for proposing a number of new possible mixed methods to be used for solving fourth-order 
differential equations. Therein, it is demonstrated that the use of high-continuity meshless 
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approximations requires high computational costs and causes a considerable loss in the 
accuracy of numerical solutions due to an inaccurate approximation of higher-order 
derivatives. In the primal meshless methods based on the weak forms of governing equations, 
additional degradation of computational efficiency in terms of computational time and 
numerical stability is caused by a problematic numerical integration of weak forms [8]. Later, 
Moosavi and others [9] used the mixed MLPG approach to derive a meshless counterpart of 
the mixed Finite Volume Method (FVM) [10] for the bending of thin beams.  

Similar to the bending of thin structures, numerical implementations of strain gradient 
models often result in complicated numerical FEM algorithms [11], such as primal C1 
algorithms [12] or mixed formulations [13, 14]. Again, in contrast to FEM, the development 
of explicit strain gradient C1 models via primal Galerkin meshless methods is straightforward 
due to a high continuity order of meshless functions [15], but such approaches are also related 
to reduced accuracy due to the calculation of high-order derivatives of meshless functions [6]. 
In the mixed meshless approaches, complications may occur due to the improper imposition 
of boundary conditions [6] and due to solving large unsymmetrical global systems of 
equations [9]. At present, the focus has been shifted to the development of nodally integrated 
[16] and smoothed [17] meshless methods that avoid the integration of weak forms of 
governing equations as much as possible in order to reduce the computation time while 
obtaining the numerical stability and accuracy of the numerical method. Furthermore, an 
intense scientific interest is also shown  in the development of fast meshless collocation 
methods that do not use any numerical integration [18, 19].  

Herein, the existing mixed MLPG approach [6] is extended in order to better address 
some of the mentioned problems. In order to evaluate the potential of the developed methods 
more easily and to present the general idea and the applied methodology more clearly, only 
simple one-dimensional (1D) linear problems are considered here, without including any 
nonlinearities. The primary variable and its gradients up to the third order are approximated 
by the same interpolating Moving Least Square (IMLS) approximation [20, 21]. Governing 
equations are based on the local weak forms of the principles of conservation of linear and 
angular momenta as well as on compatibility conditions between the approximated variables. 
By choosing appropriate test functions, various methods may be derived. In general, the use 
of the mixed approach relaxes the continuity requirement on trial functions and enables the 
use of low-order polynomial bases with small supports, thus improving numerical efficiency 
in terms of computational costs and stability. Special attention is devoted to proper 
implementation of the boundary conditions (BCs) needed to obtain well-posed systems of 
equations. The performance of the presented algorithms is shown by a few representative 
numerical examples. 

The paper is organised as follows: Section 2 presents a general form of the considered 
governing equations and the derivation of local weak forms for the engineering problems 
described by fourth-order differential equations. The most important details of the 
discretisation procedures, including the description of the IMLS approximation and the 
derived mixed meshless methods, are presented in Section 3. Numerical examples 
demonstrating the accuracy and performance of the proposed methods are presented in 
Section 4. In Section 5, some concluding remarks are given.  

2. Governing equations and local weak forms 
In this paper, we consider a general solution procedure using the mixed MLPG method 

for fourth-order differential equations of the following type: 
 4 0, inaw bw cw q     . (1) 
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In the above expression, w is the primal variable, and the primed symbols denote the 
derivatives of w, i.e. w , w , and w , which stand for the first, the second, and the third 
derivative of w with respect to the space variable x, respectively. The following BCs must be 
prescribed on the global boundary   surrounding the global domain   

on , on , on , on ,
, , ,

w w w w

w w w w w w w w

w w w w w w w w               
                     

  (2) 

where , , andw w w w       denote the parts of   with prescribed values for w, w , w , and 
w , respectively. The physical meaning of the parameters a, b, c, and q depends on the 

problem considered.   
According to the mixed MLPG approach, , , andw w w w    may all be considered as 

unknown system variables, which can be approximated by separate meshless approximations. 
In the following text, the substitution   1 2 3 4, , , , , ,w w w w u u u u    , together with   1u w   , 

2u w   , 3u w  , 4u w  , is used. The compatibility conditions between the variables 
then read as  

2 1 3 2 4 3, ,u u u u u u     .  (3) 

Now, the local weak forms (LWF) of (3) and (1) may be written over a local sub-domain S  
positioned inside   [3], S  , as  

     

 

1 1 2 2 2 3 3 3 4

4 4 2 1

d 0, d 0, d 0,

d 0.
S S S

S

v u u v u u v u u

v au bu cu q
  



          

     

  


                (4) 

Herein, , 1,2,3,4,iv i   are the arbitrarily chosen, kinematically admissible test functions. 
Depending on the choice of the test functions, various numerical methods may be derived.  

3. Numerical implementation 

3.1 Discretisation 

The global domain   is discretised by a set of N nodes , 1,2,...,Ix I N . Around each 
node I, a local sub-domain, I

S , is defined, bounded by a local boundary, I
S , as shown in 

Figure 1.  

 
Fig. 1  Discretised model 

The weak form (4) is written for each I
S  and all variables ui are approximated by using 

the same IMLS approximation, which leads to 

    
1

ˆ , 1, 2,3,4
N

i J i J
J

u x x u i


   . (5) 
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Herein, J  and  ˆi Ju  represent the one-dimensional (1D) meshless nodal shape function and 
the nodal value of the variable iu  for the node J, respectively. Since the well-known MLS 
functions are utilised for a meshless approximation, cf. [3, 22], only main relations are 
presented here. The MLS nodal shape function  J x  is defined as 

       T 1
J J

x x x x    p A B ,              (6) 

where  xA  is the momentum matrix defined as  

       
1

,
N

J J J
J

x W x x x


  TA p p   (7) 

and the matrix  xB  reads as 

          1 1 2 2( ) ( ) ( ) ( ) .J J N Nx W x x W x x W x x W x x  B p p p p       (8) 

To improve the conditioning of the matrix A, the complete monomial basis p is expressed in 
terms of local normalised coordinates, as presented in [23].  JW x  is the weight function 
associated with the node Jx . Herein, a regularised weight function, similar to that in [20], is 
utilised to ensure more accurate enforcement of the Kronecker delta property on the IMLS 
shape function, i.e.  J I J Ix  . It is to be noted that the node I will influence the values of 
approximated variables ui only at the points positioned in the weight function support domain 

I
tr . By inserting the approximations (5) into (4), a system of four linear algebraic equations 

is derived for each node. A global system of equations is obtained by writing the equations in 
a node-by-node fashion [3, 22]. Table 1 shows the acronyms of the methods presented in this 
study, together with the applied test functions; these are given in order to facilitate the reading 
of further text. 

Table 1  Numerical methods and test functions applied in this study 

Method Acronym 
Test functions 

v1 v2 v3 v4 
Modified Mixed Meshless Local Petrov-Galerkin 
(MLPG) method of the second kind 

mm-
MLPGv2 Heaviside Dirac Dirac Dirac 

Mixed Meshless Finite Volume Method mMFVM Heaviside Heaviside Heaviside Heaviside
Mixed MLPG approach based on the momentum 
principle mMLPGmp Heaviside Heaviside Dirac Dirac 

3.2 Modified mixed Meshless Local Petrov-Galerkin method of the second kind (mm-
MLPGv2) 
As proposed in [6], the Heaviside function may be chosen as the test function v4, while 

the Dirac functions can be employed as v1, v2, and v3, enforcing the compatibility equations (3) 
only at the nodes. In [6], such method was named the mixed meshless local Petrov-Galerkin 
method of the second kind. In our numerical experiments, it has been established that this 
method may become numerically unstable in some cases and that such problems are caused 
by the procedures used there to impose the BCs. Therefore, here the BCs for u2 and u3 are 
enforced by a collocation procedure in the weighted least squares sense, similar to [24]. For a 
node xI ,the system (4) can then be transformed into  
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     

         

3 1

4 2

2

1 2 22 2

2

2 3 3 3 42 2

2 4 1

4 2

1 ,
1 1

1 , 0,
1 1

d d d

d d d .

I I I I I
S SU S SU S

I I I
SU SU S

I
I I I

I I

I
I I I I I

I I

L L

u x u x u x

u x u x u x u x u x

nbu n a u cu

n a u nbu q


 


 

  

  

   
 

     
 

     

      

  

  

  (9) 

In the above equations, I  and I  are the penalty factors, with 1I   if 2I ux   and 
0 otherwise, and 1I   if 3I ux   and 0 otherwise. Note that both 2u  and 4u  appear as the 
natural BCs in the last equation. However, for the considered problems, either only one of 
these variables appear in the LWF (9), or both 2u  and 4u  have to be prescribed 
simultaneously at a point on the outer boundary in order to describe relevant BCs properly. 
For example, in the bending of thin beams, 0b   and the terms containing u2 are omitted, 
while in the thin beam buckling problems, u2 and u4 are both associated with the transversal 
force and are therefore prescribed simultaneously on the parts of   with the prescribed 
transversal forces. If 1I u wx     , then 1 1u u  is enforced at the node I instead of the fourth 
equation in (9). Now, all BCs are properly imposed.  

All variables ui are approximated by employing the same IMLS function approximation 
scheme. The compatibility conditions at the nodes are then fulfilled accurately and the 
coefficient matrix of the global discretised system of equations is sparsely populated. 
Furthermore, for the interpolating meshless approximation schemes, the size of the global 
system of equations can be relatively easily reduced by successively computing the nodal 
values of 2u , 3u  and 4u  from the first three equations in (9) and by inserting them in the 
fourth equation, in much the same way as in [6]. 

3.3 Mixed Meshless Finite Volume Method (mMFVM) 
The same as in the formulation for thin beams [9], all test functions in (4) are chosen to 

be the Heaviside functions, which leads to a form of the mixed meshless finite volume 
method. Then, by performing the integration by parts and by applying the Gauss theorem to 
all expressions in (4), and after discretisation by the meshless IMLS functions (5), the system 
of equations for the node I can be written as 

1

ˆ
N

IJ J I
J 

K U R ,  (10) 

where IJK  stands for the contribution of the node J to the stiffness of the local subdomain of 
the node I, I

S . ˆ
JU  is the vector that collects the nodal variables at the node J, and IR  is the 

nodal force vector at the node I, defined as  

1 2 3 4 2

T

1 2 3 4 2d d d d d d .
I I I I I I
SU SU SU S SU SU

I nu nu nu q n au nbu
     

 
            
  
     R   (11) 

Herein, n denotes the outward unit normal vector to the global boundary. All BCs are 
defined as natural BCs and are imposed in the weak form. All non-zero terms of the matrix 
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IJK  are integrals over I
S  and parts of the local boundary I

S . Due to the integration, the 
global stiffness matrix is in general more populated than in the mMLPGv2 method presented 
in the previous chapter, which increases somewhat the total numerical costs. A reduction in 
the size of the global discretised equation system by a successive elimination of nodal 
variables associated with higher-order derivatives is still possible, but it is costlier than in the 
previous method. The matrix manipulation required for achieving such a reduction includes 
the matrix inversion, besides the matrix adding and multiplication. 

3.4 Mixed MLPG approach based on the momentum principle (mMLPGmp) 
Here, the Dirac function is used for the test functions v1 and v2, while the Heaviside 

function is employed as v3 and v4, which leads to 

   
2 3

3 1 4 2

1 2 2 3 3 4 3

2 4 1 4 2

0, 0, d d d ,

d d d d d d .

I I I I I I
S SU S SU

I I I I I I I I
S SU S SU S SU SU S

x x x x
L

L L

u u u u n u f u n u

nbu n au cu n au nbu q

 
  

     

          

          

  

     
 (12) 

It is to be noted that the first two equations represent the compatibility conditions 
between u1, u2 and u3, which are in general associated with the kinematic variables of a 
considered problem (e.g. deflection, slope, and curvature in thin beams) at the nodes. 
Likewise, it can be shown that the last equation can be interpreted as the weak form of the 
linear momentum principle for I

S  (e.g. the equilibrium equation of forces in the transversal 
direction in the beam bending). Finally, the third equation stems from the angular momentum 
principle for I

S  (e.g. the equilibrium equation of moments in the beam bending). Now, only 
the prescribed values for u3 and u4, i.e. 3u  and 4u , appear as the natural BCs in (12), which 
can be associated with dynamical system variables, such as the bending moments and 
transversal forces in the beam bending or the tractions in the gradient elasticity. The BCs for 
u1 and u2 are prescribed by setting 1 1u u  and 2 2u u  at the node I instead of the third and 
the fourth equation in (12), respectively.  

After applying the approximations (5), the nodal values for u2 and u3 can be eliminated 
from the system of equations in a simple and efficient way by a successive calculation and 
substitution from the first two equations in (12), analogous to the MLPG method of the 
second kind mm-MLPGv2 presented in chapter 3.2. Consequently, the global discretised 
system of equations is then reduced to only two equations per node, representing the linear 
and the angular momentum principle over I

S .  

4. Numerical examples 

4.1 Simply supported thin beam 
The first representative example is the bending of a simply supported thin beam 

subjected to the uniformly distributed load q, see Fig. 2. The beam is optionally set on an 
elastic foundation. For thin beams, the variables , 1, 2,3,4iu i   are associated with the 
deflection, slope, curvature, and the third-order deflection gradient, respectively. The 
coefficients in equation (1) are then the thin beam flexural stiffness a EI , the foundation 
stiffness c k , and 0b  . First, a beam without the elastic foundation, with 65 10EI   , 

0k  , 1q   and 100L  , is considered. The interpolating moving least square approximating 
scheme using the first-order basis, IMLS1, is applied. Discretisations using uniformly 
distributed nodes along the beam are used.  
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The convergence results are analysed using relative errors in L2-norms defined as 

2

2

, 1,2,3,4
num ex
i i

ui ex
i

u u
r i

u


  ,       (13) 

where the superscript num is related to the obtained numerical solution, while ex refers to the 
analytical referent solution. The convergence of variables u1 and u3, representing deflections 
and second-order derivatives (curvature), respectively, are shown in Figures 3 and 4.  

 
Fig. 2  Simply supported beam subjected to a uniformly distributed load 

   
Fig. 3  Convergence of deflections for a 

simply supported beam 
Fig. 4  Convergence of second-order derivatives  

for a simply supported beam 

The convergence rates are given in the figure captions. One can see that the convergence rates 
and the global accuracy for the second-order derivatives are approximately the same for all 
methods, but the mixed meshless finite volume method gives somewhat higher accuracy and a 
higher convergence rate for deflections. However, for both variables, the obtained 
convergence rates are approximately equal to 2 because of the mixed approach applied, where 
both variables are approximated separately by the first-order IMLS functions.  

A beam on an elastic foundation is considered next, with the following 
parameters: 1EI  , 1k  , 1q  , and 1L  . Numerical results are compared with the 
analytical solution from [6]. The distributions of deflections and curvature along the beam 
obtained by using the first-order MLS basis and eleven uniformly distributed nodes along the 
beam are shown in Figures 5 and 6. Again, the mMFVM method gives more accurate results 
for deflections while for derivatives, the accuracy of all methods is very similar. A closer 
inspection of the results in Figs. 5 and 6 reveals certain oscillations in the variable 
distributions, clearly visible in the deflections obtained by the mixed MLPG of the second 
kind. Such oscillations are least pronounced in the mMFVM method, which is based only on 
the weak forms of the governing equations; this results in the better accuracy of this method. 
It may be concluded that the oscillations are caused by the sub-optimal sampling of the 
higher-order variables ; 2,3, 4iu i   in the methods where the collocation is employed for 
compatibility equations, i.e. the mm-MLPGv2 and mMLPGmp methods, similar to [25]. It 
has to be noted that inaccurate numerical integration, inherent to all meshless methods, may 
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also contribute to such behaviour, cf. [3,8,16]. The results also imply that the issue of 
numerical stability of the presented methods, typical of all mixed numerical approaches where 
more than one variable is approximated, has to be investigated in detail.  

   
Fig. 5  Deflections for the beam on an 

elastic foundation 
Fig. 6  Second derivatives (curvature) for the  

beam on an elastic foundation

4.2 Buckling of the elastic beam 
The second example deals with the buckling of an elastic beam under the compressive 

load P, optionally set on an elastic foundation, as shown in Fig. 7.  

 
Fig. 7  Beam on an elastic foundation subjected to a buckling load 

In this example, the coefficients in (1) are the flexural stiffness a EI , the foundation 
stiffness c k , and the compressive axial load b P . In numerical calculations only the 
mixed meshless finite volume method has been applied. 
Firstly, buckling without the elastic foundation is considered (k  0). Herein, the beam with 
the geometry and material data EI  1 and l  1 is chosen. The IMLS approximation functions 
using the third-order basis, IMLS3, and the discretisations using five nodes are employed. In 
this problem, the solution procedure consists of finding eigenvalues (buckling loads) and the 
corresponding eigenvectors (buckling mode shapes). The numerical analysis of the 
fundamental buckling load is carried out and the compressive load 1 20.21n

crP   is obtained, 
while the exact solution is equal to 1 20.19e

crP  . The solution for the corresponding 
fundamental buckling mode shape is given in Table 2 and shown in Fig. 8. The distribution of 
the obtained deflection, shown in Fig. 8, is correspondent to the standard well-known 
buckling form of a free thin beam under compressive loading.  

Table 2  Fundamental buckling mode shape of the beam 

Node x w   

1 0.2 0 0.7274 
2 0.4 0.1525 0.3886 
3 0.6 0.169 -0.248 
4 0.8 0.0675 -0.4524
5 1 0 0 
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Fig. 8  Deformation of the beam subjected to a buckling load 

Next, the buckling of the beam on the elastic foundation is analysed. The beam with the 
identical geometry and material data as in the previous case is considered; it is set on the 
foundation with a stiffness of 800k  . The obtained solution for the fundamental buckling 
load in this case was equal to 1 59.9n

crP  , while the analytical solution is 1 60.2e
crP  . The 

corresponding fundamental buckling mode shape shown in Fig. 9 is different from that in the 
previous case. It can be seen from the presented results that for this eigenvalue problem, the 
proposed mixed finite volume method yields a less than 1% error for a critical force, which is 
often acceptable for practical applications, even if coarse discretisation is used.  

 
Fig. 9  Deformation of the beam on elastic foundation subjected to a buckling load 

4.3 Axial bar in gradient elasticity 
A bar in gradient elasticity subjected to the axial load as shown in Fig. 10 is considered 

as the final example. Here, a nonlocal material model with only one internal parameter [11] is 
employed; the model is described by the following constitutive equation 

2 2E l E E u l Eu         , (14) 

where u is the axial displacement, u   is the strain, and u   is the second-order 
displacement gradient, i.e. the strain gradient. As before, the primed values denote the 
derivatives of u with respect to the space variable x. E is the Young modulus and l  is the 
material parameter related to the material microstructure. 

By applying the 1D strain gradient elasticity model (14), the equilibrium equation written 
in terms of displacements will acquire the form (1), with u instead of w. Therein, the 
coefficients in LWF (4) are 2a l E  , b E , and 0c  , with the variables , 1, 2,3,4iu i   
associated with the displacement, strain, and the second- and third-order displacement gradients, 
respectively. The bar has a cross-section surface of 4A   and a length of 100L  . The Young 
modulus is 210000E  . The left side of the bar is clamped; on the right side, the force 4P   is 
applied, as shown in Fig. 10. The applied boundary conditions in gradient elasticity are taken as 

(0) 0u  ,  2(0) 0 0R Al Eu   , ( ) 0.5ou L     and    2( ) ( )P L A Eu L l Eu L P    . 
Here, P and R stand for the tractions and double-tractions, respectively. 

 
Fig. 10  Axial bar in gradient elasticity 
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In numerical calculations, only the mixed meshless finite volume method has been applied, 
and the first-order basis in the MLS scheme is utilised for the approximation of all variables. 
Numerical models with eleven uniformly distributed discretisation nodes are used in all 
calculations. The influence of the different values of the microstructural parameter l on the 
deformation of the bar (size effect) is examined. The obtained displacement, strain, and 
second-order displacement gradient distributions are shown in Figs. 11 to 13in comparison to 
the analytical solutions from [25].  

                     
Fig. 11  Displacements on the bar -

microstructural parameter l 
Fig. 12  Strains (first derivatives) on the bar -

microstructural parameter l

 
Fig. 13  Second-order displacement gradient on the bar -microstructural parameter l 

The obtained results show good agreement with the analytical solutions even with the low-
order basis used. Hence, it can be stated that the proposed method exhibits considerable 
potential for the applications where the gradient elasticity might be needed, such as the 
modelling of the size effect or stress distributions around a crack tip. 

5. Conclusion and further research 
The application of the mixed meshless local Petrov-Galerkin approach for solving 

fourth-order differential equations has been presented. Three different methods have been 
derived by choosing various test functions. Various methods to be used for a proper 
implementation of the boundary conditions needed for obtaining well-posed systems of 
equations are presented and commented. The numerical experiments dealing with the bending 
of thin beams have shown that all the methods possess almost identical convergence rates for 
all approximated variables. The mixed meshless finite volume method yields the most 
accurate response in the primary variable. This method is further successfully adapted to the 
application in gradient elasticity. In all examples, accurate results have been obtained even 
with a low order of the meshless approximation functions. The presented results imply that 
the developed mixed MLPG methods are suitable for modelling the engineering problems 
described by fourth-order differential equations. Therefore, they will be extended and used for 
solving two- and three-dimensional problems in the future. Thereby, rigorous tests and 
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theoretical analyses regarding the numerical and computational efficiency are needed, in line 
with those performed for the existing mixed MLPG methods, cf. [3,19,21,25], in order to 
correctly assess the applicability of the proposed methods. In addition, further research is 
needed to investigate the applicability of the presented methods to solving nonlinear 
problems. Although a more detailed analysis in that direction is needed, we believe that in this 
initial phase, the mixed meshless finite volume method is a good candidate for further 
extension in that direction due to its higher accuracy and seemingly better stability. It is well 
known that the performance of methods based on the collocation might by overly dependent 
on the sampling of the points used for the collocation, which in general becomes more 
pronounced in a nonlinear setting, especially when irregular discretisation patterns are 
employed. 
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