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Summary 

The in-plane and the out-of-plane buckling theory of rings exposed to external pressure 
is presented. A ring is considered as a segment of a toroidal shell. The governing ring 
equations are obtained by deducing the toroidal shell energy equations for the linear and the 
nonlinear strain. The obtained formulae for critical load are compared with those known in 
relevant literature. The critical load depends on the assumption concerning the load behaviour 
during buckling. Illustrative examples are solved numerically by means of several commercial 
FEM computer programs in order to investigate which assumptions are introduced in the ring 
buckling analysis. 

Key words: ring buckling, energy approach, in-plane buckling, out-of-plane buckling, 
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1. Introduction 
Rings are ordinarily used as reinforcing structural elements in shell structures, like 

submarine pressure hulls, pressure vessels, and cargo tanks in liquefied gas carriers  [1]-[8]. 
The function of rings in these structures is to sustain radial components of loading in the 
spanning elements, Fig. 1. These radial loads can induce high circumferential stress in the 
ring, which can cause buckling failure in the case of external load. 

A ring is rigidly attached to the shell elements, which provides restraint on translational 
displacements at the joint. However, this restraint is not present in all structural components. 
Hence, two types of ring buckling are distinguished. When a ring is radially loaded in its 
plane, it may buckle by simultaneous in-plane flexure and out-of-plane flexure with torsion. If 
the ring has an axis of symmetry lying in its plane, the in-plane and the out-of-plane buckling 
are uncoupled and can be studied independently, [9]. 

In-plane buckling can be analysed with or without extensional effects. Critical external 
pressure depends on the assumption related to the pressure direction during buckling, [10]. 
This problem is analysed in [11]-[19]. An overview of the achieved solutions is given in [20]. 
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Fig. 1  Submarine pressure hull 

The first solution to the problem of the out-of-plane buckling of rings was that achieved 
by Timoshenko and Gere, [11]. Since then, several different theories of out-of-plane ring 
buckling have been proposed, [21]-[24]. These theories give quite different results for some 
problems. A comparison and the testing of these theories are given in [25]. In addition, a new 
rigorous thin-walled theory for mono-symmetric rings is derived. 

Recently, the vibration theory of rotating and pressurized closed toroidal shells has 
been developed utilizing the Rayleigh-Ritz method and a Fourier series, [26]. The same 
approach is then used in the development of finite strip method, which makes it possible to 
analyse the vibration of open toroidal shells with arbitrary boundary conditions, [27]. 
Moreover, rings for the in-plane and the out-of-plane vibration can be considered as 
segments of a toroidal shell, [28]. 

In this paper, the vibration theory of a toroidal shell is adapted to the in-plane and out-
of-plane buckling problem of rings. The obtained formulae are compared to the known results 
of different buckling theories. It is further investigated which assumption is used for the 
numerical analysis by the available FEM software. 

2. Basic expressions for the linear and the nonlinear strain energy of a toroidal shell 
The linear and the nonlinear strain energy of a toroidal shell is defined within the 

vibration theory of rotating and pressurized toroidal shells based on the energy approach, i.e. 
the Rayleigh-Ritz method, [26]. In the case of buckling analysis, the meridional displacement 
in the cross-sectional -plane, u, the circumferential displacement, v, and the radial 
displacement, w, Fig. 2, can be assumed in the form 
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Functions U(), V() and W() are the amplitudes of displacement which describe the 
cross-sectional buckling mode profile. 

The linear modal strain energy, after integration in the circumferential direction, in the 
domain 0 ≤ φ ≤ 2π, reads 
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where 9...2,1),( ipi   and 16...2,1),( jq j   are the variable coefficients which can be 
found in reference [26]. 

 
Fig. 2  Closed toroidal shell, main dimensions, load and displacements 

The linearised nonlinear strain energy due to pre-stressing is obtained in the form 
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where ( ), 1, 2...11ic i   are the variable coefficients which can be found in [26]. 
It is necessary to mention that two formulations of the nonlinear strain are known. One 

is the Green-Lagrange strain and the other is the engineering strain. The latter is the reduction 
of the former relating to the extensional terms, [29],[30]. 

3. Ring in-plane buckling 
For the purpose of investigating the ring in-plane buckling, a toroidal shell segment in 

the vicinity of the  = π/2 angle is considered, as shown in Fig. 3. Relevant displacements in 
the in-plane buckling are the circumferential and the radial buckling, V and W. After 
integration, the expressions for the strain energy and the geometric strain energy, Eqs. (2) and 
(3) respectively, are no longer functions of the  angle. Therefore, they are reduced to the 
following form for a unit length in the arch (b = 1) 
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Fig. 3  Rings as segments of a toroidal shell 

Coefficients pi, qi and ci in Eq. (4) are specified according to [26], taking into account 
that π  /2 and ν = 0 for the ring as a one-dimensional structural element 
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Parameters in (5) are 
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  (6) 

where D = EI is the bending stiffness, K = EA is the tensional stiffness and N
  = qr is the 

tensional force due to the pressure load q per unit length. The formulae for coefficients c4, c7 
and c11 shown in (5) (taken from [28]) are related to the Green-Lagrange strains, [29]. 

A ring loses stability at some critical pressure load. In that moment, the ring suddenly 
changes its geometry, and the ordinary strain energy, ES, is transformed into the strain energy 
due to pre-stressing, EG, expressed in Eq. (4). Hence, the balance of energy reads 

,S GE E     (7) 

where П is zero in the case of the exact solution, or it has to be minimum in the case of an 
approximate solution. By satisfying this condition, one obtains 
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The first matrix in Eq. (8) is the ordinary stiffness matrix, and the second one is the 
geometric stiffness matrix. 

The determinant of Eq. (8) has to be zero, i.e. 
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Inserting the equations from (5) into (9), after some manipulation one obtains the 
following quadratic equation 
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The solution of the eigenvalue problem from Eq. (10) reads 
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Now, the determinant defined in (9) can be presented in the form  
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If the mode number n = 0, neither deformation nor buckling occurs. The value n = 1 is 
related to the rigid body motion, in which case V = W, and there is no buckling. For the elastic 
modes n ≥ 2, using (6), one finds from (13) two eigenloads 
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The first load, which is very high, is related to extensional buckling. The second load is 
relevant for bending buckling. The minimal value for q(2) is obtained for n = 2, and the critical 
load reads 

cr 34 .EIq
r

  (17) 
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If the engineering strain is used [30], the coefficients of the nonlinear strain, Eq. (5), are 
reduced to, [28], 

2
4 7 11, , .c c n c n      (18) 

The determinant of the corresponding eigenvalue problem (8) is obtained in the form 

   22 2Det 1 0.n n      (19) 

Comparing Eqs. (14) and (19), it is obvious that the factor λ – 1, related to the 
extensional buckling, vanishes from (19), and the critical load is the same as in the case of the 
Green-Lagrange strain, (17). 

The buckling parameter μ = qcrr3/(EI) determined in this paper is compared with the 
values known in the relevant literature, Table 1. The value of μ depends on the assumptions 
made in the buckling analysis: 

1. μ = 3: Load remains normal to the deformed ring during buckling. 
2. μ = 3.265: Constant-directional load. 
3. μ = 4: Direction of load does not change during buckling. 
4. μ = 4.5: Load remains directed toward the centre of the ring during buckling. 
5. μ = 5.6: Constant-directional load. 

In the case of a thick ring, the formula for the buckling load is extended to the following 
form, [31] 
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where G = E/[2(1+ν)] is the shear modulus and AS = kSA is the shear area determined as a part 
of the ring cross-section area, A. The shear coefficient kS depends on the cross-section shape, 
[32],[33]. 

More sophisticated solutions to the problem of thick ring buckling, based on the theory 
of elasticity, are presented in [34]-[36]. 

Table 1  Ring in-plane buckling parameter μ = qcrr3/(EI) 

 Present 
Literature 

(1) (2) (3) (4) (5) 
[11],[12] [12],[18] [14]-[17],[22] [12],[13],[22] [19] 

Formula n2 n2
 – 1  n2   

n = 2 4 3 3.265 4 4.5 5.6 

4. Ring out-of-plane buckling 
This type of buckling is analysed by considering the toroidal shell segment in the 

vicinity of the  = π angle with two degrees of freedom, i.e. the deflection W and the twist 
angle Ψ, Fig. 3. Since extensional displacements U and V are zero, the strain energy and the 
geometric strain energy according to Eqs. (2) and (3) are reduced to 
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Coefficients qi and ci in Eq. (21) are specified in [26],[28]. In the considered case c6 = 0 
and c7 = πn2Nφa/r, where Nφ = pr is the circumferential membrane force per unit length due to 
external pressure. 

The rotation angle in Eq. (21) is expressed as 

,aW X
r

    (22) 

and, after some manipulation, for curvature one obtains, [26], 
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That way, the eigenvalue problem (7) for the out-of-plane buckling is reduced to 
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where the elements of the above matrix are given in [28]. Element b11 contains the membrane 
force Nφ. Solving Eq. (24) for b11 yields 
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By exchanging the toroidal shell geometric parameters for ring parameters, as shown in 
[28], and by taking into account the total force N N b pbr qr    , where b is the height of 
the ring cross-section, one obtains the following formula for eigenvalue load 
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The critical buckling load is obtained for the first elastic mode, due to the minimum 
absorbed strain energy, i.e. for n = 2 
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Formula (27) is similar to the Timoshenko formula, [11], which can be presented in the 
same form 
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where J = ktIp is the torsional modulus, as a part of the polar moment of inertia of the ring 
cross-section. The torsional coefficient depends on the cross-section shape, [37],[38],[42]. In 
the case of circular cross-section, kt = 2 and formula (28) becomes identical to (27). 

In literature, there are some more sophisticated buckling theories of rings with complex 
cross-sections which are considered, [25]. 
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5. Numerical examples 

5.1 Ring in-plane buckling 
Since there are different analytical formulae for the critical pressure load of the ring in-

plane buckling, Table 1, it is interesting to consider solutions obtained by various FEM 
commercial computer programs. Buckling of a thin ring with the following geometric and 
physical properties is analysed: r = 1 m, b = 0.1 m, h = 0.01 m, E = 2.1∙1011 N/m2, p = 1 MPa 
(Fig. 4a). Three software packages are used, i.e. Abaqus [39], Catia [40] and SolidWorks [41]. 
The ring buckling is analysed as a 1D, a 2D and a 3D spatial problem, taking ν = 0. 
Accordingly, different beam, shell and solid finite elements are employed. The buckling 
modes determined by Abaqus are shown in Fig. 5. In all calculations, the critical buckling 
parameter μ for n = 2 assumes a value of 3 or 4, Table 2. Obviously, different assumptions 
about the load direction during buckling are applied, as explained in Section 3. Nevertheless, 
the buckling shapes remain similar regardless of the assumption related to the pressure 
direction during buckling. 

 
Fig. 4  Rings for: a) in-plane buckling, b) out-of-plane buckling 

 

  
Mode 1, n = 2 Mode 2, n = 3 Mode 3, n = 4 

  

Mode 4, n = 5 Mode 5, n = 6 Mode 6, n = 7 

Fig. 5  In-plane buckling modes of a thin ring under external pressure (Abaqus) 
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Table 2  Ring in-plane buckling parameters: λ = pcr/p, μ = pcrbr3/(EI), p = 1 MPa 

Software FE type No. FEs λ μ 

Abaqus 

B32(T) 1D, 125 0.052496 3 
B33(EB) 1D, 125 0.070012 4 
S8R(nd) 2D, 248 0.052495 3 
S8R(nu) 2D, 248 0.069994 4 

C3D20R(nd) 3D, 512 0.052497 3 
C3D20R(nu) 3D, 512 0.069997 4 

Catia 
BEAM 1D, 126 0.070031 4 
QD8 2D, 252 0.069995 4 
HE20 3D, 800 0.070049 4 

SolidWorks SHELL6 2D, 252 0.070015 4 
T – the Timoshenko beam theory 
EB – the Euler-Bernoulli beam theory 
nd – pressure normal to the deformed ring 
nu – pressure normal to the undeformed ring 

 

5.2 Ring out-of-plane buckling 
Buckling of the ring shown in Fig. 4b is analysed. The ring has similar geometric and 

physical properties as that shown in Fig. 4a: r = 1 m, b = 0.1 m, h = 0.01 m, 
E = 2.1∙1011 N/m2, q = 105 N/m, ν = 0. Torsional modulus for the rectangular cross-section is 
determined according to [42], J = k1bh3, where the coefficient k1 for the aspect ratio b/h = 10 
reads 0.312. Numerically determined buckling parameters obtained by Abaqus, Catia and 
SolidWorks are compared with the analytical value in Table 3. Very good agreement is 
observed in the cases when pressure remains normal to the undeformed ring (μ ≈ 2). However, 
different results are obtained in the cases when pressure remains normal to the deformed ring 
(μ ≈ 3). Buckling modes determined by Abaqus are shown in Fig. 6. 

 

  

Mode 1, n = 2 Mode 2, n = 3 Mode 3, n = 4 

 
Mode 4, n = 5 Mode 5, n = 6 Mode 6, n = 7 

Fig. 6  Out-of-plane buckling modes of a thin ring under external pressure (Abaqus) 
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Table 3  Ring out-of-plane buckling parameters: λ = qcr/q, μ = qcrr3/(EI), q = 105 N/m, ν = 0, Analytical, Eq. (28): 
λ = 0.034736, μ = 1.98492 

Software FE type No. FEs λ μ 

Abaqus 

B32(T) 1D, 125 0.050864 2.90653 
B33(EB) 1D, 125 0.034791 1.98807 
S8R(nd) 2D, 248 0.050648 2.89417 
S8R(nu) 2D, 256 0.034864 1.99223 

C3D20R(nd) 3D, 512 0.050953 2.91162 
C3D20R(nu) 3D, 512 0.034882 1.99326 

Catia 
BEAM 1D, 126 0.034760 1.98626 
QD8 2D, 252 0.034861 1.99207 
HE20 3D, 800 0.034930 1.99599 

SolidWorks SHELL6 2D, 536 0.035050 2.00286 
T – the Timoshenko beam theory 
EB – the Euler-Bernoulli beam theory 
nd – pressure normal to the deformed ring 
nu – pressure normal to the undeformed ring 

6. Conclusion 
The toroidal shell theory is universal since it comprises the complete class of shells of 

revolution, i.e. cylindrical, conical and spherical shells, as well as circular membranes and 
plates. Moreover, rings for the in-plane and out-of-plane buckling analyses can be considered 
as segments of a toroidal shell. 

By adapting the toroidal shell energy equations for the linear and the nonlinear strain to 
the in-plane and the out-of-plane ring buckling, a relatively simple eigenvalue problem is 
formulated. This leads to analytical formulae for critical loads. 

In literature, there are different formulae for the ring in-plane buckling; they depend on 
the assumption relating to the load behaviour during buckling. The derived formulae, with the 
buckling coefficient μ = 4, correspond to the case of constant pressure direction during 
buckling. 

For the ring out-of-plane buckling, the structure of the formulae for critical load is the 
same as that given by Timoshenko. However, in that formula, the appropriate torsional 
modulus of the considered ring cross-section has to be used. 

Illustrative examples of ring buckling solved numerically by means of several 
commercial FEM computer programs show that different assumptions concerning the load 
behaviour during buckling are introduced. 

For the determination of geometrical properties of rings with a very complex thin-
walled cross-section, a numerical procedure based on the strip method, used for ship hull 
cross-sections, can be applied, [43]. 
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