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Abstract: In 2012, a family of benzenoids was introduced by Cruz, Gutman, and Rada, which they called convex benzenoids. In this paper we 
introduce the convexity deficit, a new topological index intended for benzenoids and, more generally, fusenes. This index measures by how 
much a given fusene departs from convexity. It is defined in terms of the boundary-edges code. In particular, convex benzenoids are exactly 
the benzenoids having convexity deficit equal to 0. Quasi-convex benzenoids form the family of non-convex benzenoids that are closest to 
convex, i.e., they have convexity deficit equal to 1. Finally, we investigate convexity deficit of several important families of benzenoids. 
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1. INTRODUCTION 
ENZENOIDS form an important family of graphs and 
molecules. Polycyclic (aromatic) hydrocarbons,[9,10,19,20] 

of which the benzenoids form a subset, are important 
molecular systems with a rich organic chemistry[23,39] 
characterised by specific reactivity,[34,38] spectra,[35] and 
photophysics. They occur naturally, geologically and as  
by-products of natural and anthropogenic combustion 
processes, with considerable implications for the 
environment[1] and human health[27] and have been 
postulated as significant contributors to the carbon 

inventory in the wider Universe.[2] There has also been a 
huge amount of interest over several decades in the graph 
theory of benzenoids and related structures and its 
application to prediction of physical and chemical 
properties (see, e.g., the textbooks[12,13,16,26,30,40]). Much of 
the mathematical chemistry literature is concerned with 
prediction or rationalisation of electronic structure, but 
there is also interest in classification of the shapes available 
to benzenoids. As pointed out before,[18] molecular shape 
is intimately associated with molecular electric and steric 
properties, such as quadrupole moment or van der Waals 
envelope, which are implicated in structure-activity 
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relationships from odour perception[37] to carcino-
genicity.[3,27,32,33] Codes based on boundaries seem 
especially suitable for systematising our notions of shapes 
of benzenoids. The reader is referred to the books[15,30] for 
definitions and basic facts. 
 

2. PRELIMINARIES 
We begin by giving a mathematical definition of a 
fusene.[7,8] The class of fusenes contains as a proper 
subclass the class of benzenoids. 
 
Definition 2.1. A fusene is a simple subcubic 2-connected 
plane graph such that all bounded faces are hexagons and 
all vertices not on the outer face have degree 3. 
 Benzenoids can be now defined in terms of fusenes. 
 
Definition 2.2. A fusene that can be embedded in the 
infinite hexagonal lattice is called a benzenoid. 
 In other words, benzenoids are those fusenes which 
are also subgraphs of the infinite hexagonal lattice. 
 
Example 2.1. Figure 1 shows four subcubic plane graphs. 
Pentalene is not a fusene, because its bounded faces are 
pentagons. Biphenyl is not a fusene because it is not  
2-connected. Anthracene and [6]helicene are both fusenes. 
Anthracene is also a benzenoid, whilst [6]helicene is not. 

Let us denote the class of all benzenoids by ℬ and the 
class of all fusenses by ℱ. The inner dual of a plane graph is 
its dual graph with the vertex that corresponds to the outer 
face removed. A catacondensed fusene is a fusene whose 
inner dual is a tree. Fusenes that are not catacondensed are 
called pericondensed. We will denote the class of all 
catacondensed fusenes by ℱ*. Catacondensed fusenes can 
be further divided into branched and non-branched 
fusenes. A catacondensed fusene is called non-branched if 
its inner dual is a path; otherwise it is called branched. The 
class of non-branched fusenes will be denoted by ℱ'. Those 
definitions are naturally inherited by benzenoids. The class 

of catacondensed benzenoids and non-branched benzen-
oids will be denoted, respectively, by ℬ* and ℬ'. In this 
paper, we restrict to catacondensed benzenoids when 
using the terms branched and non-branched. 

2.1. Boundary-edges Code Revisited 
Each fusene can be assigned a boundary-edges code (BEC), 
a sequence of numbers counting the number of boundary 
edges between two vertices of degree 3, following the 
perimeter in an arbitrary, say counter-clockwise, direction. 
This useful tool to describe a benzenoid was introduced by 
P. Hansen and his co-workers.[31] The code depends on the 
starting vertex and the chosen direction. However, it can be 
made unique by choosing the lexicographically maximal 
code among all possible codes which is often called the 
canonical code. Each benzenoid can be uniquely described 
by such boundary-edges code, but this does not hold for 
fusenes.[29] Benzene is an exceptional benzenoid as it is the 
only benzenoid with no vertex of degree 3. If need be, we 
assign the code 6 to benzene. In the present paper the 
(lexicographically maximal) boundary-edges code of B will 
be denoted by code(B). 
 Here, we take a different approach and start from 
the definition of a code: 
 
Definition 2.3. A code is a string over the alphabet 
{1,2,3,4,5}. 
 Note that we permit codes that are not boundary-
edges codes of any benzenoid (or fusene). By c ⊕ d we 
denote concatenation of codes c and d, e.g. 

 422 ⊕ 5133 = 4225133. 

 Moreover, σi(c) for i ≥ 0 denotes the right circular 
shift of code c by i positions, e.g. 

 σ3(4225133) = 1334225. 

 This operation can also be defined for the negative 
values of i, such that σ−i(c) for i ≥ 0 is the left circular shift of 
c by i positions, e.g. 

 σ−2(1334225) = 3422513. 

 By ρ(c) we denote the reverse of c, e.g. 

 ρ(3422513) = 3152243. 

 Note that ρ2(c) = c and σiσ–i(c) = c for every code c. 
 We will use some properties of codes. 
 
Definition 2.4. Let c be a code. By len(c) we denote the 
length of the code, i.e. the number of symbols appearing in 
it and by sum(c) we denote the sum of all numbers of the 
code. By win(c) we denote the winding of the code, which 
is defined as 

 win(c) = sum(c) – 2 len(c). 
 

Figure 1. Examples of subcubic plane graphs, two of which 
are fusenes. 

(a) pentalene  (b) biphenyl  

(c) anthracene  (d) [6]helicene 
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Lemma 2.1. The winding of a concatenation of two codes c 
and d is additive, i.e. 

 win(c ⊕ d ) = win(c) + win(d ). 

Proof. The length of the code and the sum of the numbers 
of the code are clearly additive. Then 

 win(c ⊕ d ) = sum(c ⊕ d ) − 2 len(c ⊕ d ) 

  = sum(c) + sum(d ) − 2 len(c) − 2 len(d ) 

  = win(c) + win(d ).  

Definition 2.5. Two codes c and d are equivalent if one can 
be obtained from the other by a circular shift and possibly 
reversal, i.e. if there exists an integer k such that σk(c) = d 
or ρσk(c) = d. 
 
Definition 2.6. A code is canonical if it is lexicographically 
maximal among all equivalent codes. 
 No simple way is known to check whether a given 
code is the boundary-edges code of some benzenoid. 
However, there is an obvious necessary condition. 
 
Lemma 2.2. Let B be a benzenoid with at least 2 hexagons. 
Then win(code(B)) = 6. 
 
Proof. The proof proceeds by induction on the number of 
hexagons, h. 
 The only benzenoid with h = 2 hexagons is 
naphthalene, with code 55. Clearly, win(55) = 10 − 2 · 2 = 6. 
 It is known that any benzenoid B with h hexagons can 
be obtained from some benzenoid B with h − 1 hexagons by 
adding a new hexagon using either one-, two-, three-, four- 
or five- contact addition, where k-contact implies that k 
edges of the new hexagon are identified with k consecutive 
edges of B (see Ref. [30, pp. 12–13]). Let code(B) = c and 
code(B) = c . Assume that win(c) = 6. 
 If B is obtained by one-contact addition then c can be 
obtained from c by replacing the symbol s (the one that 
corresponds to the part of the boundary where the new 
hexagon was attached) with s15s2 where s1 + s2 = s − 1. Then 

 win(c) = (sum(c) + 5 − 1) − 2(len(c) + 2) = win(c) = 6. 

 Analogous arguments can be used for other types of 
addition.  
 

3. CONVEX BENZENOIDS AND  
CONVEXITY DEFICIT 

3.1. Graph Invariants 
A graph invariant is a function from a class of graphs to a 
class of values (e.g. integers, real numbers, polynomials) 
that takes the same value for any two isomorphic graphs. 
Graph invariants may be categorised by codomains of the 
functions that define them. When the codomain is the 

Boolean domain, they are called graph properties. (For 
example, a graph can either be bipartite or non-bipartite.) 
Numerous integer invariants exist for graphs: order, size, 
diameter, girth, genus, chromatic number, etc. Perhaps the 
most well-known integer invariant in chemical graph theory 
is the Wiener index.[36] An example of a real number 
invariant is the Estrada index.[17] In the literature one can 
find thousands of graph invariants. 

3.2. Convex Benzenoids 
In 2012, a special sub-family of benzenoids, called convex 
benzenoids, was introduced by Cruz, Gutman and Rada.[11] This 
family was further studied and enumerated in.[5] A convex 
benzenoid can be characterised via its boundary-edges code.  
Definition 3.1. Benzenoid B is convex if its boundary-edges 
code contains no 1. 
 The above statement is Proposition 3 in Ref. [5] Since 
this is one possible characterisation of convex benzenoids 
we may use it as a definition here. 
 We note in passing that for infinite benzenoids the 
situation is more complex. As shown in Ref. [4] infinite 
benzenoids may have more than one boundary component 
and may need several infinite codes for its description. 
Sometimes the code does not describe an infinite 
benzenoid up to isomorphism. An example of such an 
infinite convex benzenoid that is not determined by its 
boundary-edges code is called a strip in Ref. [4]. Strips of 
different width have the same boundary-edges code. 
Hence, in this paper we focus mainly on finite benzenoids. 

3.3. Convexity Deficit 
Both convex and non-convex benzenoids play important 
and sometimes distinct roles in organic chemistry. For 
example, in the simplest case of benzenoid isomers, convex 
anthracene comprising three linearly fused hexagons is less 
stable than non-convex phenanthrene (see Figure 2). In 
qualitative theories, this is variously attributed to the larger 
number of Kekulé structures in phenanthrene (5 vs. 4), its 
higher Fries number (3 vs. 2) or its higher Clar number (2 vs. 
1), all of which are inextricably linked to its angular, non-
convex shape. We think it will be useful to introduce a 
measure that will tell us by how much the shape of 
benzenoid departs from convexity. We call this measure 
the convexity deficit.  
Definition 3.2. A benzenoid B with boundary-edges code c 
is k-convex, k ≥ 0, if the average of k + 1 consecutive values 
in c is always at least 2. The minimum such value of k is 
called the convexity deficit of B and is denoted by cd(B). 
For an infinite benzenoid B, we may have cd(B) = ∞. 
 We may write down a formal definition: 

{ }
{ }

sum( )
len( )        avg( , ) min  and ( )

( ) ( ) min 0 and avg( , 1) 2

d
dc k d c len d k

cd B cd c k k c k

= ⊆ =

= = ≥ + ≥
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Note that in the first formula d ⊆ c denotes any subcode 
consisting of cyclically consecutive symbols of code c. Note 
that convexity deficit generalises the notion of convexity 
for benzenoids. Clearly, cd(B) = 0 is equivalent to saying 
that there is no 1 in the code. 
 
Proposition 3.1. A benzenoid B is convex if and only if  
cd(B) = 0. 
 
Proposition 3.2. If B is a finite benzenoid then 

 0 ≤ cd(B) ≤ len(code(B)) – 1. 

Proof. Let c = code(B). Recall the definition of winding. Since 
win(c) = sum(c) − 2 len(c) = 6, we have 

 = + >
sum( ) 6

2 2
len( ) len( )

c
c c

 

 Hence any (finite) benzenoid is k-convex at least for 
k = len(c) − 1.   
 
 We note that for infinite benzenoids there exists no 
upper bound on the convexity deficit. 
 
Proposition 3.3. There exist infinite benzenoids B that are 
not k-convex for any finite value of k ≥ 0. 
 
Proof. An example is the infinite benzenoid with boundary-
edges code ...2221222... shown in Figure 3. It is the 
complement of the anvil 𝓐𝓐𝓐𝓐.[4]  

3.4. Quasi-convex and Pseudo-convex 
Benzenoids 

Now we turn our attention to the non-convex benzenoids 
that are closest to convex, i.e. the benzenoids with the next 
smallest convexity deficit. 
 
Definition 3.3. A 1-convex benzenoid which is not 0-convex 
(i.e., cd(B) = 1) is called quasi- convex. 
 Note that quasi-convex benzenoids admit a simple 
characterisation via the boundary-edges code. 
 
Proposition 3.4. A benzenoid is quasi-convex if and only if 
its boundary-edges code contains at least one 1 but no sub-
sequence 11, 12, or 21. 
 
Proof. A quasi-convex benzenoid is not convex, hence its 
code contains a 1. Let a and b be two cyclically consecutive 
numbers in the code of this benzenoid. Since it is 1-convex, 
a + b ≥ 4, hence 11, 12, and 21 are forbidden. The converse 
also follows.   
 Convex benzenoids can be classified into families 
with a common fundamental shape, where zig-zag (2k) sub-
sequences define the edges of the shape. Similarly, all 
quasi-convex benzenoids have a fundamental shape where 
the edges are defined by either zig-zag or armchair (1(31)k) 
sub-sequences. The fundamental shape of a convex 
benzenoid has at most 6 edges; for a quasi-convex 
benzenoid it has at most 12. Zig-zag and armchair termin-
ation have consequences for stability of benzenoids[21] and 
conductivity of nanotubes.[22] A quasi-convex benzenoid 
that has no zig-zag sub-sequences in its boundary-edges 
code will be called pseudo-convex. 
 
Definition 3.4. A benzenoid whose boundary-edges code 
contains at least one 1 but no sub-sequence 11 and 2 is 
called pseudo-convex. 
 
Proposition 3.5. Every pseudo-convex benzenoid is quasi-
convex but the converse is not true.   
 
 Here are some small examples. Note that 
naphthalene 55 is convex, phenanthrene 5351 is pseudo-
convex and benzo[a]pyrene 513432 is quasi-convex (but 
not pseudo-convex). A smaller example of such a 
benzenoid is described by 52441. They are shown in Figures 
4 and 5. The BEC 52441 applies to the “pistol” polyhex,[25] 
named for its shape. BEC apply equally to benzenoids and 
polyhexes. 
 We have developed software that transforms the 
boundary edges code to the description of a benzenoid via 
position of its hexagons in the hexagonal tesselation of the 
plane, as well as a tool that can draw the corresponding 
benzenoid. We can also compute several parameters such 
as convexity deficit (of course, convexity deficit is obtained 
directly from the BEC). We present computational results in 
Tables 1 and 2. One is a table of small benzenoids, together 

 

Figure 3. The infinite benzenoid with boundary-edges code 
...2221222.... 

 

Figure 2. The two 3-hexagon Kekulean benzenoids: (a) 
anthracene, (b) phenanthrene. 
 

(a) (b)
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with their names and basic properties. The other lists some 
of the infinite families of benzenoids. Some of the 
representatives of families presented in Table 2 are 
depicted in Figure 6. 
 

4. EXTREMAL CONVEXITY DEFICIT 
Clearly benzenoids with a small number of hexagons 
cannot have large convexity deficit. For instance, benzen-
oids with up to 5 hexagons have convexity deficit at most 3. 
 
Definition 4.1. Let B be a benzenoid. Let h(B) denote the 
number of hexagons of B. Let mcd(h) denote the maximum 
convexity deficit among all benzenoids on h hexagons, i.e. 

 mcd(h) = max {cd(B) | h(B) = h} . 

Call each benzenoid attaining cd(h) extremal, and ex(h) the 
number of extremal benzenoids with h hexagons. 

 We performed a computer search to find extremal 
benzenoids among all benzenoids with h hexagons for all  
h ≤ 18. The results are summarised in Table 3. In particular, 
we noticed that only one extremal benzenoid is 
pericondensed. It has h = 6 hexagons and can be described 
by the boundary-edges code 533244111 and is depicted in 
Figure 7(a). Moreover, all other extremal benzenoids with 
h ≤ 6 are unbranched. There is a unique smallest branched 
extremal benzenoid having h = 7. It has boundary-edges 
code 523315151112 and is depicted in Figure 7(b). Note 
that the spiral benzenoid S(h) attains the maximum value 
of convexity deficit among all unbranched catacondensed 
benzenoids. For h ≥ 14, it appears that all extremal 
benzenoids are branched. 
 We were able to find an interesting family of 
benzenoids, one member for each number of hexagons. 
We call them spiral benzenoids. 
 
Definition 4.2. Let S(h) denote the spiral benzenoid on  
h ≥ 2 hexagons determined by the following procedure.  
Let a and b denote the following infinite codes: 

 
3

0

3

0

a = 33323232322322322322232223 (2 3)

b = 11121212122122122122212221 (2 1) ,

k

k

k

k

∞

=

∞

=

= ⊗

= ⊗





 

using ⊕ for repeated concatenation using the ⊕ 
operation. Let a(l) denote the substring composed of the 
first l symbols of a and similarly define b(l). Let  

 w(l) = 5a(l)5ρb(l),  

where ρb(l) denotes the reversal of b(l). The spiral 
benzenoid, denoted S(h), has h hexagons and is defined by 
the boundary-edges code w(h − 2). 
 For an example of S(h), see Figure 8. 
 
Example 4.1. For small values of l we obtain: 

 S(2) = w(0) = 55; 
 S(3) = w(1) = 5352; 
 S(4) = w(2) = 533511; 
 S(5) = w(3) = 53335111; 
 S(6) = w(4) = 5333252111; etc. 

All S(2), ..., S(13) are extremal. 

 

Figure 4. The seven polyhexes composed of four 
hexagons,[25] and their BEC. 
 

(a) pistol, 52441 (b) wave, 513513 (c) bee, 4343 (d) arch, 533511

(e) propeller, 533511 (f) worm, 512523 (g) bar, 522522

 

Figure 5. Small examples of (a) convex, (b) pseudo-convex 
and (c), (d) quasi-convex benzenoids. 
 

(a) naphthalene            (b) phenanthrene                     (c) benzo[a]pyrene                           (d) pistol

 

Figure 6. Examples of the families defined in Table 2. 

 
Figure 7. The only known pericondensed extremal benzen-
oid (a) and the smallest branched extremal benzenoid (b). 
 

(a) (b)
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Table 1. List of small benzenoids and their features. The list is complete up to 4 hexagons 

Name BEC h Class cd Formula  CAS 

benzene 6 1 convex 0 C6H6 71-43-2 

naphthalene 55 2 convex 0 C10H8 91-20-3 

phenalene/phenalenyl 444 3 convex 0 C13H9 203-80-5 

anthracene 5252 3 convex 0 C14H10 120-12-7 

phenanthrene 5351 3 pseudo-convex 1 C14H10 85-01-8 

tetracene/naphthacene 522522 4 convex 0 C18H12 92-24-0 

pyrene 4343 4 convex 0 C16H10 129-00-0 

benzophenalenyl 52441 4 quasi-convex 1 C17H11 112772-04-0 

chrysene 513513 4 pseudo-convex 1 C18H12 218-01-9 

triphenylene 515151 4 pseudo-convex 1 C18H12 217-59-4 

benzo(c)phenanthrene 533511 4  2 C18H12 195-19-7 

benz(a)anthracene 512523 4  2 C18H12 56-55-3 

olympicene/olimpicenyl 42433 5 convex 0 C19H11 191-33-3 

pentacene 52225222 5 convex 0 C22H14 135-48-8 

picene 51315313 5 pseudo-convex 1 C22H14 213-46-7 

[5]helicene 53335111 5  3 C22H14 188-52-3 

perylene 441441 5 pseudo-convex 1 C20H12 198-55-0 

benzo(a)pyrene 513432 5 quasi-convex 1 C20H12 50-32-8 

benzo(e)pyrene 514341 5 pseudo-convex 1 C20H12 192-97-2 

dibenz(a,h)anthracene 53215321 5  2 C22H14 53-70-3 

pentaphene 52125232 5  3 C22H14 222-93-5 

dibenz(a,j)anthracene 51215323 5  3 C22H14 224-41-9 

triangulenyl 424242 6 convex 0 C22H12  

anthanthrene 324324 6 convex 0 C22H12 191-26-4 

hexacene 5222252222 6 convex 0 C26H16 258-31-1 

benzo(ghi)perylene 414333 6 pseudo-convex 1 C22H12 191-24-2 

zethrene 42144214 6  2 C24H14 214-63-1 

coronene 333333 7 convex 0 C24H12 191-07-1 

heptacene 522222522222 7 convex 0 C30H18 258-38-8 

peropyrene 43134313 7 pseudo-convex 1 C26H14 188-96-5 

terrylene 4413144131 8 pseudo-convex 1 C30H16 188-72-7 

tribenzo[b,n,pqr]perylene 5141251331 8  2 C30H16 190-81-8 

tribenzo[b,k,pqr]perylene 5141415131 8 pseudo-convex 1 C30H16  

tribenzo[b,ghi,n]perylene 5141251331 8  2 C30H16  

ovalene 33323332 10 convex 0 C32H14 190-26-1 

teropyrene 431313431313 10 pseudo-convex 1 C36H18  

hexabenzo[bc,ef,hi,kl,no,qr]coronene 414141414141 13 pseudo-convex 1 C42H18 190-24-9 

hexabenzo[a,d,g,j,m,p]coronene 511511511511511511 13  2 C48H24 1065-80-1 

dicoronylene 23333212333321 15  3 C48H20 98570-53-7 
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 It is easy to find the extremal fusenes in the subclass 
ℱ'. A small example is [6]helicene in Figure 1(d). 
 
Proposition 4.1. In the class of unbranched catacondensed 
fusenes ℱ', the helicene 51h−253h−2 obtains the maximal 
convexity deficit among all F ∈ ℱ' with h ≥ 2 hexagons. The 
maximal convexity deficit is max{2h − 7, h − 2}. 
 
Proof. Each unbranched catacondensed fusene can be 
described with a boundary-edges code 5s1s2 ... sh−25s̄1s̄2 ... 
s̄h−2, where si + s̄i = 4 for all 1 ≤ i ≤ h − 2. It is clear that by 
setting si = 1 for all i = 1, ..., h − 2 we will obtain one of the 
fusenes, let us denote it by F, with the longest possible 
subcode c such that sum( )

len( ) 2c
c < . 

 If h is large enough, then the code will contain h − 2 
symbols 1, symbol 5 and a certain number, let us denote it 
by l, of symbols 3. We are looking for the largest possible l 
such that 

 ( 2) 5 3
2.

2 1
h l
h l
− + +

<
− + +

 (1) 

Equation (1) is equivalent to 

 l < h – 5 (2) 

when h + l > 3 (this holds for large enough h since l ≥ 0). 
From Equation (2) it follows that we can take l = h − 6. This 
is valid if h ≥ 6 and the convexity deficit equals (h − 2) + 1 + 
(h − 6) = 2h − 7. 

Table 2. Some families of benzenoids and their convexity defect 

Benzenoid family  BEC 

h(B) cd(B) Source 

Linear L(n), n ≥ 2 52n−252n−2 

n 0 (convex) Ref. [15, p. 62] 

Two segments M2(m, n), m, n > 1 52m−212n−252n−232m−2 

m + n − 1 m + n − 3 Ref. [15, p. 62] 

Three segments M3(m, n, k), m, n, k > 1 52k−212m−212n−252n−232m−232k−2 

m + n + k − 2 m + n + k − 4 Ref. [15, p. 62] 

Three segments Z3(m, n, k), m, n, k > 1 52n−212k−232m−252m−212k−232n−2 

m + n + k − 2 max{m, n} + k − 3 Ref. [15, p. 62] 

Chevron Ch(n, m, k), n, m, k ≥ 2 42n−232k−232m−232n−242m−212k−2 

n(m + k − 1) m + k − 3 Refs. [28, 14], [15, p. 111] 

Prolate triangle P3(m), m ≥ 2 51(31)m−252m−232m−2 
1
2 m(m + 1) 1 (quasi-convex) Ref. [15, p. 182] 

Prolate pentagon P5(m, n), m, n ≥ 2 32n−241(31)m−242n−232m−232m−2 
1
2 m(m + 1) + (n − 1)(2m − 1) 1 (quasi-convex) Ref. [15, p. 182] 

Oblate triangle O3(m), m ≥ 2 43(13)m−242m−232m−2 

1
2 m(m + 1) + (m − 1) 





=
>

0 (convex)  2
1 (quasi

 
-con

 
vex

                
  )      2 

m
m

 Ref. [15, p. 197] 

Problate triangle B3(m), m ≥ 2 4(31)m−152m−132m−2 
1
2 m(m + 3) 1 (quasi-convex) Ref. [15, p. 197] 

Prolate rectangle P4(m, n), m, n ≥ 2 42n−24(13)m−2142n−24(13)m−21 

nm + (n − 1)(m − 1) 1 (quasi-convex) Refs. [41], [15, p. 201] 

Dihedral all-benzenoids S(m), m ≥ 1 51215(13)m−1151215(13)m−11 

7m 3 Ref. [24], [15, p. 215] 

 T (2) 51415141 

6 1 (pseudo-convex) Refs. [24], [15, p. 215] 

 T (m), m ≥ 3 41414(13)m−3141414(13)m−31 

7m − 8 1 (pseudo-convex) Refs. [24], [15, p. 215] 
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If h < 6, then there are only 4 fusenes to analyse. By manual 
inspection we can see that the convexity deficit in each case 
is h − 2.   
 
Proposition 4.2. Among all catacondensed unbranched 
benzenoids on h hexagons, S(h) has the maximal convexity 
deficit. The convexity deficit of S(h) is cd(S(h)) = max{h − 2, 
2h − 8}. 
 
Proof. First, observe that the code 533323 is a subcode of 
S(h) for all h ≥ 7. 

 We know that sum(S(h)) = 4h + 2 and len(S(h)) = 2h − 2. 
 Let c be the subcode of code(S(h)) that is obtained 
from code(S(h)) by erasing 533323 (i.e. c = 11121 ...). Then 
sum(c) = 4h + 2 − 19 = 4h − 17 and len(c) = 2h − 2 − 6 = 2h − 8. 
Therefore 

 sum( ) 4 17
2.

len( ) 2 8
c h

c h
−

= <
−

 

It is easy to see that the above also holds for all prefixes of 
the code c. This implies that cd(S(h)) ≥ 2h − 8 for all h ≥ 7. 
Let us now show that there exists no unbranched 
benzenoid B such that cd(B) = 2h − 7. 
 For contradiction, suppose that there exists an 
unbranched benzenoid B such that cd(B) = 2h − 7. Let  
c be the code which remains when the maximal subcode d,  
for which sum( )

len( ) 2d
d < , is erased from code(B). We have  

len(c) = 5 and 

 4 2 sum( )
2

2 7
h c

h
+ −

<
−

 

If h is large enough, we obtain sum(c) > 16. The code c 
contains 5 symbols, each of which is an element of the set 
{1,2,3,5}. One of the symbols must be 5 (otherwise the sum 
can not be greater than 16). Also, the code cannot contain 
symbol 5 twice if the benzenoid is large enough (their 
corresponding hexagons are located at the opposite ends 
of the chain). From sum(c) > 16 it follows that all the other 
symbols have to be 3. The code 353 can not be a subcode 
of a benzenoid due to geometric restrictions. The only 
remaining option is c = 53333, which again can not be a 
subcode of a benzenoid, a contradiction. 
Therefore, S(h) attains the maximal convexity deficit among 
all unbranched benzenoids on h hexagons.   
 

5. CONCLUSION 
In this contribution we have briefly revisited several 
families of benzenoids that have been studied in the past. 
Most of them are taken from the book by Cyvin and 
Gutman (Ref. [15, p. 62]). Here they are defined rigorously 
by the boundary-edges code instead of relying on pictorial 
representations. We considered extremal benzenoids with 
respect to convexity deficit. Table 3 summarises all small 
cases up to 18 hexagons. BECs of these benzenoids are 
stored in Ref. [6]. We observed from these data that some 
clear patterns emerged. 
 In particular, let F(h,k) denote the number of benzen-
oids on h hexagons having convexity deficit equal to k. Note 
that F(h,mcd(h)) = ex(h) and F(h,k) = 0 for all k > mcd(h). 
 
Conjecture 4.3. Let h ≥ 0. The sequence 

 F(h,0), F(h,1), F(h,2), ..., F(h,mcd(h)) 

is unimodal.  

Table 3. Maximal convexity deficit mcd(h) for each 2 ≤ h ≤ 
18 and the number of extremal benzenoids ex(h). The last 
column contains an example of such a benzenoid. 

h mcd(h) ex(h) An example (boundary-edges code) 

2 0 1 55 

3 1 1 5351 

4 2 2 532521 

5 3 6 52325212 

6 4 16 5232252212 

7 6 3 523315151112 

8 8 2 53323325211211 

9 10 3 5332332252211211 

10 12 6 533233222522211211 

11 14 16 52311121225223233312 

12 16 37 5332332222252222211211 

13 18 102 533233222222522222211211 

14 21 2 53332322215133511122212111 

15 23 12 5332332132151335111213211211 

16 25 42 533323222321513351112122212111 

17 27 149 53323321323215133511121213211211 

18 29 489 5333232223232151335111212122212111 

 

 

Figure 8. Spiral benzenoid S(h) on h hexagons has cd(S(h)) = 
max{h − 2, 2h − 8}. 
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 The motivation for the previous statement comes 
from computational investigation for small values of h. 
 Our empirical studies show an interesting picture of 
extremal benzenoids. It seems that: 

(1) there is only one extremal benzenoid that is 
pericondensed; 

(2) there are only finitely many extremal unbranched 
pericondensed benzenoids; 

(3) all extremal benzenoids for h ≥ 14 are branched; 
(4) there is no upper bound on the number of branched 

points of extremal benzenoids when h tends to 
infinity. 

These observations could be formulated as conjectures and 
are a subject of further research. 
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