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Summary

Authors present a Multilayer Perceptron (MLP) artifi cial neural network (ANN) method 

for the purpose of estimating a speed of a frigate using a combined diesel-electric 

and gas (CODLAG) propulsion system. Dataset used is publicly available, as condition-

based maintenance of naval propulsion plants dataset, out of which GT Compressor 

decay state coeffi  cient and GT Turbine decay state coeffi  cient are unused, while 15 

features are used as input and ship speed is used as dataset output. Data set consists 

of 11934 data points out of which 8950 (75%) are used as a training set and 2984 (25%) 

are used as a testing set. 26880 MLPs, with 8960 diff erent parameter combinations 

are trained using a grid search algorithm, quality of each solution being estimated 

with coeffi  cient of determination (R2) and mean absolute error (MAE). Results show 

that a high-quality estimation can be made using an MLP, with best result having an 

error of just 3.4485x10-5 knots (absolute error of 0.00014% of the range). This result 

was achieved with a MLP with three hidden layers containing 100 neurons each, 

logistic activation function, LBFGS solver, constant learning rate of 0.1 and no L2 

regularization.

Sažetak
Autori predstavljaju metodu višeslojnog perceptrona (MLP) umjetne neuronske mreže 
(ANN) u svrhu procjene brzine fregate koristeći se kombiniranim dizel-električnim i 
plinskim pogonskim sustavom (CODLAG). Korišteni skup podataka javno je dostupan, 
poput skupa podataka o održavanju po stanju brodskih pogonskih postrojenja, od 
kojih se ne koriste koefi cijent raspadanja GT kompresora i koefi cijent stanja raspada GT 
Turbine, dok se 15 značajki koriste kao ulazni, a brzina broda kao izlazni podatak. Skup 
podataka sastoji se od 11934 podatkovne točke, od čega se 8950 (75 %) koristi kao skup 
za vježbu, a 2984 (25 %) kao testni skup. 26880 MLP-ova s   8960 različitih kombinacija 
parametara uvježbava se algoritmom pretraživanja energetske mreže, a kvaliteta 
svakog rješenja procjenjuje se koefi cijentom određivanja (R2) i prosječnom apsolutnom 
pogreškom (MAE). Rezultati pokazuju da se visokokvalitetna procjena može napraviti 
uz pomoć MLP-a, pri čemu će najbolji rezultat imati pogrešku od samo 3,4485x10-5 

čvorova (apsolutna pogreška raspona 0,00014 %). Za postizanje rezultata korišten je 
MLP s tri skrivena sloja koji sadrže po 100 neurona, logistička funkcija aktivacije, LBFGS 
rješavač, konstantna brzina učenja od 0,1 bez L2 regulacija.
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1. INTRODUCTION / Uvod 
Nowadays, a signifi cant increase of energy effi  ciency requirements 
for the worldwide fl eet can be noticed. One of approaches which 
off er a signifi cant increase in ships energy effi  ciency is to utilize 
proper method for ship speed estimation [1].  

The standard approach to estimation is to use mathematical 
models for simulating the ship performances [2] or to use 
Kalman fi ltering [3].  In some studies researchers used 

propulsion system parameters to estimate the ship propulsion 
performances. The authors of research presented in [4] have 
proposed the solution for marine diesel engine performances 
estimation. In this research, the vessel speed is used for the 
estimation of eff ective power, fuel consumption and emission of 
marine diesel engine. In [5], the estimation of exhaust emission 
of various ocean-going vessels based on the ship speed is 
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of aforementioned dataset have proposed the machine 
learning-based solutions for condition-based maintenance 
of CODLAG propulsion system component, its compressor 
and gas turbine [32 - 34]. As presented in [32], the dataset is 
created by using data obtained from numerical simulations of 
naval CODLAG propulsion system. It can be noticed that such 
propulsion system contains one gas turbine (GT) in combination 
with two electrical motors powered by diesel generators, as 
shown in Figure 1.

Figure 1 Scheme of Frigate CODLAG propulsion system (GT 
– gas turbine; M – electrical motor; G – electrical generator; 

D – diesel engine; B – gearbox; C – clutch; P – Frigate propeller, 
GG – gas generator)

Slika 1. Shema CODLAG pogonskog sustava fregate (GT - plinska 
turbina; M - električni motor; G - električni generator; D - dizelski 
motor; B - mjenjač; C - spojka; P – propeler fregate, GG - plinski 

generator)

Power generated with GT and electrical motors is 
transmitted to frigate propellers through the system that 
contains three gearboxes and four clutches. GT used in this 
propulsion system is based on two-shaft design, as shown in 
Figure 2. 

This GT design is based on one compressor and two GTs: 
high pressure (HP) one and low pressure (LP) one. HP turbine 
is used only for compressor drive, while the LP is used for 
ship propulsion. Connection of HP and LP is achieved by the 
fl ue gasses only. In such confi gurations, HP together with 
combustion chamber and compressor can also be called “gas 
generator” [35]. CODLAG propulsion system parameters and 
their ranges, that are used for frigate speed estimation are 
presented in Table 1 together with frigate speed. 

performed. From the presented papers, it can be seen that such 
estimations are based on mathematical models and simulations 
that are often complex and time-consuming. As an alternative 
approach to ship speed estimation, machine learning (ML) 
algorithms are imposed [6] [7]. ML is one of the most propulsive 
branches of computer science today. More recent research 
studies have presented the possibility of ML utilization in 
various fi elds of science and technology, ranging from medicine 
[8], through robotics [9] [10] and computer vision [11], to power 
plants [12]. It can be noticed that high regression performances 
are achieved if artifi cial neural networks (ANN) are utilized for 
solving problems in the fi elds of power plants and propulsion 
systems [13] [14]. It is shown that when multilayer perceptron 
(MLP) is utilized for solving similar problems it off ers the most 
stabile regression performances [15] [16]. 

From literature overview, it can be noticed that the majority 
of modern ship propulsion systems are based on various 
types of diesel engines [17] [18]. The data obtained from the 
aforementioned propulsion systems is then used for design 
of various numerical models that are used in simulations of 
diesel engines. Such simulations are performed with the aim 
of engines optimization [19], emissions reduction [20] [21], 
analysis of operational parameters [22], etc. 

On the other hand, in some parts of shipping industry 
such as the transport of liquefi ed natural gas (LNG) steam 
propulsions systems still represent a dominant choice [23] [24]. 
It can be noticed that such propulsion systems are based on 
steam turbines [25] [26] and other components [27] which are 
necessary for proper performances of such propulsion system. 
However, the use of diesel engines in this part of the industry is 
rapidly increasing [28].

Together with diesel and steam propulsion systems, there 
are various new propulsion systems under development. The 
aforementioned systems are based on the combination of one 
or more diesel engines, steam and gas turbine [29] [30]. One of 
these complex propulsion systems is combined with the diesel-
electric and gas (GODLAG) propulsion systems. Such propulsion 
system is based on the combination of electrical motor and 
gas turbine. Electrical power for electrical motors is produced 
by using diesel generators [31]. From the presented literature 
overview, some questions could be asked:
- is it possible to estimate the ship speed by using CODLAG 

propulsion system parameters,
- is MLP a suitable regression algorithm for ship speed 

estimation and
- which confi guration of MLP hyperparameters achieves the 

best regression performances? 
In this paper, an MLP-based method for vessel speed 

estimation is presented.  A frigate with CODLAG propulsion 
system is analyzed and its speed is estimated by using 
propulsion system parameters. Dataset used in this research is 
publicly available as a part of UCI Machine Learning Repository. 

2. DATASET DESCRIPTION / Opis skupa podataka
As mentioned in previous section, the dataset used in this 
research is publicly available and published online. The authors 
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Figure 2 Scheme of gas turbine used in frigate CODLAG propulsion system 
Slika 2. Shema plinske turbine korištene u CODLAG pogonskom sustavu fregate

Table 1 Dataset description 
Tablica 1. Opis skupa podataka  

Input parameters
Parameter Range Unit

Lever position 1.138 - 9.3 -
LP turbine shaft torque (LPT) 253.547 - 72784.872 kNm
LP turbine rate of revolutions (LPn) 1308 - 3561 rpm
Gas generator rate of revolutions (GGn) 6589 - 9797 rpm
Starboard propeller torque (Ts) 5.304 - 645.249 kNm
Port propeller torque (Tp) 5.304 - 645.249 kNm
HP turbine exit temperature (T48) 442.364 - 1115.797 K
GT compressor inlet air temperature (T1) 288 K
GT compressor outlet air temperature (T2) 540.442 - 789.094 K
HP turbine exit pressure (P48) 1.093 - 4.56 bar
GT compressor inlet air pressure (P1) 0.998 bar
GT compressor outlet air pressure (P2) 5.828 - 23.14 bar
LP turbine exit pressure (Pexh) 1.019 - 1.052 bar
Combustion chamber injection control (CCIC) 0 - 92.556 %
Fuel fl ow (mf) 0.068 - 1.832 kg/s

Output parameter
Parameter Range Unit
Ship speed (v) 3 - 27 kn



120 S. Baressi Šegota et al: Frigate Speed Estimation Using...

3. METHODOLOGY / Metodologija
3.1. Multilayer perceptron / Višeslojni perceptron
MLP is a type of a feed-forward artifi cial neural network, which 
can be used for regression or classifi cation tasks [36]. In this paper 
MLP is used as a regressor, in an attempt to determine the value 
of ship speed from diff erent variables. MLP consists of multiple 
layers, each containing neurons. Neurons can be thought of as a 
node that provides the weighted sum of the inputs. Each input of 
a neuron is the output of a neuron in a previous layer, multiplied 
with the weight of their connection. With that, each neuron will 
have a vector of inputs X and Θ per [37]

X = [x1    x2    x3... xn],                                       (1)
and

Θ0 = [θ1     θ2     θ3... θn]                                       (2)
where n is the number of inputs of a given neuron. With the 
above, the output variable of a neuron in a neural network can 
be calculated using

f(Xk) = F (Xk · Θ) = F (x1 · θ1+x2 · θ2+ ... +xn · θn)             (3)

where F (Xk · Θ) represents the activation function of a neuron. 
Activation functions are functions that transform the weighted 
sum of neurons inputs [38]. They are commonly used for 
mapping the values of a neuron to a given range (e.g. tanh or 
sigmoid activation functions), or to eliminate certain, unwanted 
values (e.g. ReLU activation function). Activation functions used 
in our research are: identity which maps the input directly to 

output (F (x) = x), ReLU which maps positive values directly, 
but turns negative values to zero (F (x) = max (0, x)), logistic 
activation function which maps input values into a range of [0,1] 

 and Tanh which maps input values to a range 
of [-1,1]  [39, 40]. Used activation 
functions are shown in Figure 3.

Each MLP consists of at least three layers of neurons. First 
is the input layer which consists of as many neurons as there 
are input variables, and values of those neurons are the input 
variables of the data point that is being propagated through 
the neural network. Final layer is the output layer which, for a 
regressor, consists of a single neuron. The value of that neuron 
is the output of the neural network for the values of the input 
neurons. Each MLP consists of at least one or more hidden 
layers. The number of hidden layers and neurons inside them 
greatly aff ects the results achieved by the neural network [41]. 
An example of the neural network can be seen in Figure 4.

Before using MLP to regress the speed from input variables 
neural network needs to be trained. Training of the neural 
network is done using a larger part of the dataset (in this 
instance 75%) – from now on referred to as the “training set”.   
Training the neural network consists of two parts – forwards 
propagation and backwards propagation. Before explaining 
these processes it is necessary to defi ne the vector Y as

Y = [ŷ1     ŷ2     ŷ3  ... ŷm].                                         (4)

Figure 3  Activation Functions used: (a) identity function, (b) relu function, (c) tanh function and (d) logistic function 
Slika 3. Korištene funkcije aktivacije: (a) identitetna funkcija, (b) relu funkcija, (c) tanh funkcija i (d) logistička funkcija
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Where ŷk is the result of the neural network for the k-th set 
of input. During the forward propagation, values of each data 
point in the training set are placed as values of the input layer 
of the neural network. At the beginning the vector Θ containing 
weights of all connections is set to random values, and the input 
values are propagated forward trough the MLP, which allows us 
to calculate the value ŷk This value is then compared to the real 
value of the output for this dataset yk. In our research this means 
that the value yk represents the real, measured speed of the ship 
obtained from the dataset, while the ŷk is an attempt of the neural 
network algorithm at correctly calculating that value given the 
inputs of the k-th data point. It can be expected that there will be 
a diff erence between the real and predicted value. This diff erence 
is caused by the ill-defi ned weights of connections between the 
neurons [37, 42]. To achieve a smaller error weights need to be 
adjusted, which is done during the backpropagation process. For 
the backpropagation process it is necessary to defi ne the cost 
function J(Θ), usually mean square error (MSE) given as [43]

                (5)

With this value calculated the gradient of a connection is 
calculated as a partial derivation [44]

                                         (6)

Once the gradient is calculated the existing weights need 
to be adjusted, depending on its value. Due to the usage of 
the derivation higher error will mean a greater change, while 

smaller error will cause smaller change in weights. New values 
of the weights are calculated per 

                               (7)

where m is the number of data points in the dataset, and α is the 
learning rate [37, 45]. Higher learning rate will allow the neural 
network to learn faster, but if too high the backpropagation could 
fail to converge towards the error of zero. With a multitude of data 
points MLP is trained over many iterations and its weights are 
adjusted. The quality of the achieved result greatly depends on 
the parameters of neural network (so called hyperparameters).

3.2. Hyperparameter adjustment / Podešavanje 
hiperparametra
In the presented research the hyperparameters are adjusted by 
utilizing a grid search algorithm. Grid search takes multiple values 
for each hyperparameter being adjusted and trains the neural 
network for each of the combinations [46]. Hyperparameters 
that we adjusted during the training were [47]:
 - Hidden Layers – the number of hidden layers and number of 

neurons in each layer. Presented with a tuple, in which each 
layer is presented with a positive integer equaling number 
of neurons in that layer,

 - Activation function – the activation function of the neurons 
in the MLP,

 - Solver – algorithm that will be used for calculating the 
weight values during backpropagation,

 - α – initial learning rate for backpropagation. This is the value 
that adjusts the initial speed of ANN weight adjustments. 
Higher value of the learning rate will cause the ANN to 
converge to a solution faster, as weights will be changed 
more quickly, but setting it too high can cause the ANN to 
diverge instead of converge as it will skip over the weights 
that will cause the convergence to a solution. Setting the 
learning rate too low will cause the neural network too 
converge extremely slowly – or, more problematically, not 
to converge at all due to the runtime (number of iterations) 
being too high for realistic applications [48]. 

 - α Adjustment – adjustment of learning rates through the 
training. Constant keeps the learning rate the same as 
starting throughout training, while adaptive and inverse 
scaling adjust it depending on the weight gradient value, 
and

 - L2 – regularization parameter, larger value of which 
penalizes the aff ect of variables that have a larger infl uence 
[49, 50].
Hyperparameters that are adjusted and their possible values 

can be seen in the Table 2.

Figure 4 An example of an MLP ANN with three inputs, single 
output and a single hidden layer with three neurons.

Slika 4. Primjer MLP ANN-a s tri ulaza, jednim izlazom i jednim 
skrivenim slojem s tri neurona.

Table 2 Adjusted hyperparameters and their values 
Tablica 2. Podešavani hiperparametri i njihove vrijednosti

Hyperparameter Possible Values Number

Hidden Layers (16), (32), (50), (100), (16,16), (32,32), (16,32,16), (32,32,32), (16,16,16,16), (16,32,32,16), 
(32,32,32,32), (32,50,50,32), (100,100,100), (100,100,100,100)

14

Activation Function Identity, ReLU, Tanh, Logistic 4

Solver Adam, LBFGS 2

α 0.5, 0.1, 0.01, 0.00001 4

α Adjustment constant, adaptive, inverse scaling 4

L2 0.1, 0.01, 0.001, 0.0001, 0.0 5
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Hyperparameter choices, including solver, learning rate and 
others, are usually randomized, but since this adds to complexity 
by increasing the search space the possible values are selected 
based on authors previous experience with similar problems 
in which similar hyperparameter choices and combinations 
provided good results [8,11,48].

Total combinations of parameter combinations in grid search 
are 8960. Additionally, each combination of parameters is run 3 
times, which is done to avoid poor results stemming from poorly 
chosen starting random connection weights. With this process 
a total of 26880 networks are trained. Each solution is then 
evaluated using two metrics.

3.3. Solution evaluation / Procjena rješenja 
Every trained neural network is evaluated on the remaining part 
of the dataset (henceforward referred to as the training set). 
Each datapoint of the training set is used as an input, and the 
result that is obtained from the MLP is compared to the actual 
data to evaluate the quality of the regression for that network. 
No backpropagation is performed, as the goal is just to test the 
performance of the ANN, as opposed to adjusting its weights [51].

Two metrics used to compare the predicted solution vector   
Ŷ and the real result vector Y are coeffi  cient of determination 
(R2) and mean absolute error (MAE).

Mean average error calculates the diff erence for each 
element of the two solution vectors, measures their absolute 
error per each element. It can be calculated using [52,53]

                                    (8)

R2 , or coeffi  cient of determination is a value, in range 
[0,1] that defi nes how well is the variance of the real results 
represented by the predicted results. Higher values represent a 
better fi tting solution. R2 can be calculated as a factor of total 
and residual sum of squares as [54, 55]

               (9)

Where  is the mean of the data results calculated per

                                         (10)

Each solution is fi rst evaluated using R2. Coeffi  cient of 
determination is given in range of [0,1], with higher values 
being better [56]. If the coeffi  cient of determination value is 

higher than 0.99 the model is stored and evaluated again using 
MAE where a smaller MAE is considered better.

4. RESULTS / Rezultati
Out of the total 26880 solutions 7373 solutions have satisfi ed 
the condition of R2 value larger than 0.99. Out of these 7373 
solutions 4751 solutions have achieved MAE that is less than 
0.026 which is 1% of the total range of speeds contained 
within the dataset. The worst (largest) achieved MAE is 0.67 
knots or 2.81%. Best achieved solution has R2 of 1 and MAE of 
3.4485x10-5 knots (absolute error of 0.00014% of the range). 
Hyperparameters of the MLP that achieved these results are 
shown in the Table 3.

Table 3 Hyperparameters of the best found MLP with the MAE 
of 3.4485x10-5. 

Tablica 3. Hiperparametri najbolje pronađenog MLP-a s MAE-om 
od 3.4485x10-5.

HIDDEN LAYER SIZES ACTIVATION SOLVER α ADJUSTMENT α L2

(100, 100, 100) logistic lbfgs constant 0.1 0

The graphs given below show how many of the best 7373 
solutions each parameter has. Figure 5. shows that 5876 of the 
solutions that satisfi ed the given condition used lbfgs solver, 
while 1497 used the adam solver. Figure 6. shows that relu 
activation was used by 3523 of the networks, tanh was used by 
1282, logistic by 1121 and identity activation by 1447. The scaling 
type for the learning rate was distributed in a way where 2552 
had a constant learning rate, 2410 used adaptive and 2411 used 
inverse scaling learning rate, which is shown in Figure 7. Initial 
learning rates were distributed in a way that 1470 models had 
learning rate of 0.5, 1546 had a learning rate of 0.1, 1574 had a 
learning rate of 1574 and 2783 had a learning rate of 0.00001. 
This is shown in Figure 8. When it comes to L2 regularization 
parameter 1590 solutions used the value of 0.1, 1514 had used 
a value of 0.01, 1528 the value of 0.001, 1501 the value of 0.0001 
and 1240 solutions used the value of 0, and this distribution is 
shown in Figure 9. Finally, when it comes to hidden layers most 
solutions had chosen a single hidden layer with the number of 
neurons equaling 16 (1460 solutions) and 32 (1754 solutions). 
There were no solutions that used the hidden layer confi guration 
of (16,16,16,16) , (32,32,32,32) and (100,100,100,100). Full 
distribution is shown in Figure 10.

Figure 5 Distribution of solvers amongst best solutions 
Slika 5. Raspodjela rješavača među najboljim rješenjima
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5. DISCUSSION / Rasprava
The results show a successful regression of the speed value 
from the parameters contained within the dataset. Best solution 
achieved has an extremely small error, and a large number of 
MLPs trained show the ability of regressing the value with a low 
(<1%) error. 

When observing the solutions with the R2 value larger 
than 0.99, observations can be made about the number of 
solutions that had certain parameter values. It can be seen 

Figure 6 Distribution of Activation Functions amongst best solutions 
Slika 6. Raspodjela funkcija aktivacije među najboljim rješenjima

Figure 7 Distribution of learning rate types amongst best solutions 
Slika 7.  Raspodjela vrsta stope učenja među najboljim rješenjima

Figure 8 Distribution of Initial Learning Rates amongst best solutions 
Slika 8. Raspodjela početnih stopa učenja među najboljim rješenjima

that most solutions that satisfi ed the condition used the lbfgs 
solver. Most solutions preferred the relu activation function 
with more than double solutions using it, compared to equally 
distributed number of solutions which used tanh, logistic and 
identity activation functions. Learning rate adjustment types 
were equally distributed amongst all possible values (constant, 
adaptive and invscaling). When observing the learning rates 
most solutions preferred the smallest initial learning rate of 
0.00001, with 2783 using that value. Number of solutions using 
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Figure 9 Distribution of regularization parameters amongst best solutions 
Slika 9. Raspodjela regulacijskih parametara među najboljim rješenjima

Figure 10 Distribution of Hidden Layer Sizes amongst best solutions 
Slika 10. Raspodjela veličina skrivenih slojeva među najboljim rješenjima

the remaining learning rates were equally distributed. The number 
of solutions using L2 regularization parameter was equally 
distributed amongst all possible values. Equal distribution such 
as this points towards regularization of the input parameters not 
being largely important for the dataset, i.e. all variables aff ecting 
the speed outcome in a similar amount. When observing the 
graph for hidden layer sizes it is clear that more solutions used 
simpler neural network architecture. Using a single layer of 32 
neurons has the largest amount of solutions, with single layer 
of 16 neurons being a close second. Other solutions are equally 
distributed, except for the most solutions using four hidden 
layers which had no solutions amongst the best ones.

6. CONCLUSION / Zaključak 
The research done shows the possibility of regressing the speed of 
a vessel from propulsion system parameters. It is also shown that 
MLP is a suitable algorithm for such a task, due to low error and 
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