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Abstract 
Availability of high-frequency data, in line with IT developments, enables the use of 

Availability of high-frequency data, in line with IT developments, enables the use of 

more information to estimate not only the variance (volatility), but also higher realized 

moments and the entire realized distribution of returns. Old-fashioned approaches use 

only closing prices and assume that underlying distribution is time-invariant, which 

makes traditional forecasting models unreliable. Moreover, time-varying realized 

moments support findings that returns are not identically distributed across trading 

days. The objective of the paper is to find an appropriate data-driven distribution of 

returns using high-frequency data. The kernel estimation method is applied to DAX 

intraday prices, which balances between the bias and the variance of the realized 

moments with respect to the bandwidth selection as well as the sampling frequency 

selection. The main finding is that the kernel bandwidth is strongly related to the 

sampling frequency at the slow-time-time scale when applying a two-scale estimator, 

while the fast-time-time scale sampling frequency is held fixed. The realized kernel 

density estimation enriches the literature by providing the best data-driven proxy of 

the true but unknown probability density function of returns, which can be used as a 

benchmark in comparison against ex-ante or implied driven moments. 
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Introduction 
In the field of quantitative finance, it is very common to assume a probability density 

function (pdf) of underlying asset returns with unknown moments such as variance, 

skewness and kurtosis. These moments are parameters which are estimated frequently 

by many practitioners and academics using different approaches. Forecasting of 

these moments is of special interest to market participants as their future expectations 

are embedded in the current trading activities. Most of existing studies have focused 

on parametric models to compute ex-ante measures of variance, skewness and 
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kurtosis of returns. However, not only moments are unknown, but distribution itself is 

also unobservable, making parametric models partially incoherent. True probability 

density function of underlying asset returns was and will remain one of the major issues. 

The main goal is to find a “true” distribution of returns, i.e. realized ex-post distribution, 

which is data-driven. Appropriate realized distribution is later used to derive realized 

moments of returns, which can be compared to the ex-ante counterparts. Even most 

studies have used simulation techniques to generate the true probability density 

function (Neuberger, 2012); it still lacks attempts for finding appropriate benchmark of 

the true density for comparison purpose. 

 Motivation for finding a realized ex-post distribution, which is closest to the true 

distribution of returns, is availability of the high-frequency data. These intraday 

observations enable us to use as much information as possible to obtain probability 

density function for each trading day separately. Thus, one would expect that pdf 

varies across trading days as its moments are time-varying. Two key issues emerge 

here. First issue refers to the sampling frequency selection and the second issue is 

about density estimation method. The most popular method for density estimation 

among users is Kernel method, especially when dealing with big data such as high-

frequency observations. Kernel method is nonparametric and it does not require 

assumption imposed on the data generating process (DGP). Moreover, the Kernel 

estimator converges to the true DGP with probability one in a certain conditions. This 

brings us to new issues about the choice of the bandwidth and Kernel function. Luckily, 

the choice of the Kernel function has no effect on the results, and therefore a main 

issue remains on bandwidth selection (Marron, Nolan, 1988; Grith, Härdle, Schienle, 

2012). Usually, an optimal bandwidth is chosen to minimize both the bias and the 

variance of the estimator. In line with this minimization problem, different rules where 

proposed in the literature, but many of them give oversmoothed densities (Terrell, 

Scott, 1992; Wand, Jones, 1995; Racine, 2008,). 

 In this study the bandwidth selection is related to the problem of sampling 

frequency selection in obtaining bias adjustment of the realized variance, the first issue 

outlined above. The most well-known high-frequency estimator is the realized 

variance proposed by Andersen and Bollerslev (1998). This estimator is formulated as 

the sum of squared intraday returns, which are equally spaced. Studies showed that 

this estimator is biased when sampling frequency is large (Hansen, Lunde, 2005; Bandi, 

Russell, 2008). This bias is induced by the autocorrelation resulting from non-

synchronous trading, discrete price observations, bid-ask bounce and the influence is 

collectively regarded as a market microstructure noise. Higher sampling frequency will 

lead to a more significant noise problem (Ait-Sahalia et al. 2011). Many bias-corrected 

estimators of realized variance which are robust to microstructure noise where 

proposed (Barndorff-Nielsen et al., 2002; Ait-Sahalia et al., 2005; Oomen, 2006). In this 

paper we utilize two scale realized variance estimator (TSRV) proposed by Zhang et 

al. 2005. Thus, a main objective is to determine if there is a realized density from which 

we can derive consistent and asymptotically unbiased estimate of integrated 

variance such as TSRV. If such density exists, obtained by Kernel estimation method, 

then it can be taken as the benchmark of the true but unknown density of returns. 

Basically, this means that choice of Kernel bandwidth depends on the slow-time-time 

scale sampling frequency, while the fast-time-time scale sampling frequency is held 

fixed when computing TSRV. 

 This paper contributes to the existing literature in a several segments. Previous 

research has not considered benchmarking the true but unknown probability density 

function of returns using intraday prices. This study also enriches the literature on data-

driven approaches for realized density estimation which is free of microstructure noise 
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by usage of Kernel. The obtained findings offer valuable information to market 

participants by pinpointing the appropriate Kernel bandwidth as well as optimal slow-

time-time scale sampling frequency. 

 The rest of the paper is organized into four sections. Section 2 comprehensively 

describes realized measures of moments and highlights their adjustment in the 

presence of microstructure noise. Section 3 presents Kernel density estimation method 

and dependence between bandwidth and slow-time-time scale frequency. Section 

4 presents the obtained empirical results using intraday prices of DAX index. Directions 

for future research as well as final concluding remarks and limitations of present 

research are given in Section 5. 

 

Realized measures of moments 
The concept of realized variance was introduced among the first by Andersen and 

Bollerslev (1998) who have computed the ex-post measure of volatility at a lower 

frequency using data sampled at a higher frequency. Realized variance is defined as 

the sum of squared equidistant intraday returns: 

 

𝑅𝑉𝑡
∆ = ∑ 𝑟𝑡,𝑗

2

𝐽

𝑗=1

= ∑(𝑝𝑡,𝑗 − 𝑝𝑡,𝑗−1)
2

,

𝐽

𝑗=1

                                                  (1) 

 

where  𝑝𝑡,𝑗 is the natural logarithm of the closing price observed at interval 𝑗 for a given 

trading day 𝑡. The length of time interval ∆ measures how frequently data are sampled. 

As the sampling frequency ∆ increases realized variance 𝑅𝑉𝑡 converges to the 

quadratic variation of the semi-martingale process, known as integrated volatility 

(Andersen, Bollerslev, Diebold, Labys, 2001; Barndorff-Nielsen, Shephard, 2002, 2006). 

Realized skewness 𝑅𝑆𝑡 and realized kurtosis 𝑅𝐾𝑡 are obtained in a similar way and 

additionally standardized by the same realized variance: 
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 Abovementioned realized measures are all contaminated by the microstructure 

noise, i.e. estimators become biased as sampling frequency increases (Hansen, 

Lunde, 2005; Bandi, Russell, 2008). This bias is induced by the autocorrelation resulting 

from non-synchronous trading, discrete price observations, bid-ask bounce (Aït-

Sahalia et al., 2011). Higher sampling frequency will lead to a more significant noise 

problem. Thus, a reduction of the noise is required. For this reason, a two scale 

estimator of realized variance is proposed and comprehensively discussed by Zhang 

et al. (2005) and Zhang (2011). The major advantage of the two scale realized 

variance TSRV is ability to keep all intraday returns, observed at very high frequency, 

and still having unbiased and consistent estimator of integrated volatility IV. The 

background of TSRV relies on the subsampling and averaging techniques, which are 

also applicable to higher realized moments. 
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 Following Amaya et al. (2013) and Shen et al. (2018), two scale estimators of 

realized moments are: 
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where 𝑆 is the number of subsamples and 𝑛𝑠 is the number of returns within each 

subsample (not necessary equal). First term of 𝑇𝑆𝑅𝑉𝑡
∆,S expression gives the average 

realized variance over  𝑆 subsamples known as average sparse realized variance. The 

second term removes the bias from the average sparse realized variance, where �̅�/𝐽 

is the proportion of average subsample size in total sample size. This way 𝑇𝑆𝑅𝑉𝑡
∆,S 

becomes microstructure free, i.e. it is consistent and asymptotically unbiased estimate 

of integrated variance IV (Zhang et al., 2005; Zhang, 2011). 

 Prior to the calculation of 𝑇𝑆𝑅𝑉𝑡
∆,S as well as  𝑇𝑆𝑅𝑆𝑡

∆,S  and  𝑇𝑆𝑅𝐾𝑡
∆,S respectively, one 

should select ∆  and S. Time interval ∆ is the fast-time-time scale, i.e. the highest 

sampling frequency available at which equally spaced intervals are non-empty. 

According to Arnerić et al. (2019 a) 1 minute fast-time-time scale eliminates zero prices 

and transaction gaps, while the fast-time time scale less than 1 minute is not reliable 

due to not so frequent trading. On the other hand, 𝑆 determines the size of slow-time-

time scale, i.e. sparse sampling frequency (Aït-Sahalia et al., 2005). The optimal slow-

time-time scale can be found by minimizing the mean squared error (MSE) of the 

average RV sampled sparsely. As we know that MSE of an estimator is the sum of the 

squared bias and its own variance, we can use this criterion to balance between the 

bias and the variance, suggested by Zhang et al. (2005). In the study of Zhang et al. 

(2005) it is proposed to search for both optimal time scales when using thick-by-thick 

data. Opposite to that, it is more convenient to keep fast-time-time scale fixed at the 

best available sampling frequency and to search for slow-time-time scale only 

according to Arnerić et al. (2019 b). This approach has practical significance, as it is 

not so computational demanding, and the selection of fast-time-time scale by the 

researchers give themselves opportunity to control the quality of high-frequency data 

due to cleaning and filtering process prior to the analysis.  

Two important conclusions arise here. Firstly, finding optimal slow-time-time scale 

sampling frequency enables bias adjustment of realized measures of moments. 

Secondly, if such moments exist then there should also exist realized density function 

from which the same moments can be recovered. 

 As already mentioned, Kernel method is utilized in this paper to obtain realized 

density estimation. The Kernel method is data-driven with many useful properties, 

explained in the next section. However, as the role of the Kernel bandwidth is the same 

as the role of slow-time-time scale we believe that those two are strongly related, i.e. 

selection of the bandwidth depends on the optimal slow-time-time scale. 
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Kernel density estimation 
Contrary to parametric methods, nonparametric ones, such as Kernel, do not require 

functional form specification. That’s why these methods became popular among 

users, especially when dealing with large data. The univariate Kernel density of 

intraday returns is given as: 

𝑓(𝑟𝑡,𝑗) =
1

𝐽ℎ
∑ 𝐾 (

𝑟𝑡,𝑗− 𝑟𝑡

ℎ
)

𝐽

𝑗=1

,                                                             (7) 

 

where ℎ is the bandwidth or smoothing parameter and 𝐾(∙) is a kernel function. This 

type of estimator in the literature is known as the Rosenblatt-Parzen estimator 

according to Rosenblatt (1956) and Parzen (1962). Assuming that kernel function 𝐾(∙) 

is nonnegative and that lower and upper limits of integration are -∞ and +∞, it has 

following properties: 

 

∫ 𝐾(𝑧)𝑑𝑧 = 1,                                                                      (8) 

 

∫ 𝑧𝐾(𝑧)𝑑𝑧 = 0,                                                                    (9) 

 

∫ 𝑧2𝐾(𝑧)𝑑𝑧 < ∞                                                                (10) 

 

 Appropriate choice of bandwidth is most important for density estimation and it’s 

not so straightforward in practice. Other parameters, like kernel function 𝐾(∙) have 

negligible influence on the final result in finite samples (Marron, Nolan, 1988). Thus, a 

great attention should be given to bandwidth selection as both the bias and the 

variance depend on the same bandwidth. As bandwidth decreases the bias also 

decreases but the variance increases and an optimal bandwidth should minimize 

both bias and variance of the estimator. To achieve this integrated criterion is usually 

used, i.e. integrated mean square error IMSE. Minimizing the IMSE with respect to the 

bandwidth provides a basis for data-driven bandwidth selection. Consequently, 

different approaches exist in the literature. Many approaches use a reference rule-of-

thumb suggested by Silverman (1986) or Scott (2015). The rule-of-thumbs, even 

appealing among users, tend to over-smooth and hide important properties of the 

data (Scott, 2015). Some academics prefer plug-in bandwidths suggested by 

Sheather and Jones (1991). Plug-in bandwidths support the idea of “plugging in” 

estimates of the unknown quantities that appear in formulae for the asymptotically 

optimal bandwidth (Chu et al., 2015). Nevertheless, plug-in rules are not fully 

automatic as they depend on the pilot bandwidth. 

 In small samples, better choices can be made by cross-validation methods, which 

are computationally intensive (Park, Marron, 1992). 

It is now obvious that all proposed bandwidth selectors have advantages and 

disadvantages and if we take a chance to apply them, new issues will always emerge. 

However, the purpose of this paper is not to pinpoint which of them is most 

appropriate, but to select a bandwidth at which realized density is rescaled to have 

the variance equal to  𝑇𝑆𝑅𝑉𝑡
∆,S. 
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Application to DAX index 
For the purpose of the analysis four trading days were chosen randomly during year 

2018, i.e. July 20, August 17, September 21 and December 21. There is no special 

reason why this research is restricted to four dates only, but it is enough to illustrate the 

issue we are dealing with as well as to confirm that entire density function is not time-

invariant. Therefore, this is to check if all realized measures of moments are time-

varying and to find which of them vary the most. Number of intraday DAX prices across 

dates ranges from 515 to 519 within official trading hours of Frankfurt Stock Exchange. 

These prices are observed with the sampling frequency of 1 minute which is the best 

available after cleaning and filtering process. 

 To illustrate research problem more clearly one trading day is chosen, i.e. July 20, 

2018. For this trading day different Kernel densities are obtained with respect to 

arbitrarily chosen bandwidths but fixed sampling frequency of 1 minute (left top panel 

of Figure 1). Contrary to that for every fixed value of the bandwidth, a different Kernel 

densities are also obtained due to different sampling frequency selection, i.e. 1, 5 or 

10 minutes (other panels of Figure 1). The same results are obtained for other trading 

day but not presented here to preserve the space. Nevertheless, it is more convenient 

to fix the highest sampling frequency at 1 minute and search for optimal bandwidth 

then opposite. The main reason for this is to keep all available data and still apply 

Kernel method to estimate the density of returns, which bring us to the issue of 

bandwidth selection. 

 

 
Figure 1 Different Kernel densities with respect to arbitrarily selected bandwidths and 

different sampling frequencies at July 20, 2018 
Source: Author calculation according to data provided by Thomson Reuters Tick History 

 

 As discussed in previously two sections, finding an optimal slow-time time scale 

frequency will lead us to the appropriate bandwidth, i.e. a bandwidth at which 
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realized Kernel density is rescaled to have the variance equal to 𝑇𝑆𝑅𝑉𝑡
∆,S which is 

asymptotically unbiased and consistent. The same realized Kernel density is latter used 

to extract realized measures of higher moments such as realized skewness and 

realized kurtosis. Results are given in Table 1 and realized densities are plotted on the 

Figure 2. 

 

Table 1 Selection of slow-time-time scale frequencies, Kernel bandwidths and 

estimation of realized measures of moments 

Dates in 2018 
High-scale 

observations 

Slow-time-

time scale 
Bandwidth 

Realized 

variance 

Realized 

skewness 

Realized 

kurtosis 

July 20 515 8 min 0.011016 0.000121 -0.00045 2.986069 

August 17 519 9 min 0.006649 0.000044 -0.00122 2.895766 

September 21 515 8 min 0.005597 0.000031 -0.19945 3.999873 

December 21 517 7 min 0.010423 0.000108 -0.21608 5.007762 

Source: Author calculation according to data provided by Thomson Reuters Tick History 

 

 
Figure 2 Realized pdf’s with bandwidths at which realized Kernel density is rescaled 

to have the variance equal to two-times scale estimator for each trading day 
Source: Author calculation according to data provided by Thomson Reuters Tick History 
 

 Results from Table 1 clearly indicate that slow-time-time scale frequency on 

average is 8 minutes and doesn’t vary much across trading days. However, the 

bandwidths are significantly different and realized measures of moments correspond 

to plotted densities on the Figure 2. All densities are negatively skewed with kurtosis 

approximately equal to or greater than 3. These findings support expectation about 

time-varying realized moments, i.e. returns are not identically distributed across trading 

day and unlikely Gaussian.  

 

Conclusion 
Proposed approach has scientific as well as practical contribution. Namely, scientific 

contribution is related to the main finding that Kernel bandwidth is strongly related to 

the sampling frequency at slow-time-time scale when applying TSRV estimator, while 

the fast-time-time scale sampling frequency is held fixed at 1 minute. Practical 

contribution is related to the finding that DAX index intraday returns should be 

sampled approximately every 8 minutes at the slow-time-time scale which is of special 
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interest to market participants. Namely, if returns of DAX index are sampled every 8 

minutes then an appropriate realized density can be found and rescaled for each 

trading day using Kernel method. This approach enables to recover the “true” density 

of returns along with the realized moments. It is necessary to emphasize that these 

moments are robust to microstructure noise. 

 Moreover, it is recommended to keep fast-time-time scale fixed at the best 

available sampling frequency and to search for slow-time-time scale only. This 

approach is not so computational demanding and the selection of fast-time-time 

scale by the researchers give themselves opportunity to control the quality of high-

frequency data due to cleaning and filtering process prior to the analysis. 

 Empirical findings indicate that appropriate bandwidths are significantly different 

across trading days even slow-time-time scale frequency is stable. All realized 

measures of moments are time-varying as well as realized densities. Kurtosis varies the 

most. This can be explained in relation to fat-tails phenomenon of underlying 

distribution as kurtosis controls the thickness of the left and right tail. This type of 

information should not be ignored, and it is of special interest to market participants 

as their future expectations are embedded in the current trading activities.  

 Limitation of this research is that considers density of returns estimation of a single 

stock index, but not multiple market indices. DAX index is chosen as a representative 

one among developed European markets. However, in emerging markets trading 

within a day is not so frequent and lack of intraday and synchronized observations 

would be a great challenge. Accordingly, further research will consider more market 

indices for comparison purpose. 
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