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Abstract 
An accurate weather forecast is the basis for the valuation of weather derivatives, 

securities that partially compensate for financial losses to holders in case of, from their 

perspective, adverse outside temperature. The paper analyses precision of two 

forecast models of average daily temperature, the Ornstein-Uhlenbeck process (O-U 

process) and the generalized autoregressive conditional heteroskedastic model 

(GARCH model) and presumes for the GARCH model to be the more accurate one. 

Temperature data for the period 2000-2017 were taken from the DHMZ database for 

the Maksimir station and used as the basis for the 2018 forecast. Forecasted values 

were compared to the available actual data for 2018 using MAPE and RMSE methods. 

The GARCH model provides more accurate forecasts than the O-U process by both 

methods. RMSE stands at 3.75 °C versus 4.53 °C for the O-U process and MAPE is 140.66 

% versus 144.55 %. Artificial intelligence and supercomputers can be used for possible 

improvements in forecasting accuracy to allow for additional data to be included in 

the forecasting process, such as up-to-date temperatures and more complex 

calculations. 
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Introduction 
Paper discusses the accuracy of two statistical prognostic models applied to the 

forecast of daily average air temperature in the City of Zagreb. Variability of daily air 
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temperature is a major factor in determining the price of weather derivatives, 

securities that represent sort of a bet on future meteorological conditions in certain 

area. 

Main purpose of the paper is to determine the more accurate prognostic model of 

the two observed: Ornstein-Uhlenbeck process (O-U process) and the Generalized 

autoregressive conditional heteroskedastic model (GARCH) by discovering the one 

whose deviation of forecasted to actual values is the smallest. Successful forecast of 

temperature trends in the future is the basis for accurately constructed derivative that 

ensures the highest expected revenue for the derivative provider. Calculation and 

comparison of root mean square error (RMSE) and mean absolute percentage error 

(MAPE) will draw conclusions which of two mentioned models is more accurate one, 

with GARCH model being the more likely one before the results and analysis of the 

data because of better ability to capture the daily temperature jumps. 

Paper is divided into five sections. After the introduction, section two provides 

literature review on weather derivatives forecasting and past examples of such 

analysis. Section three describes the basic principles and assumptions of two 

forecasting models. Section four discusses the accuracy of air temperature 

forecasting with selected models, finds the most accurate one and gives insight on 

possible improvements in air temperature forecasting. Section five concludes. 

 

Literature review 
Individuals can buy and sell call and put options with weather derivatives as 

underlying assets. Call option entitles its owner to buy the underlying asset from the 

provider at a predetermined price for a contractual period in exchange for a 

premium (Orsag, 2011). If the buyer has optimistic presumptions on the development 

of adverse weather which can make the price of derivatives go high, they opt to buy 

call options because of the capital gain caused by the fixed price the provider has to 

offer to the buyer. Put option, on the other hand, is again a right but not an obligation 

of the buyer of an option to sell the underlying asset at a fixed price (Orsag, 2011). It is 

usually contracted if the buyer has negative expectations on the development of 

adverse temperature which then causes the reduction of the derivative price. 

Buyers also contract future contracts on weather derivatives, which means that 

they arrange to buy or sell the option for a predetermined price on a specified future 

date. Those kinds of contracts are interesting for the parties whose businesses usually 

depend on seasonality, such as construction business or tourism companies.  

Weather derivatives are used more and more often since their aim is to diminish the 

potential loss for a company on a similar but much more accessible way compared 

to insurance contract. By assuming that even a small change of certain event can 

affect the business of the company, weather derivatives can be contracted for less 

significant changes in temperature or precipitation compared to insurance policies. 

Weather derivatives therefore cover low-risk/high-probability events, while insurance 

covers high-risk/low-probability events (Lazibat Županić, 2010). If, for example, there 

was an above average temperature during the heating season, companies would be 

able to obtain the amount contracted with the insurance policy in the case of 

extremely high temperatures, when energy companies become significantly affected 

by such weather. Weather derivatives, on the other hand, assume that even a small 

change in daily air temperature can affect revenues of the company so the 

contracted amount can be paid even when the air temperature deviates only a few 

degrees (three to five degrees Celsius) to the expected value. 

Weather derivatives and their valuation became popular in modern literature at 

the end of the 20th century when the first such instrument was introduced and 
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contracted between two USA based energy companies, as mentioned and 

explained in Considine (2000). 

Since its inceptions at the start of the century, weather derivatives have developed 

into a liquid market paper with different versions of derivative contracts, such as swap 

contracts, futures/forwards or options on forward contracts with the two latter being 

the most described and observed ones in Lazibat and Županić (2010), Baković et al. 

(2011) and Till (2015) among others. All these contract types must define the weather 

index which is the starting point in weather derivatives valuation. Alaton et al. (2002), 

Cambell and Diebold (2005) and Cao and Li (2003) focus on defining heating degree 

day (HDD) and cooling degree day (CDD) indices which presents a starting point in 

weather derivatives valuation. Based on the value of the index, monetary value of 

each degree Celsius is calculated and the monetary value of weather derivative 

evaluated. 

Temperature forecasting is not an easy task. Models chosen for the forecasting 

process have a documented history of application in many areas of stochastic 

modelling. Literature knows many forms of O-U processes. Models used in temperature 

forecasting vary from more simple equations in Alaton et al. (2002) or Benth and Benth 

(2005) to more complex ones in Alexandridis and Zapranis (2007). Combination of all 

available models lead to the more simplified notation of the model in this work. 

GARCH model can be found in many scientific articles, most of which cover the topics 

of stochastic modelling with moving averages or reverting processes. Most relevant 

were adapted based on the equations from Cambell and Diebold (2005), Buizza and 

Taylor (2004) and Gilks et al. (1996). 

Some authors suggest using different methods than those selected, such as Gilks 

(1996) using Markov Chains or Alexandridis and Zapranis (2007) with neural works 

together with Berliner (2001) which uses Ensemble forecasting. All mentioned try to 

explain some other weather phenomena, even more stochastic than temperature, 

and are therefore omitted from this work. 

 

Methodology 
Characteristics of weather derivatives 
Solid weather conditions, along with adverse ones, affect almost every economic 

activity and can cause significant financial loss to the economy. Hail or dry periods 

damage the agriculture, warm winters hurt energy sector, while cold or rainy summers 

strike tourism. Due to the high unpredictability of the weather and air temperature 

forecasting, it is necessary to explain weather derivatives as an instrument of 

protection against the variability of the weather, specifically air temperature as one 

of the key characteristics of the weather. 

Weather derivatives are financial derivatives (forward contracts and options on 

forward contracts) whose payment depends on future weather conditions. They 

insure industries against the adverse impact of weather with help of weather index 

calculated as the deviation of current air temperature from the selected reference 

point (Baković et al., 2011). 

Weather index refers to the difference between the daily average air temperature 

from a certain temperature reference value set by the derivative provider. Value of 

the reference temperature is usually set at 65 Fahrenheit (Schiller et al., 2012), 

corresponding to 18 °C. Derivative buyer bets that an unfavourable development of 

air temperature will occur to his business for a contractual period. If the buyer's 

forecast turns out to be correct, the provider will pay him a predetermined fee. 
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Meteorological Station Maksimir measures the mean daily temperature in Zagreb 

as an arithmetic mean of hourly temperatures, same as in Dall'Amico and Hornsteiner 

(2006). Arithmetic mean of the daily temperature (𝑇̅) is thus given by the expression: 

𝑇̅ =
1

24 ℎ
 ∫ 𝑇 𝑑𝑡, (1) 

where 𝑇 represents the air temperature at the beginning or end of each hour in one 

day, while 24 ℎ stands for the hours in one day (24 hours).  

Daily average temperature (𝑇𝑡) is a vital part in constructing weather index. Many 

authors, including Alaton et al. (2002) and Considine (2000), mention two types of 

weather indices related to air temperature. These are: heating degree day (HDD) and 

cooling degree day (CDD). Heating degree day index is defined as: 

𝐻𝐷𝐷 =  ∑ max(𝑇𝑟𝑒𝑓 − 𝑇𝑡; 0),

𝑇2

𝑇1

 (2) 

where 𝑇𝑟𝑒𝑓 refers to the reference temperature which is usually set at 18°C, and 𝑇𝑡 is 

the daily average temperature according to the data collected from the 

meteorological station. HDD index is associated with colder weather (usually winter) 

that requires the use of heating in homes (H in HDD stands for heating) (Till, 2015). 

Cooling degree day on the other hand, is defined as: 

𝐶𝐷𝐷 =  ∑ max(𝑇𝑡 − 𝑇𝑟𝑒𝑓; 0),

𝑇2

𝑇1

 (3) 

For the CDD index, which is used during the summer months, it is assumed that the 

daily average temperature will be higher than the reference temperature, which 

switches the factors in the equation. It was named CDD index because of cooling (C 

in CDD stands for cooling) - most people use cooling during warm days, or those 

whose average daily temperature is higher than 18 °C with the help of cooling 

machines (Till, 2015). 

During the contract period, probability of profit for a weather derivative provider 

depends on the precision of the forecasting model. Providers of weather derivatives 

should forecast the temperature accurately in order to plan possible payouts based 

on these values. Air temperature forecasting has some similarities with the forecasting 

of stock prices, mostly in dealing with the stochasticity of forecasting parameters with 

stochasticity being the variability of daily average air temperature regardless of its 

movement in the past. 

Despite extremely unpredictable daily temperature movements and various jumps, 

there are some general characteristics of the daily air temperature which should be 

covered by the statistical models used in forecasting: 

1.  Autoregression - Daily average temperature depends on the temperature on the 

same day in some of the periods before the forecast period or few days before the 

forecast day in the forecast period, 

2.  Return to the long-term average - winter and summer temperatures represent 

seasonal fluctuations from the average of the daily temperature which reaches 

between 15 and 20 °C in a regular year, 

3.  Sinusoidal form of temperature distribution - during the year temperatures move like 

a sine function - they rise, reach a maximum, fall, reach a minimum and then rise 

again over a period of 365 days a year. 

 Google scholar, Hrčak Srce database and the databases of the Documentation 

Center of the Faculty of Economics and Business in Zagreb were sources used during 

the research, along with academic workbooks. Data on daily air temperature for the 

period 1.1.2000–31.12.2018 were taken from the database of average daily 

temperature in Maksimir station in Zagreb, provided by Croatian Meteorological and 
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Hydrological Service. Data processing and analysis presented in the paper were 

carried out through Microsoft Excel, R-Studio and E-Views. 

In the sense of comparison of the two forecasting models, it is necessary to 

calculate the deviations of the forecasted values from the actual values with 

indicators applicable to both models. First used will be root mean square error (RMSE). 

Chai and Draxler (2014) find this indicator, which is defined by following expression, to 

be often used to evaluate the performance of forecasting models in meteorology: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑡 − 𝑌̂𝑡)2𝑛

𝑡=1

𝑛
, (4) 

where 𝑌𝑡 represents the true value of the variable in period t, 𝑌̂𝑡 the forecasted value 

of the variable, while n refers to the number of periods for which the forecast is made. 

Mean absolute percentage error (MAPE) is another indicator that will be used in 

model performance evaluation. According to Hanke and Witchern (2014) the 

expression of this indicator is: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∗ ∑

|𝑌𝑡 − 𝑌̂𝑡|

|𝑌𝑡|

𝑛

𝑡=1

× 100, (5) 

where n is the number of forecast periods. 

 

Ornstein – Uhlenbeck process 
Ornstein-Uhlenbeck process (O-U process) is a mathematical model that was 

developed in the 20th century, when French physicist Paul Langevin created a 

formula explaining stochastic motion of particles in liquids (Gillespie, 1990). However, 

actual creators of the model were Ornstein and Uhlenbeck (1930), extending the 

basic motion formula with Einstein's explanation of the free movement of particles and 

atoms in space. Due to the complexity of the noise analysis and calculation, the part 

of the equation that observes the stochastic component of temperature has been 

omitted from this analysis, which concentrated more on accurately capturing the 

three previously mentioned temperature characteristics. 

Model was developed based on the continental climate (original paper observed 

air temperature data Bromma airport near Stockholm, Sweden) which has a seasonal 

characteristic (Alaton et al., 2002). Average daily air temperature, with the previous 

assumption of seasonality, varies from extremely cold in winter, pleasant in spring and 

autumn, to extremely warm in summer. 

Due to the summer and winter season, the movement of daily temperature, 𝑇𝑠, can 

be simplified by a sine function that depends on the time 𝑡, where 𝑡 is day of the year, 

as follows: 

where 𝑡 denotes the time in days for the current year (1-365), ω represents the term 2π 

/ 365, which defines the period of the function that corresponds to the period of 365 

days, while ρ calculates the shift from the January average temperature to the actual 

yearly average temperature (which mostly occurs in spring or autumn months). In the 

period 2000 to 2017 which is a base period for the 2018 forecast, there were five leap 

years (2000, 2004, 2008, 2012 and 2016) with 29 days in February which were omitted 

to ensure that all years have comparable data. 

Basic approximation, expressed by the sine function solely with the parameter ωt, 

would describe the temperature distribution in such a way that the yearly average 

temperature would be equal to the average temperature on January 1, while the 

maximum temperature would be predicted on March 1 and the minimum on 

September 1. However, such an assumption is unrealistic, so the record includes a shift 

𝑇𝑠 = sin(𝜔𝑡 +  𝜌), (6) 
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of the sine curve ρ that ensures lowest value of the function (𝑇𝑚𝑖𝑛) in the middle of 

winter, and consequently the highest value (𝑇𝑚𝑎𝑥) in the middle of summer (Alaton et 

al., 2002). 

As a result of global warming and other climatological factors, daily temperatures 

have a slight upward trend as the years go by, so average daily temperatures today 

are somewhat higher than in the past. By combining the seasonal (summer and 

winter), trend components (global warming) and the expression of a shift of sine 

function, all factors for analysing the O-U process are ready. Equation of the 

prognostic O-U process that will be used in part four to forecast daily temperatures in 

2018 is given by the expression: 
𝑇𝑡 = 𝐴 + 𝐵𝑡 + 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜌), (7) 

where 𝑇𝑡 represents the forecasted value of the temperature for a t day in 2018 and t 

is the number of days in the year (1-365). Variable A represents the average of daily 

air temperature for the period 1.1.2000 – 31.12.2017, variable B defines the influence 

of an increasing temperature trend on a yearly basis, while variable C determines the 

seasonality of temperatures throughout the year or how strongly winter and summer 

temperatures deviate from the yearly air temperature mean. Variables A, B and C, 

together with the shift ρ will be calculated based on historical temperature data. 

 

GARCH model 
Generalized autoregressive conditional heteroskedastic model (GARCH) predicts the 

variability of the future and solves the problem of heteroskedasticity - the non-constant 

variability of time series (Bahovec, Erjavec, 2009). GARCH model is often referred to as 

the GARCH (1,1) model. Factors (1,1) mean that the present variance depends on the 

forecast error in one period before and on the variance in one period before the 

present. Expression which describes the possible existence of heteroskedasticity and 

then corrects it, based on the expression in Frances and Dijk (1996), is presented as: 

𝜎𝑡
2 = 𝜔 + 𝛼 ∗ 𝜀𝑡−1

2 + 𝛽 ∗ 𝜎𝑡−1,
2  (8) 

where the factors 𝜔, 𝛼 , 𝛽 are calculated using the statistical software E-Views once a 

complete model to forecast the daily average temperature is constructed. GARCH 

model comes after the initial forecasting model because it works on fixing residuals 

which can occur only if there are actual and forecasted values that can be 

compared. Expression 𝜀𝑡−1
2  represents the residual in one period before the forecast 

period and 𝜎𝑡−1
2  standard deviation in that same period. 

Daily average temperatures depend on their corresponding month. To capture this 

effect of the month on the daily air temperature, 12 dummy variables (𝛽𝑛, n ranges 

from 1 to 12) will be introduced into the forecasting model. Each indicator variable 

corresponds to each month of the year, January to December. Values of indicator 

variable are usually 0 or 1, with 0 meaning the exclusion of some feature and 1 presents 

the opposite. This will be used to calculate the average temperature of the month in 

which some day is calculated and will represent a constant. 

In addition to the dummy variable as the first part of the overall GARCH model, a 

part that connects today's forecast temperature to the actual temperature one and 

two days before the forecast day with a multiple regression model should be added. 

In statistics, this term is known as the AR (2) process (Kölbl, 2006). 

Expression (8) that was shown to explain the problem of heteroskedasticity is the 

notation of an AR (1) process where the dependent variable y depends on only one 

independent variable 𝑥. AR(2) process adds another independent variable 𝑥2 with its 

corresponding coefficient 𝛽2. When this extension of expression (8) is translated into 

the terms of the forecasting model for daily average temperature, AR (2) process by 
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which the predicted value depends on the actual in the two days before can be 

written as: 
𝑇𝑡 = 𝛼 + 𝛾 ∗ 𝑇𝑡−1 + 𝛿 ∗ 𝑇𝑡−2 + 𝜖, (9) 

where 𝑇𝑡−1 is the actual daily air temperature of the day before the forecast and 𝑇𝑡−2 is 
the actual daily air temperature two days before the forecast. Factors γ, δ and α are 

the coefficients and 𝜖 is the residual for which the possible existence of the 

heteroskedasticity problem will be tested. Instead of residual 𝜖, the final expression of 

the GARCH model will have expression (9). In expression (9) there is a free coefficient 

α, but in the final expression of the model it will not be visible as α but as a previously 

explained 𝛽𝑛 indicator variable for each month of the year. 

Temperature forecasting requires AR(2) process because it makes the forecasted 

temperature much more accurate than only coefficients 𝛽𝑛 as indicator variables. If 

the daily forecasted temperature would be just the constant 𝛽𝑛, forecasted 

temperature would be represented by a horizontal line that shows the average 

temperature of a corresponding month. Forecast values would show substantial 

variability to actual ones since it is highly unlikely that the daily temperature remains 

constant for one month. It is therefore necessary to involve actual values of two days 

before the forecasted day to capture upward or downward trend of the temperature. 

Average monthly temperature with the existence of an indicator of variables 𝛽𝑛 + 

AR (2) process of linking the actual daily temperature of the past two days with 

forecast of today + GARCH (1,1) model for residual and standard deviation analysis 

gives a complete expression of the model that will forecast the temperature in 2018 . 

GARCH model expression is therefore presented as: 

𝑇𝑡 = 𝛽𝑡 ∗ 𝑡 +  𝛾 ∗ 𝑇𝑡−1 + 𝛿 ∗ 𝑇𝑡−2 + 𝜔 + 𝛼 ∗ 𝜀𝑡−1
2 + 𝛽 ∗ 𝜎𝑡−1

2 , (10) 

where: 𝛽𝑡 – dummy variable with 𝑡 being month of the year, 𝛾, 𝛿 – regression 

coefficients in AR (2) process for 𝑇𝑡−1 and 𝑇𝑡−2 actual air temperature values, 

respectively, 𝜔, 𝛼, 𝛽 – coefficients in GARCH (1,1) model. 

Expression (10) simultaneously calculates the daily average temperature forecast 

for 2018 with the help of the AR (2) process as well as analyses the deviations of the 

actual values from the forecasted ones and the potential existence of 

heteroskedasticity with the help of the GARCH (1,1) process. 

 

Air temperature forecasts, precision of forecasting models 

and possible future development 
Descriptive statistics 
Daily average temperatures in each of the eighteen base years (2000-2017) should 

show expected movements, which means that in the winter months (October to 

February) temperatures should be low and reach extreme low values during this 

period, while in the middle of the year, during the summer months (June to August), 

they should be highest. Period between winter and summer should show a constantly 

increasing trend of temperatures in the spring months, as well as a constantly 

decreasing trend of temperatures in the fall as the daytime temperature drops and 

approaches the cold winter. Picture 5 shows the actual daily average temperature at 

the Maksimir station for each of 365 days in a year for a base period.  
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Figure 1 Daily average air temperature Zagreb (Maksimir), in °C, included period 

from 2000 to 2017 
Source: authors based on Vidić (2019). 

 

Daily average air temperatures in Figure 1 show that highest values correspond to 

summer months and the lowest values at the end of one or the beginning of the 

second year. Graphic, as well as temperature ranges, are similar to those in the of 

Buizza and Taylor (2004) and Campbell and Diebold (2005). Besides the average daily 

temperatures, upper and lower confidence interval limits with confidence level 95 % 

are shown on the graph.  

Descriptive statistics of data for all 6,570 days (18 base years – without data for 29.02. 

of leap years) are presented in Table 1, while Table 2 shows the same data for every 

third year in base period. All indicators except the coefficient of variation, skewness, 

and kurtosis as relative indicators are expressed in degrees Celsius (°C). 

 

Table 1 Selected indicators of descriptive-statistical analysis of daily average air 

temperature 2000.-2017. 
Indicator Value 

No. of days observed 6,570 

Mean 12.12 

Standard deviation 8.47 

Coefficient of variation 69.88% 

Median 12.70 

Mode 17.40 

Skewness -0.81 

Kurtosis -0.17 

Maximum temperature 31.70 

Minimum temperature -12.40 

Range 44.10 

Source: authors.  

 

Descriptive analysis of the data shows that the average value of the average daily 

temperatures is 12.12 °C, while the modal temperature (the one most frequently 

repeated in the series) is 17.40 °C. Interestingly, the mode is very similar to the 

temperature of 18 °C, used in time derivatives as a reference temperature for HDD 

and CDD indices. Coefficient of variation, which shows the variability of the data, that 

is, how representative the calculated average of 12.12 °C is, is just over 70% and shows 
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the high variability of the data – consequently the calculated average has poor 

representativeness. 

In Gaussian or normal distribution, the mean of the data is equal to the mode (the 

most common value) and the median (the value that divides the distribution into two 

equal parts). Observed distribution is slightly asymmetric to the left, showing an 

asymmetry coefficient (skewness) of less than 0 (-0.17). Mode of data of 17.4 °C is 

higher than the median of 12.7 °C and the mean of 12.12 °C. Left-sided asymmetry 

whose basic condition is that the mode is greater than the median greater than the 

arithmetic middle is thus confirmed (Mandikandan, 2011). 

Data and small-scale distributions have a positive Kurtosis, pointed tip and low tails 

because there are few extreme values. Such distributions have very few serious 

unusual values (or outliers) and most of the data are close to the average, which is 

then more representative and accurate. Opposite case is where the distribution is 

slightly rounded and has thicker tails, as is the case with the observed data. Kurtosis of 

the observed data has a coefficient of less than 0 (-0.81), so the top of the distribution 

is slightly rounded and the distribution tails relatively high due to the higher 

representation of extreme values. This shows a widespread distribution and a lower 

representativeness of the calculated average of daily average temperatures. 

Table 2 outlies the value of same coefficients as Table 1 but now for specific years 

in the base period (each 3rd year starting with 2000). This table might give a better 

insight in the assumption of global warming and better understanding of the 

movement of temperature. Question on capturing the variability of the data and 

stochasticity in modelling weather still plays a pivotal role in efficient forecasting. 

 

Table 2 Indicators of descriptive statistical analysis of daily average air temperature 

of selected years 

Indicator 
Year 

2000 2003 2006 2009 2012 2015 

Number of days 365 365 365 365 365 365 

Mean 12.73 11.91 11.85 12.45 12.57 12.70 

Standard deviation 8.25 9.80 8.62 8.64 9.34 8.19 

Coefficient of variation 64.80% 82.28% 72.74% 69.40% 74.30% 64.48% 

Median 13.85 11.95 13.10 13.60 12.60 12.50 

Mode 8.60 21.20 16.40 6.20 6.60 14.40 

Excess -0.49 -1.12 -0.82 -0.68 -0.58 -1.05 

Kurtosis -0.29 -0.06 -0.21 -0.36 -0.30 0.14 

Maximum temperature 29.60 29.60 28.30 27.20 30.10 29.40 

Minimum temperature -11.60 -10.50 -10.00 -12.40 -10.90 -3.60 

Range 41.20 40.10 38.30 39.60 41.00 33.00 

Source: authors. 

Note: Data for February 29 in 2000 and 2012 are excluded for the comparability of the data. 

 

Descriptive statistics indicators show that, for example, average of daily average 

temperature rises slightly over the years and shows a value higher by almost 1 °C in 

the 10-year period (2006-2015). In 2006 the average daily average temperature was 

11.85 °C, while in 2015 it was 12.70 °C. This phenomenon is included in the O-U process 

via parameter B in the record (6), while in GARCH model it is covered by the AR (2). 

Analysis of the base period shows that the coefficient of variation (an average 

relative deviation from the average) is larger than 60%. Such value shows that the 

calculated averages of the average daily temperature are not representative and 

that the daily average temperature is extremely dispersed over the years. Variation of 

about 40 °C between the highest and lowest average daily temperature per year in 
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almost all observed years confirms this huge dispersiveness making the base period 

not so stable for further forecasting.  

 

Ornstein-Uhlenbeck process forecasting 
In order to forecast the daily average temperatures of the O-U process for 2018, it is 

necessary to determine the parameters A, B, C and 𝜌 from expression (7) so that only 

the independent variable t, representing the days of the year, can be changed and 

forecast calculated.  

Parameter A represents arithmetic mean of all average daily temperatures for the 

base period 2000-2017. Value of parameter A will be a constant in the O-U expression. 

Parameter B shows expected increase in temperature in 2018 compared to an 

average of 12.12 °C will also be a constant. Parameter C represents approximately 

half of the maximum and minimum daily average temperature range in 2018 (2*C 

indicates the amount of the total forecast maximum range and minimum 

temperatures). Finally, the shift ρ will determine the expected position of yearly 

maximum and minimum temperature. 

By analysing the daily temperatures for the base period, the O-U process given by 

expression (7), with parameters A, B, C, and ρ, takes the following form: 

𝑇𝑡 = 12.12 + 3.48 + 10.654 ∗ 𝑠𝑖𝑛 (
2𝜋

365
∗ 𝑡 + 1.499335),  (11) 

where A is the coefficient calculated as the average of daily average temperatures 

between 1.1.2000 - 31.12.2017 and stands at 12.12 °C. Coefficient B represents the 

expected increase in the annual average temperature in 2018 compared to the 

average of the average temperatures in the base period (2000-2017) and stands at 

3.48 °C. 

Factor C stands at 10.65 °C which is logical and expected, as it assumes that the 

highest value of the average daily temperature in 2018 will be around 23 °C (12.12 °C 

+ 10.65 °C), while the lowest will be about 1.5 °C (12.12 °C - 10.65 °C). 

Sine function shift, ρ, stands at 1.49 in terms of sine function, which corresponds to 

2.85 months, or nearly three months of a year, which means that the average daily 

temperature, previously calculated 12.12 °C, can be expected at the end of March 

(2.85 months behind start of the year), and that all average daily values starting from 

1st of January should be lower than 12.12 °C with an upward tendency. Shift of 

average daily temperature to March corresponds to the movement of temperature 

in an average year unexposed to temperature shocks. 

By adding 365 days of the year instead of t, the forecast values for 2018 were 

obtained through the O-U process and plotted along with the actual 2018 daily 

temperatures in Figure 2. 

Figure 2 shows how the O-U process, without analysing stochastic jumps, is a pretty 

good prognostic model of daily average temperature movement. When stochastic 

jump analysis is excluded, the O-U process is a process that describes the sinusoidal 

function. 

 



  

 

 

37 

Croatian Review of Economic, Business and Social Statistics (CREBSS) 

UDK: 33;519,2; DOI: 10.1515/crebss; ISSN 1849-8531 (Print); ISSN 2459-5616 (Online) 

 

 

Vol. 6, No. 1, 2020, pp. 27-42 

 

 
 

Figure 2 Actual daily average temperatures for 2018 and values forecasted by the 

Ornstein-Uhlenbeck process 
Source: authors. 

 

MAPE shows what is the average deviation of forecasted to actual value, relatively. 

Forecasted O-U values deviate 144.55 % from its actual values for 2018, on average. 

According to Lewis (1982) such value can be observed as inaccurate forecasting 

since measures say 50% is the maximum MAPE value which can be perceived as good 

enough. Although RMSE indicator shows average deviation of 4.53 °C which 

compared presents a reasonably accurate forecast (compared to the average daily 

temperature in the year of 12 °C), problems with the representativeness of the 

average and inability to explain the stochastic jumps lead to the conclusion of 

somewhat inaccurate model based on MAPE indicator. 

Because of simplicity, this model is incapable of accurately explaining the 

stochasticity that exists in each day of the year. O-U process in this form is smooth, so 

another representation of the actual data for 2018, perhaps in monthly rather than 

daily form, would help in better understanding of the fitness of the model. Monthly 

data are not pointed and could better go with flat sine curve presented in O-U 

process. Potential forecasting of daily jumps could be done as in Alexandris and 

Zapranis (2007) with so-called wavelet functions, which are derivatives of neural 

networks. Wavelet functions seek to break down each individual effect that affects 

the air temperature into individual parts based on a large amount of data on past 

temperature values, and then reassemble them in a prognostic period into one effect 

that will explain the temperature value.  

 

GARCH model forecasting 
Forecasting by the GARCH model for 2018, requires determining the parameters 

𝛽𝑡, 𝛾, 𝛿, 𝜔, 𝛼, 𝛽 from expression (10). All these parameters will be calculated in the E-

Views program, based on daily temperatures from the base years 2000-2017. 

Parameter 𝛽𝑡, a constant in the final expression of the GARCH model, will be 

calculated as the average of daily average temperatures for each day in January for 

18 base years, and will represent a 𝛽1 constant for all 31 forecasted January days in 

2018. Same goes for February (𝛽2), March (𝛽3) and other months. 
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Regression coefficients 𝛾 and 𝛿 that connect today's forecasts to the actual values 

for one and two days before it will be calculated using the least squares method. After 

that, the program will consider the differences between the actual and forecast 

values and, if necessary, correct the existence of heteroskedasticity using the 

parameters 𝜔, 𝛼, 𝛽 and the associated values of residuals and variances. 

Expression (10) after the calculation of the coefficients takes the following form: 

𝑇𝑡 = 𝛽𝑛 + 0.8713 ∗ 𝑇𝑡−1 − 0.0932 ∗ 𝑇𝑡−2 + 1.6266 + 0.1003 ∗ 𝜀𝑡−1
2 + 0.6271 ∗ 𝜎𝑡−1 ,

2  (12) 

where 0.8713 is the regression coefficient with the actual average daily temperature 

of the day before the forecasted day, -0.0932 is the regression coefficient with the 

actual average daily temperature of two days before the forecasted day. Constant 

factor 𝜔 from the expression 11 is 1.6266. Regression coefficient with differences in 

residuals in two consecutive prognostic periods is 0.1003 while the coefficient with 

difference of standard deviations in two consecutive periods is 0.6271. Value of 

coefficients 𝛽𝑛 with the indicator variable for each month of 2018 shown in the 

attachments. 

Regression coefficient with the variable 𝑇𝑡−2, -0.0932, shows an interesting value. 

Such value indicates that today’s forecast of average daily temperature depends 

negatively on the actual average daily temperature of two days before. Another 

interesting feature is how, when calculating regression coefficients, program 

calculates and assigns greater weight to independent variables that are closer in time 

to the forecast period and lesser to those that are further from the forecast period. 

Thus, the coefficient with 𝑇𝑡−1 (actual temperature of the day before the forecasted 

day) is 0.8, while the coefficient with 𝑇𝑡−2, i.e. with the actual temperature two days 

before the forecast is only -0.09. 

Expression (12) with actual daily average temperatures from the base period 

inputted in E-Views program gives forecasted average daily temperature values for 

2018, shown in Figure 3, together with actual values. 

 

 
 

Figure 3 Comparison of actual values of average daily temperature for 2018 and 

GARCH forecast 
Source: authors. 
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Despite seemingly accurate forecast presented on the graph, GARCH model must 

be equally examined via RMSE and MAPE indicators. RMSE for the GARCH model is 

3.75, which means that the average deviation of the forecasted from the actual 

values is 3.75 °C. MAPE indicator for the GARCH model is 140.66%. 

Possible further accuracy of GARCH model could be achieved by calculating 

regression coefficients and daily forecasts with help of supercomputers, same as in 

European Center for Medium Term Weather Forecasts (ECMWF) (Samso, 2018) and 

some other state meteorological offices. However, ECMWF supercomputers can 

forecast temperature with extremely high accuracy based on real-time observations 

and many calculations, making them the most successful platform for forecasts in the 

world so far. Such models, however, can hardly be used in scientific research because 

of their expensiveness and infrastructural requirements. 

 

Forecasting results comparison 
With values of RMSE and MAPE known for both models, all data for selecting the more 

accurate prognostic model is available. Table 3 gives an overview of the indicators 

for the observed models. 

 

Table 3 Mean absolute percentage error (MAPE) and root mean square error (RMSE) 

of prognostic models 
Indicator Ornstein-Uhlenbeck process GARCH model 

RMSE 4.53 °C 3.75 °C 

MAPE 144.55 % 140.66 % 

Source: authors. 

 

Bearing in mind that smaller value of the indicator presents a more accurate model, 

GARCH model is more successful in estimating the daily average air temperature than 

the O-U process with an average deviation of forecasted from the actual values of 

3.75 °C versus 4.53 °C for the O-U process. On the other hand, MAPE indicator shows 

that the GARCH model is again slightly more successful than the O-U process, with a 

relative deviation of the forecasted from the actual values of 140.66% versus 144.55% 

for the O-U process. These indicator values confirm the hypothesis set before the 

calculation process, GARCH model can capture upward and downward trends of the 

temperature with regression equation much better than the fitting sine curve in O-U 

process. 

 

Conclusion 
Weather derivatives are financial instruments whose value is derived from the value of 

other assets, which in this case is the daily average air temperature. Meteorological 

phenomena such as rain, wind or fog can be also covered by this instrument which 

was created at the end of the 20th century to secure various industries such as energy 

sector or tourism whose business depends on the movement of air temperature. 

Businesses can bet on warm or cold weather using CDD and HDD indices that 

compare the average daily air temperature to a reference value of 18 °C and make 

payouts based on differences. 

Weather derivatives pricing depends on their potential payments or how much can 

holders profit from them. Average air temperature is a specific "asset" since there is no 

other comparable asset to help with valuation. Therefore, valuing a weather 

derivative depends solely on a good forecasting model that models air temperature 

in the future. Stochasticity of temperature presents great obstacle in forecasting 

process, but some basic regularities in temperature movement exist: Firstly, 
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autoregression speaks about the correlation of temperature to some periods close to 

the examined one; Secondly, sinusoidal movement shows a seasonal shift from the 

long-term average in summer and winter but also a return to the average in spring 

and autumn and finally yearly temperatures rise slightly as the years go by. 

Models used in 2018 daily air temperature forecasting based on the 2000-2017 base 

period were O-U process and GARCH model. Daily forecasts were compared to the 

actual values of 2018 to determine the more precise model. GARCH model turned out 

to be a more accurate model for temperature forecasting, because the prognostic 

values, on average, deviate from the actual by 3.75 °C, while for the O-U process this 

indicator stands at 4.53 °C. GARCH model proved to be more successful according 

to the MAPE indicator as well, with relative deviation of forecasted to actual values of 

140.66% compared to 144.55% in the O-U process. Weather derivative provider should, 

if choosing between these two models, opt for the GARCH model, which guarantees 

him a more accurate temperature forecast and, consequently, more stable earnings 

and cost planning when composing this financial instrument. GARCH model forecasts 

follow the regression line which proves to be more adequate and precise way of 

forecasting stochastic phenomenon of temperature as compared to average values 

and general trends in O-U process. Using two days temperature as independent 

variables 𝒙𝟏 and 𝒙𝟐, 𝒕𝒏+𝟏 day forecast is much more precise than using only one or 

none independent variables. Besides using short time span before the forecast period 

(that is, real daily temperature values), it is necessary to collect enough data for a 

base period to allow for the forecasting model to reveal potential patterns in historic 

data and replicate them on forecast data. Recent trends with supercomputers and 

real-time observations go along with these conclusions, as the most precise models 

from European Centre for Medium-Range Weather Forecasts (ECMWF) dispose with 

large amount of historical data as well as fast calculating programs which develop an 

improved forecast on incoming hourly data.  

Nevertheless, as both observed indicators for the models show similar values and 

their difference is not large, the O-U process also deserves attention as a relevant 

model in air temperature forecasting. Limitations of this analysis such as the scope of 

database of 18 years, one temperature measuring spot (Maksimir), comparison of 

forecast values with MAPE and RMSE indicators and omission of detailed stochastic 

modelling in this work leave room for further research and possible different 

conclusions about the success of the O-U process and the GARCH model in 

forecasting air temperature using different methodologies or data. Although 

limitations of both models set them secondary to modern methods of forecasting using 

Artificial Intelligence, they still prove that standard mathematical procedures and 

statistical methods do provide solid forecasts of stochastic variables when chosen 

properly and executed with right assumptions. 
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