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 This paper presents investigation of delamination 

fracture behavior of multilayered non-linear elastic 

beam configurations by using the Ramberg-Osgood 

stress-strain relation. It is assumed that each layer 

exhibits continuous material inhomogeneity along 

the width as well as along thickness of the layer. An 

approach for determination of the strain energy 

release rate is developed for a delamination crack 

located arbitrary along the multilayered beam 

height. The approach can be applied for multilayered 

beams of arbitrary cross-section under combination 

of axial force and bending moments. The layers may 

have different thickness and material properties. The 

number of layers is arbitrary. The approach is 

applied for analyzing the delamination fracture 

behavior of a multilayered beam configuration 

subjected to four-point bending. The beam has a 

rectangular cross-section. The delamination crack is 

located symmetrically with respect to the beam mid-

span. The strain energy release rate is derived 

assuming that the modulus of elasticity varies 

continuously in the cross-section of each layer 

according to a hyperbolic law. In order to verify the 

solution to the strain energy release rate, the 

delamination fracture behavior of the multilayered 

non-linear elastic four-point bending beam 

configuration is studied also by applying the method 

of the J-integral. The solution to the strain energy 

release rate derived in the present paper is used in 

order to perform a parametric study of delamination.  
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1 Introduction 
 

Inhomogeneous structural materials exhibit varying 

material properties in the volume of the solid. Since 

the material properties are functions of the 

coordinates, the analysis of fracture in structural 

members and components made of inhomogeneous 

materials is a challenging problem. Nevertheless, the 

development of fracture analyses is an important task 

of the fracture mechanics of inhomogeneous 

materials because these analyses give useful 

information about the influence of various factors 

such as geometry of the structural member, crack 

location, material response and others on the fracture 

behaviour. This information can be significant in 

order to better understand the fracture phenomenon. 

Also, the knowledge gathered through these analyses 

can be used in the design of inhomogeneous 

structural components in order to improve and 

optimize their fracture performance.   

One of the reasons for the increased interest towards 

the inhomogeneous materials is that the functionally 

graded materials, which are a class of 

inhomogeneous materials, have been widely applied 

in practical engineering [1-12]. Functionally graded 

materials are made by mixing two or more 

constituent materials. Due to the variation of material 

properties along one or more spatial coordinates, the 

microstructure of functionally graded materials can 

be tailored during manufacturing. This fact makes 

these new inhomogeneous materials an attractive 

alternative to the conventional structural materials in 

various applications in aerospace systems, aircrafts, 

nuclear power plants, microelectronics and 

biomedicine.         

Multilayered materials are a kind of inhomogeneous 

materials which are made of adhesively bonded 

layers of different materials. The concept of 

multilayered materials opens excellent opportunities 

for adequate utilization of strength of different 

materials assembled in one structure and provides an 

effective mean for optimization of structural 

performance. Thus, the multilayered structures have 

a high load-bearing capacity and are usually much 

more economical in comparison with their metal 

counterparts. Since the stiffness-to-weight and 

strength-to-weight ratios of multilayered materials 

are high, significant weight savings can be realized. 

Therefore, multilayered materials are very suitable 

for light structures in various engineering 

applications where low weight is particularly 

important.  

One of the major concerns in the use of multilayered 

materials and structures in practical engineering is 

their delamination fracture behaviour. The 

delamination phenomenon involves longitudinal 

fracture, i.e. separation of adjacent layers. In fact, the 

delamination is the most often type of failure 

occurring in multilayered structures. The safety and 

durability of multilayered structural members and 

components depend strongly upon their delamination 

behaviour. Usually, fracture in multilayered 

structural components has been studied by the 

methods of linear-elastic fracture mechanics 

assuming linear-elastic behaviour of the material [13, 

14].  

Recently, particular delamination fracture analyses of 

non-linear elastic multilayered beam configurations 

of rectangular cross-section loaded in bending have 

been developed assuming that each layer exhibits 

material inhomogeneity [15-17]. The material non-

linearity has been modeled mainly by using power-

law stress-strain relations.   

The delamination fracture behaviour of a non-linear 

elastic multilayered beam structure of rectangular 

cross-section has been studied in terms of the strain 

energy release rate [17]. The beam is made of vertical 

longitudinal adhesively bonded layers. A 

delamination crack is located arbitrary between 

layers. It has been assumed that the layers exhibit 

material inhomogeneity in the thickness direction. 

The beam is loaded in bending about the horizontal 

centroidal axis of the cross-section. The non-linear 

mechanical behaviour of the material has been 

treated by using a power-law stress-strain relation. A 

solution to the strain energy release rate has been 

derived assuming that the coefficient in the power-

law varies continuously along the thickness of layers.    

This paper presents a general approach for 

determination of the strain energy release rate for 

delamination cracks in multilayered non-linear 

elastic beams is developed by using the Ramberg-

Osgood stress-strain relationship for modeling the 

material non-linearity in contrast to previous papers 

[15-17] which are concerned with particular solutions 

of the strain energy release rate for separate beam 

configurations. Multilayered beams of arbitrary 

cross-section are considered in the present paper. The 

beams are made of arbitrary number of adhesively 

bonded horizontal layers.  Each layer has individual 

thickness and material properties. Besides, it is 

assumed that each layer exhibits smooth material 

inhomogeneity along the width as well as along 

thickness of layer. The delamination crack is located 

arbitrary between layers. The beams considered are 
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under combination of axial force and bending 

moments. The approach developed in the present 

paper is applied for studying the strain energy release 

rate for a delamination crack in a multilayered non-

linear elastic inhomogeneous beam configuration 

subjected to four-point bending. The method of J-

integral is used also for analysis of the delamination 

fracture behaviour of the multilayered four-point 

bending beam in order to verify the solution to the 

strain energy release rate.       

 

2 Approach for determination of the strain 

energy release rate 
 

A beam portion with the delamination crack front is 

shown schematically in Fig. 1.  

 
Figure 1. Portion of a multilayered beam with the 

delamination crack front ( Sb  is the beam 

width at the delamination crack level) 

 

The heights of the lower and upper crack arms are 

denoted by 1h  and 2h , respectively. The non-linear 

mechanical behaviour of the inhomogeneous 

material in the i-th layer of the beam is described by 

the Ramberg-Osgood stress-strain relationship 
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where n  is the number of layers in the beam,   is 

the longitudinal strain, i  is the longitudinal normal 

stresses, iE  is the modulus of elasticity, iH  and im  

are material properties in the i-th layer. It is assumed 

that the modulus of elasticity varies continuously in 

the cross-section of each layer 
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where 4y  and 4z  are the centroidal axes of the beam 

cross-section (Fig. 1).  

The delamination fracture behaviour is analyzed in 

terms of the strain energy release rate, G . By 

applying the solution to the strain energy release rate 

derived in [18], the strain energy release rate for the 

multilayered beam in Fig. 1 can be written as 
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where Sb  is the beam width at the level of the 

delamination crack, 1n  and 2n  are, respectively, the 

number of layers in the lower and upper crack arms, 
*
01iu , *

02iu  and *
0iu  are, respectively, the 

complementary strain energy densities in the i-th 

layer in the cross-section of the lower and upper crack 

arms behind the crack front and in the beam cross-

section ahead of the crack front.  

 
Figure 2. Cross-section of the lower and upper crack 

arms behind the crack front 

 

The complementary strain energy density in the i-th 

layer of the cross-section of lower crack arm behind 

the crack front can be calculated by the following 

formula [19]: 
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In order to perform the integration of *
01iu  in (3), *

01iu  

in (4) has to be expressed as a function of the 

coordinates, 1y  and 1z , (Fig. 2). Apparently, the 

normal stress, i , cannot be determined explicitly 

from the equation of Ramberg-Osgood (1). 

Therefore, i  is expanded in series of Taylor by 

keeping the first six members 
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where 1y  and 1z  are the centroidal axes of the lower 

crack arm cross-section (Fig. 2). In (5), 
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where 1iz  and 1 1iz +  are the 1z -coordinates, 

respectively, of the upper and lower surfaces of the i-

th layer.   

 Formula (5) is re-written as 

 

 
1 1 1 2 1 3 1 1

2 2
4 1 5 1 1 1 6 1 1

( , ) ( )

( ) ( )

i i i i ai

i i ai i ai

y z y z z

y y z z z z

   

  

 + + −

+ + − + −
 (7) 

 

where the coefficients, 1i , 2i , 3i , 4i , 5i  and 

6i , are determined by applying the Ramberg-

Osgood equation (1). For this purpose, by using the 

Bernoulli’s hypothesis for plane sections, the strains 

in the lower crack arm cross-section are written as 
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where 
1C  is the strain in the centre of the lower 

crack arm cross-section, 
1y  and 

1z
  are the 

curvatures of lower crack arm in the 1 1x y  and 1 1x z  

planes, respectively. The applicability of the 

Bernoulli’s hypothesis is based on the fact that beams 

of high span to height ratio are analyzed in the present 

study. By substituting of (7) and (8) in (1), one 

obtains 
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At 1 0y =  and 1 1aiz z= , formula (9) transforms in 
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By substituting of 1 0y =  and 1 1aiz z=  in the first 

derivatives of (9) with respect to 1y  and 1z , one 

arrives at 
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Further, by substituting of 1 0y =  and 1 1aiz z=  in 

the second derivatives of (9) with respect to 1y  and 

1z  one obtains 
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It should be specified that the modulus of elasticity 

and its derivatives, 
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have to be calculated at 1 0y =  and 1 1aiz z= .  

Equations (10) – (15) can be written for each layer in 

the lower crack arm. In this way, 16n  equations with 

16 3n +  unknowns, 
1C , 

1y , 
1z

  and 1i , 2i , 3i , 

4i , 5i , 6i  where 11, 2, ...,i n= , can be obtained. 

Three other equations can be written by considering 

the equilibrium of the lower crack arm cross-section 

which is under combination of axial force and 

bending moments (Fig. 2). The equilibrium equations 

are expressed as 
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where i  is found by (7). In (16) – (18), 1N  is the 

axial force, 
1yM  and 

1z
M  are the bending moments 

about the centroidal axes, 1y  and 1z . Equations (10) 

– (18) should be solved with respect to 
1C , 

1y , 

1z
 , 1i , 2i , 3i , 4i , 5i  and 6i  where 

11, 2, ...,i n= , by using the MATLAB R2013a 

computer program for particular beam structure and 

material properties. Then, *
01iu  where 11, 2, ...,i n=  

can be obtained by substituting (7) in (4).  

The complementary strain energy density in the i-th 

layer of upper crack arm behind the crack front can 

be calculated using formula (4). For this purpose, i  

has to be replaced with gi  where gi  is the normal 

stress in the i-th layer of upper crack arm. Besides, 

1C , 
1y , 

1z
 , 1i , 2i , 3i , 4i , 5i , 6i , 1n , 1N , 

1yM  and 
1z

M  have to be replaced, respectively, 

with 
2C , 

2y , 
2z , 1g i , 2g i , 3g i , 4g i , 5g i , 

6g i , 2n , 2N , 
2yM  and 

2zM  in equations (10) – 

(18). Here, 
2C , 

2y  and  
2z  are, respectively, the 

strain in the centre of the upper crack arm cross-

section, and the curvatures in the 2 2x y  and 2 2x z  

planes, 2N , 
2yM  and 

2zM  are the axial force and 

the bending moments (Fig. 2). After solving 
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equations (10) – (18) with respect to 
2C , 

2y , 
2z

, 1g i , 2g i , 3g i , 4g i , 5g i  and 6g i , the normal 

stress, gi , can be expressed by (7) and then 

substituted in (4).         

Formula (4) can also be applied to calculate *
0iu  by 

replacing of i  with ri . The normal stress, ri , in 

the i-th layer of the beam cross-section ahead of the 

crack front can be expressed by replacing of 1i , 2i

, 3i , 4i , 5i , 6i , 1aiz , 1y  and 1z , respectively, 

with 1r i , 2r i , 3r i , 4r i , 5r i , 6r i , 3aiz , 3y  and 

3z  in (7). Here, 3y  and 3z  are the centroidal axes of 

the beam cross-section ahead of the crack front (Fig. 

3). 

 
Figure 3.  Beam cross-section ahead of the crack 

front 

 

 Also, 
1C , 

1y , 
1z

 , 1i , 2i , 3i , 4i , 5i , 6i , 

1n , 1N , 
1yM  and 

1z
M  are replaced, respectively, 

with 
3C , 

3y , 
3z , 1r i , 2r i , 3r i , 4r i , 5r i , 6r i

, n , 3N , 
3yM  and 

3zM  in equations (10) – (18).  

After substituting of *
01iu , *

02iu  and *
0iu  in (3), the 

strain energy release rate can be calculated for given 

beam geometry, loading and material properties (the 

integration in (3) should be performed by using the 

MATLAB R2013a computer program).                               

 

3 Numerical results  
 

In this section, numerical results are presented in 

order to illustrate the capabilities of the approach for 

determination of the strain energy release rate 

developed in section 2 of this paper. Delamination 

fracture behaviour of a multilayered inhomogeneous 

beam configuration of rectangular cross-section is 

investigated. The beam is shown schematically in 

Fig. 4.  

 
Figure 4. Four-point bending multilayered beam 

configuration 

 

The cross-section of the beam has width, b , and 

height, 2h . The beam is subjected to four-point 

bending. The external loading consists of two vertical 

forces, F , applied at the end sections of the beam. A 

vertical notch of depth 2h  is introduced under the 

upper beam surface in order to generate conditions 

for delamination fracture. It is assumed that a 

delamination crack of length 2a  is located 

symmetrically with respect to the beam mid-span. 

The heights of the lower and upper crack arms are 

denoted by 1h  and 2h , respectively. It is obvious that 

the upper crack arm is free of stresses. The 

delamination crack is located in the middle beam 

portion, 1 2D D , that is loaded in pure bending. Due to 

the symmetry, only half of the beam, 

( )1 2 4 1 22l l x l l+   + , is analyzed (Fig. 4).  

The delamination fracture is studied in terms of the 

strain energy release rate by using formula (3). For 

this purpose, first, the complementary strain energy 

density in the i-th layer of the lower crack arm behind 

the crack front is calculated by applying (4). It is 

assumed that the modulus of elasticity varies 
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continuously throughout the cross-section of the i-th 

layer according to the following hyperbolic law: 
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In (19), fiE  is the value of the modulus of elasticity 

in the upper left-hand vertex of the i-th layer cross-

section, iq  and ir  are material properties which 

control the material inhomogeneity, respectively, in 

width and thickness direction of the layer, 1iz  and 

1 1iz +  are the coordinates, respectively, of the upper 

and lower surfaces of the i-th layer in the lower crack 

arm (Fig. 5). 

 
Figire 5. Cross-section of the lower crack arm of the 

four-point bending multilayered beam 

 

By substituting (19) in equations (10) – (15), one 

obtains the following expression:  
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where  
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 1 1 1i i iz z += −  (29) 

 

 ( )1 1 1 1 1i i i i ai iz z r z z += − + −  (30) 

 

Further, by substituting of (7) in equations (16) – 

(18), one obtains 
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where (Fig. 4)  

 

 1 0N =  (34) 

 

 
1 1yM Fl=  (35) 

 

 
1

0zM =  (36) 

 

In formulas (22) – (33), 11, 2, ...,i n= .  

Equations (22) – (27) and (31) – (33) should be 

solved with respect to 
1C , 

1y , 
1z

 , 1i , 2i , 3i , 

4i , 5i  and 6i  by using the MATLAB computer 

program. Then, *
01iu  is obtained by substituting of (7) 

in (4). 

Since the upper crack arm is free of stresses,       

               *
02 0iu = , 21, 2, ...,i n= .              (37)                                        

Formula (4) is applied also to calculate the 

complementary strain energy densities in the layers 

of the beam cross-section ahead of the crack front. 

For this purpose, 
1C , 

1y , 
1z

 , 1i , 2i , 3i , 4i , 

5i , 6i , 1n , 1iz , 1 1iz + , 1N , 
1yM  and 

1z
M   are 

replaced, respectively, with 
3C , 

3y , 
3z , 1r i , 

2r i , 3r i , 4r i , 5r i , 6r i , n , 3iz , 3 1iz + , 3N , 
3yM  

and 
3zM  in equations (22) – (27) and (31) – (33) 
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where 3iz  and 3 1iz +  are the coordinates, 

respectively, of the upper and lower surfaces of the i-

th layer in the beam cross-section ahead of the crack 

front. Then, after solving of equations (22) – (27) and 

(31) – (33) with respect to 
3C , 

3y , 
3z , 1r i , 2r i

, 3r i , 4r i , 5r i  and 6r i , the stress, ri , is 

expressed by replacing of 1i , 2i , 3i , 4i , 5i , 6i

, 1z , 1y  and 1aiz , respectively, with 1r i , 2r i , 3r i , 

4r i , 5r i , 6r i , 3z , 3y  and 3aiz  in (7) ( 3aiz  is 

calculated by replacing of 1iz  and 1 1iz + , respectively, 

with 3iz  and 3 1iz +  in (6)). The complementary strain 

energy density is determined by substituting of ri  

in (4).  

After replacing of Sb  with b  and substituting of *
01iu

, *
02iu  and *

0iu  in (3), the strain energy release rate, 

obtained by integrating of (3) with help of the 

MATLAB computer program, is doubled in view of 

the symmetry (Fig. 4).  

In order to verify the solution to the strain energy 

release rate, the delamination fracture behaviour of 

the multilayered beam (Fig. 4) is analyzed also by 

using the method of J-integral [20]. The integration 

is carried-out along the integration contour,  , (Fig. 

4). Since the upper crack arm is free of stresses, the 

J-integral value is zero in the upper crack arm. 

Therefore, the J-integral solution is written as 

 

 
1 2

2( )J J J = +  (38) 

 

where 
1

J  and 
2

J  are, respectively, the J-integral 

solutions in segments, 1  and 2 , of the integration 

contour. The segments, 1  and 2 , coincide, 

respectively, with the cross-sections of the lower 

crack arm and the beam ahead of the crack front (Fig. 

4). The term in brackets in (38) is doubled in view of 

symmetry (Fig. 4).  

 In segment, 1 , of the integration contour, the J-

integral is written as 
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where 01iu  is the strain energy density in the i-th 

layer of lower crack arm behind the crack front, 
1

  

is the angle between the outwards normal vector to 

the contour of integration and the crack direction, 

ixp  and 
iyp  are the components of the stress vector, 

u and v are the components of the displacement 

vector with respect to the coordinate system xy, and 

ds  is a differential element along the contour of 

integration. The components of (39) are determined 

as 
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 1ds dz=  (42) 
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The strain energy density in the i-th layer of the lower 

crack arm is calculated by the formula [19] 

 

 

( )

1

2

01 12
1

i

i

i

m

m
i i

i
i

m
i

u
E

m H

 

+

= +

+

 (45) 

 

In formulae (40) and (45), the normal stress, i , is 

determined by (7). 

The J-integral in segment, 2 , is expressed as 
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where 

 

 
ixr rip =  (47) 

 

 0
iyrp =  (48) 

 

 3rds dz= −  (49) 
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The average value of the J-integral along the 

delamination crack front is written as 
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By substituting of (39) and (46) in (53), one arrives 

at 
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 (54) 

 

The integration in (54) should be performed by the 

MATLAB computer program. The fact that the J-

integral values obtained by (54) exactly match the 

strain energy release rates calculated by (3) conforms 

the correctness of the delamination fracture analysis 

developed in the present paper. It should be 

mentioned that the delamination is analyzed also by 

keeping more than six members in the series of 

Taylor (5). The results are very close to these 

obtained by keeping the first six members (the 

difference is less than 3 %).  

Effects of the material inhomogeneity and the non-

linear mechanical behaviour of the material on the 

delamination fracture are evaluated. For this purpose, 

calculations are carried-out by applying the solution 

to the strain energy release rate (3). The results 

obtained are presented in non-dimensional form by 

using the formula ( )1/N fG G E b= . In order to 

elucidate the influence of the delamination crack 

location along the beam height, two three-layered 

four-point bending beam configurations are  

 

 

 
Figure 6. Two three-layered four-point bending 

beam configurations with delamination 

crack located between (a) layers 2 and 3, 

and (b) layers 1 and 2 

 

investigated (Fig. 6). In the first configuration, the 

delamination crack is located between layers 2 and 3 

(Fig. 6a). A delamination crack between layers 1 and 

2 is analyzed in the beam configuration shown in Fig. 

6b. The thickness of each layer in both configurations 

is lt . It is determined that 0.025b =  m, 0.006lt =  

m, 1 0.060l =  m, 2 0.100l =  m and 10F =  N. The 

material inhomogeneity in width and thickness 

direction of layers is characterized by iq  and ir .  



Engineering Review, Vol. 40, Issue 3, 65-77, 2020.  75 
________________________________________________________________________________________________________________________ 

 

 

Figure 7. The strain energy release rate in non-

dimensional form presented as a function 

of 1q  for three-layered four-point bending 

beam configuration with delamination 

crack located (curve 1) between layers 2 

and 3, and (curve 2 ) between layers 1 and 

2 (refer to Fig. 6) 

 

In order to elucidate the influence of 1q  on the 

delamination fracture behavior, the strain energy 

release rate in non-dimensional form is presented as 

a function of 1q  in Fig. 7 for both three-layered beam 

configurations assuming that 2 1/ 0.6f fE E = , 

3 1/ 0.8f fE E = , 1 1/ 0.7fH E = , 2 1/ 1.4H H = , 

3 1/ 0.5H H = , 1 2 3 0.8m m m= = = , 2 0.6q = , 

3 1.4q = , 1 2.5r = , 2 1.5r =  and 3 1.8r = . One can 

observe in Fig. 7 that the strain energy release rate 

increases with increasing of 1q . This behaviour is 

attributed to the fact that the beam stiffness increases 

with increasing of 1q . The curves in Fig. 7 indicate 

also that the strain energy release rate is lower when 

the delamination crack is located between layers 1 

and 2 (Fig. 6b). This finding is explained with the fact 

that the thickness of the lower crack arm is higher 

when the delamination crack is between layers 1 and 

2.  

The effect of 1r  on the delamination fracture 

behaviour is shown in Fig. 8 where the strain energy 

release rate is presented in non-dimensional form as 

a function of 1r  at 1 2.2q = .  

The three-layered beam configuration shown in Fig. 

6a is investigated. It can be observed in Fig. 8 that 

that strain energy release rate increases with 

increasing of 1r . The effect of the non-linear  

 

Figure 8.  The strain energy release rate in non-

dimensional form presented as a 

function 1r  at (curve 1) non-linear 

mechanical behavior of the material and 

(curve 2) linear-elastic behaviour of the 

material for the three-layered four-point 

bending beam configuration with 

delamination crack located between 

layers 2 and 3 (refer to Fig. 6a) 

 

mechanical behaviour of the material on the 

delamination fracture behaviour is elucidated too. 

For this purpose, the strain energy release rate is 

presented in Fig. 8 that is obtained assuming linear-

elastic behaviour of the inhomogeneous material in 

each layer of the beam configuration in non-

dimensional for comparison with the non-linear 

solution. It should be mentioned that the linear-elastic 

solution to the strain energy release rate is derived by 

substituting of H →  in the non-linear solution (3) 

since at H →  the Ramberg-Osgood stress-strain 

relation (1) transforms in the Hooke’s law assuming 

that iE  is the modulus of elasticity of the 

inhomogeneous material in the i-th layer of the beam. 

The curves in Fig. 8 show that the non-linear 

mechanical behaviour of the material leads to 

increase of the strain energy release rate.  

 

4 Conclusions  
  

Delamination fracture behaviour of multilayered 

non-linear elastic beam structures has been 

investigated in this paper assuming that each layer 

exhibits smooth material inhomogeneity along the 

width as well as along thickness of the layer. The 

Ramberg-Osgood stress-strain relation is used for 

treating the non-linear mechanical behaviour of the 
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inhomogeneous material. The delamination fracture 

behaviour is studied assuming that the modulus of 

elasticity varies continuously in the cross-section of 

each layer. A general approach for analysis of the 

strain energy release rate for delamination cracks in 

multilayered non-linear elastic inhomogeneous 

beams is developed in contrast to the previously 

published papers which consider particular 

multilayered beam configurations [15, 17]. The 

approach holds for beams of arbitrary cross-section 

in contrast to the previous papers which consider 

beams of rectangular cross-section. The approach can 

be applied at arbitrary distribution of the modulus of 

elasticity in both width and thickness directions of 

each layer of the beam (the previous papers consider 

particular distributions). The approach is valid for 

beams made of arbitrary number of layers. Each layer 

has individual thickness and material properties. The 

delamination crack is located arbitrary along the 

height of the multilayered beam. Besides, the 

approach can be used also when the law for 

distribution of the modulus of elasticity is different in 

each layer in contrast to the previous papers which 

are based on the assumption that the law is the same 

in each layer [15, 17]. It should be noted that the 

approach holds for non-linear elastic behaviour of the 

material. However, the approach can be applied also 

for elastic-plastic behaviour if the beam undergoes 

active deformation, i.e. if the external load increases 

only. 

The general approach is applied for studying the 

delamination fracture behaviour of a multilayered 

beam configuration of rectangular cross-section. The 

beam is subjected to four-point bending. A 

delamination crack is located symmetrically with 

respect to the beam mid-span. The strain energy 

release rate is determined assuming that the 

continuous variation of the modulus of elasticity in 

the cross-section of each layer is described by a 

hyperbolic law. The delamination fracture behaviour 

is studied also by applying the J-integral method for 

verification of the solution to the strain energy release 

rate. Effects of material inhomogeneity in width and 

thickness directions of the layer, the delamination 

crack location along the beam height and the non-

linear mechanical behaviour of the inhomogeneous 

material on the delamination fracture behaviour are 

elucidated. The analysis reveals that the strain energy 

release rate increases with increasing of 1q  and 1r . 

This finding is attributed to a decrease of the beam 

stiffness with increasing of 1q  and 1r .  It is also found 

that the strain energy release rate decreases with 

increasing of the lower crack arm height. Concerning 

the effect of the non-linear mechanical behavior of 

the inhomogeneous material on the delamination 

fracture, the investigation shows that the strain 

energy release rate increases when the material non-

linearity is taken into account in the fracture analysis.  

The topic can be studied further in the future by 

assuming that not only the modulus of elasticity but 

also the other material properties, iH  and im , vary 

continuously in the cross-section of each layer of the 

beam. Also, the approach can be sophisticated further 

by considering the rheological behaviour (creep of 

strains and relaxation of stresses) and its influence on 

the delamination. 
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