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Vol. 55(75)(2020), 29 – 36

MARKOFF-ROSENBERGER TRIPLES WITH FIBONACCI

COMPONENTS

Szabolcs Tengely

University of Debrecen, Hungary

Abstract. We characterize the solutions of the Markoff-Rosenberger
equation

ax2 + by2 + cz2 = dxyz

with a, b, c, d ∈ Z, gcd(a, b) = gcd(a, c) = gcd(b, c) = 1 and a, b, c | d, for
which (x, y, z) = (Fi, Fj , Fk), where Fn denotes the n-th Fibonacci number
for any integer n ≥ 0.

1. Introduction

Markoff ([6]) obtained many nice results related to the equation

x2 + y2 + z2 = 3xyz.

He showed that there exist infinitely many integral solutions. The so-called
Markoff equation defined above has been generalized in many directions by
several authors. In this article we focus on the generalization considered by
Rosenberger ([7])

(1.1) ax2 + by2 + cz2 = dxyz.

Rosenberger proved that if a, b, c, d ∈ N are integers such that gcd(a, b) =
gcd(a, c) = gcd(b, c) = 1 and a, b, c|d, then non-trivial solutions exist only if

(a, b, c, d) ∈ {(1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 5, 5), (1, 2, 3, 6)}.
Silverman ([8]) studied equation (1.1) with a = b = c = 1 over imaginary
quadratic number fields. Baer and Rosenberger ([1]) considered solutions of
equation (1.1) over imaginary quadratic number fields. González-Jiménez and
Tornero ([4]) looked for solutions of equation (1.1) in arithmetic progression
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that lie in the ring of integers of a number field. González-Jiménez ([3])
studied solutions of (1.1) whose coordinates belong to the ring of integers of a
number field and form a geometric progression. A well-known identity related
to the Fibonacci numbers

1 + F 2
2n−1 + F 2

2n+1 = 3F2n−1F2n+1

shows that (x, y, z) = (1, F2n−1, F2n+1) is a solution of the Markoff equation
for any n ∈ N. Luca and Srinivasan ([5]) proved that there are infinitely
many solutions (Fi, Fj , Fk) to the classical Markoff equations (given by the
above identity). In this paper we extend the result of Luca and Srinivasan,
we determine the solutions (x, y, z) = (Fi, Fj , Fk) of equation (1.1) for

(a, b, c, d) ∈ {(1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 5, 5), (1, 2, 3, 6)}.
In the proofs, we simplify the strategy described by Luca and Srinivasan, by
providing a direct way to get a bound for k − j from above.

2. Main result

Theorem 1. If (x, y, z) = (Fi, Fj , Fk) is a solution of equation (1.1)
and (a, b, c, d) ∈ {(1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 5, 5), (1, 2, 3, 6)}, then
the complete list of solutions are given by

(a, b, c, d) solutions

(1, 1, 1, 1) {(3, 3, 3)}
(1, 1, 2, 2) {(2, 2, 2)}
(1, 1, 2, 4) {(1, 1, 1), (1, 3, 1), (1, 3, 5), (3, 1, 1), (3, 1, 5)}
(1, 1, 5, 5) {(1, 2, 1), (1, 3, 1), (1, 3, 2), (2, 1, 1), (3, 1, 1), (3, 1, 2)}
(1, 2, 3, 6) {(1, 1, 1), (1, 2, 1), (1, 2, 3), (5, 1, 1)}

.

Proof. A well-known fact is that the n-th Fibonacci number can be
written as follows

Fn =
αn − βn

α− β
, where α =

1 +
√
5

2
and β =

1−
√
5

2
.

We also have that for all n ≥ 1

αn−2 ≤ Fn ≤ αn−1.

We note that in the Markoff case, a = b = c and the equation is fully symmet-
ric in (x, y, z). This symmetry is no longer present in the case of the Rosenberg
equation. In the proof we assume that x ≤ y ≤ z hence we need to consider
not only the equation ax2+ by2+ cz2 = dxyz but also all the permutations of
(a, b, c). We provide a bound for i for general (a, b, c, d) and we use it to get
an upper bound for k − j. Based on inequalities from ([5]) we have
(2.1)

aF 2
i + bF 2

j

Fk

≤ (a+ b)αj ,

∣

∣

∣

∣

βk

√
5

∣

∣

∣

∣

≤ αj

5
,

∣

∣αiβj + αjβi − βi+j)
∣

∣ ≤ 3αj .
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Suppose (x, y, z) = (Fi, Fj , Fk) for i ≤ j ≤ k is a solution of

aF 2
i + bF 2

j + cF 2
k = dFiFjFk.

We obtain that

c
αk

√
5
− d

αi+j

5
= −

aF 2
i + bF 2

j

Fk

+ c
βk

√
5
− d

5
(αiβj + αjβi − βi+j).

Taking absolute values and using the inequalities at (2.1) we obtain:
∣

∣

∣

∣

c
αk

√
5
− d

αi+j

5

∣

∣

∣

∣

≤ αj

5
(5a+ 5b+ c+ 3d),

and dividing by αi+j

√

5
:

(2.2)

∣

∣

∣

∣

c αk−i−j − d√
5

∣

∣

∣

∣

≤ 5a+ 5b+ c+ 3d√
5αi

.

Now define f(n) =
∣

∣

∣
c αn − d

√

5

∣

∣

∣
and let t0 ∈ Z such that f(t0) ≤ f(n) for any

n ∈ Z. Then

(2.3) αi ≤ 5a+ 5b+ c+ 3d√
5f(t0)

.

For a given tuple (a, b, c, d) equation (2.3) provides an upper bound for i,

denote it by ub(a, b, c, d). For a given i equation (2.2) yields an upper bound
for k− j. For the concrete equations we consider these bounds are as follows:

ub(1, 1, 1, 1) = 9,

ub(1, 1, 2, 2) = 8, ub(1, 2, 1, 2) = ub(2, 1, 1, 2) = 9,

ub(1, 1, 2, 4) = ub(1, 2, 1, 4) = ub(2, 1, 1, 4) = 8,

ub(1, 2, 3, 6) = ub(2, 1, 3, 6) = 8, ub(1, 3, 2, 6) = ub(3, 1, 2, 6) = 7,

ub(2, 3, 1, 6) = ub(3, 2, 1, 6) = 11,

ub(1, 1, 5, 5) = 7, ub(1, 5, 1, 5) = ub(5, 1, 1, 5) = 8.

For each (a, b, c, d) and any i ≤ ub(a, b, c, d) one needs to compute the (finitely
many) possibilities for m = k− j. That is, fixing (a, b, c, d), i and m we study
the equation

aF 2
i + bF 2

j + cF 2
j+m − dFiFjFj+m = 0.

We note that the equation above only depends on j. To deal with the concrete
cases we use the following arguments.

(I) We eliminate as many values of i as possible by checking solvability of
quadratic equations

aF 2
i + by2 + cz2 − Fiyz = 0.

(II) For fixedm we eliminate equations aF 2
i +bF 2

j +cF 2
j+m−dFiFjFj+m = 0

modulo p, where p is a prime.



32 SZ. TENGELY

(III) We consider the equation aF 2
i + bF 2

j + cF 2
j+m = dFiFjFj+m as a qua-

dratic in Fj . Then its discriminant d2F 2
i F

2
j+m−4b(aF 2

i +cF 2
j+m) must

be a square. A fundamental identity for the Fibonacci and Lucas num-
bers (denoted by Ln, defined by L0 = 2, L1 = 1 and Ln = Ln−1+Ln−2

for n ≥ 2) says that

L2
n = 5F 2

n ± 4.

That is we have the system of equations

Y 2
1 = 5X2 ± 4,

Y 2
2 = d2F 2

i X
2 − 4b(aF 2

i + cX2),

where X = Fj+m. Multiplying these equations together yields

Y 2 = (5X2 ± 4)(d2F 2
i X

2 − 4b(aF 2
i + cX2)).

Therefore we reduce our problem to obtain integral points on the above
quartic genus 1 curves. This will be realized using the Magma ([2])
function SIntegralLjunggrenPoints.

We implemented the above procedure in SageMath ([9]) and the code can
be downloaded from the URL address http://shrek.unideb.hu/~tengely/
MarkoffSolver.sage. Detailed computations can be found at http://

shrek.unideb.hu/~tengely/Markoff-Rosenberger-Fibonacci.pdf.

2.1. The case with d = 1. We have that 2 ≤ i ≤ 9. In this range the
Diophantine equation F 2

i + y2 + z2 = Fiyz is solvable only for i = 4. If i = 4,
then we have that 0 ≤ k− j ≤ 4. The equation 9+F 2

j +F 2
j+m− 3FjFj+m = 0

has no solution modulo 3 for m = 1, 2, 3, and it is not solvable modulo 11 for
m = 4. It remains to consider the case m = 0. We have that k = j, therefore
the equation is simply 9 = F 2

j . Hence, we get the solution (x, y, z) = (3, 3, 3).

2.2. Cases with d = 2. Consider the tuple (a, b, c, d) = (1, 1, 2, 2). The
bound for i is 8, however only the quadratic equation related to i = 3 is
solvable in integers. If i = 3, then 0 ≤ k − j ≤ 3. We eliminate the cases
m = 1, 2 modulo 7 and the case m = 3 modulo 23. If k = j, then we get that
4 = F 2

j . Hence, we obtain the solution (x, y, z) = (2, 2, 2). There are 2 other
subcases here, (a, b, c, d) = (1, 2, 1, 2) and (2, 1, 1, 2) having the same upper
bound for i, namely 9. In case of (a, b, c, d) = (1, 2, 1, 2) we can eliminate all
values of i except i = 3 and 9. If i = 3 we have

4 + 2F 2
j + F 2

j+m − 4FjFj+m = 0,

where 0 ≤ m ≤ 5. Congruence arguments eliminate the cases with m ∈
{1, 2, 3, 4, 5} as follows:

m 1 2 3 4 5
mod 17 7 19 3 13

.
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The remaining value of m is 0, that yields the equation 4 = F 2
j , so we obtain

the solution (x, y, z) = (2, 2, 2). If i = 9, then the corresponding equation is

1156 + 2F 2
j + F 2

j+m − 68FjFj+m = 0,

where 0 ≤ m ≤ 9. The following table contains the primes used to get a
contradiction

m 0 1 2 3 4 5 6 7 8 9
mod 3 7 11 19 11 5 11 7 3 29

.

In case of (a, b, c, d) = (2, 1, 1, 2) we only need to handle i = 3 for which
we get that 0 ≤ m ≤ 5. The equation is given by

8 + F 2
j + F 2

j+m − 4FjFj+m = 0,

and we can eliminate all these (except m = 0) as the table below shows

m 1 2 3 4 5
mod 11 7 11 3 13

.

If m = 0, then we have 8 = 2F 2
j and the only solution is (x, y, z) = (2, 2, 2).

2.3. Cases with d = 4. If (a, b, c, d) = (1, 1, 2, 4), then if follows that i = 2
or 4. If (a, b, c, d) = (1, 2, 1, 4), then we obtain that i = 2 or 4. The last tuple
to consider here is (a, b, c, d) = (2, 1, 1, 4) and we get that i = 2 or 5. We need
to handle the equations

1 + F 2
j + 2F 2

j+m − 4FjFj+m = 0,

9 + F 2
j + 2F 2

j+m − 12FjFj+m = 0,

1 + 2F 2
j + F 2

j+m − 4FjFj+m = 0,

9 + 2F 2
j + F 2

j+m − 12FjFj+m = 0,

2 + F 2
j + F 2

j+m − 4FjFj+m = 0,

50 + F 2
j + F 2

j+m − 20FjFj+m = 0.

We provide details in the case of the first equation, the other 5 can be solved
in a similar way. We consider the equation as a quadratic in Fj and follow
the argument described in (III). It remains to solve the quartic Diophantine
equations

y2 = 10x4 − 13x2 + 4, y2 = 10x4 + 3x2 − 4.

The integral solutions of these equations can be completely determined using
the Magma ([2]) procedure SIntegralLjunggrenPoints. In the former case
we get that x ∈ {0,±1,±5}. In case of the latter equation we have that
x ∈ {±1}. It follows that Fj+m = 1 or 5 and we get the solutions (x, y, z) =
(1, 1, 1) and (x, y, z) = (1, 3, 5).
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2.4. Cases with d = 5. Here, we get the following possibilities for i for
the 3 tuples

(a, b, c, d) i

(1, 1, 5, 5) {2, 3, 4}
(1, 5, 1, 5) {2, 3, 4}
(5, 1, 1, 5) {2, 3, 5, 7}

.

Consider the tuple (5, 1, 1, 5). If i = 5, then 0 ≤ m ≤ 7 and if i = 7, then
0 ≤ m ≤ 9. All these cases can be eliminated using congruence arguments: if
i = 5, then we have

m 0 1 2 3 4 5 6 7
mod 7 11 11 11 3 11 17 11

and if i = 7, then we obtain

m 0 1 2 3 4 5 6 7 8 9
mod 3 11 13 29 11 19 11 29 3 11

.

It remains to check the solutions for i = 2 and 3. The equations can be
written as follows

5 + F 2
j + F 2

j+m − 5FjFj+m = 0,

20 + F 2
j + F 2

j+m − 10FjFj+m = 0.

As before we reduce the problem to genus 1 curves, we obtain the following 4
equations

y2 = 105x4 − 184x2 + 80,

y2 = 105x4 − 16x2 − 80,

y2 = 30x4 − 49x2 + 20,

y2 = 30x4 − x2 − 20.

The complete set of possible values for Fj is given by {1, 2, 3, 987}. We also
know that Fi ∈ {1, 2}, hence one can easily determine Fk. The solutions of
the equation x2 + y2 + 5z2 = 5xyz from these cases are given by (x, y, z) =
(1, 2, 1), (2, 1, 1), (1, 3, 1), (3, 1, 1), (1, 3, 2) and (3, 1, 2).

2.5. Cases with d = 6. Let us consider the equation x2+2y2+3z2 = 6xyz.
Here we can eliminate many quadratic equations. In the table below we collect
the remaining cases.
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(a, b, c, d) i

(1, 2, 3, 6) {2, 5}
(2, 1, 3, 6) {2, 3}
(1, 3, 2, 6) {2, 5}
(3, 1, 2, 6) {2, 4}
(2, 3, 1, 6) {2, 3}
(3, 2, 1, 6) {2, 4, 11}

.

We provide details in case of the tuple (3, 2, 1, 6) only, the remaining ones can
be treated in a similar way. We have three values for i, these correspond to
the equations

3 + 2F 2
j + F 2

j+m − 6FjFj+m = 0,

27 + 2F 2
j + F 2

j+m − 18FjFj+m = 0,

23763 + 2F 2
j + F 2

j+m − 534FjFj+m = 0.

The last equation corresponds to i = 11. Here, we do not expect any solution
so we compute the possible values of m and try to get a contradiction modulo
some prime. It turns out that 0 ≤ m ≤ 13 and all these cases can be handled
using congruence arguments. We summarize the computation in the following
table

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13
mod 5 17 19 7 13 5 17 13 7 17 13 13 17 29

.

Solving the remaining two equations as described in (III) we get that we
need to find the integral solutions of the Diophantine equations

y2 = 35x4 − 43x2 + 12,

y2 = 35x4 + 13x2 − 12,

y2 = 395x4 − 451x2 + 108,

y2 = 395x4 + 181x2 − 108.

We use the Magma function SIntegralLjunggrenPoints to determine the
integral solutions and we get that Fj ∈ {1, 2}. The tuple we consider is given
by (3, 2, 1) and the corresponding equation is 3F 2

i + 2F 2
j + F 2

k = 6FiFjFk.

Since i = 2 or 4 we have Fi ∈ {1, 3}. These possibilities yield the solutions
(x, y, z) = (1, 1, 1), (1, 1, 5), (1, 2, 1) and (3, 2, 1).
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