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EXTENSION OF THE FUNCTIONAL INDEPENDENCE OF
THE RIEMANN ZETA-FUNCTION

ANTANAS LAURINCIKAS

Vilnius University, Lithuania

ABSTRACT. In 1972, Voronin proved the functional independence of
the Riemann zeta-function ¢(s), i. e., if the functions ®; are continuous
in CN and ®(¢(s), ..., CV=D(8)) 4 -+ 5" B (((5), ..., NV (s)) = 0,
then ®; = 0 for j = 0,...,n. The problem goes back to Hilbert who
obtained the algebraic-differential independence of ((s). In the paper, the
functional independence of compositions F({(s)) for some classes of op-
erators F' in the space of analytic functions is proved. For example, as a
particular case, the functional independence of the function cos {(s) follows.

1. INTRODUCTION

In the theory of functions, various functional relations occupy an impor-
tant place. The problem goes back to Holder and Hilbert. In [2], Holder
proved the algebraic-differential independence of the Euler gamma-function
I'(s), i. e., that there is no any polynomial p(si,...,s,) # 0 such that
p (L(s),T'(s),...,T"=Y(s)) = 0.

We recall that the Riemann zeta-function ((s), s = o + it, is defined, for

o>1, by
o0 1 1 —1
= L -T(-)
P

m=1
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where the product is taken over all prime numbers, and has analytic continu-
ation to the whole complex plane, except for a simple pole at the point s = 1
with residue 1.

Hilbert, presenting the list of the most important problems of mathe-
matics at the International Congress of Mathematicians (Paris, 1900), in the
description of the 18th problem, mentioned, see [1], that the function ((s) is
algebraically-differentially independent, and this follows from the algebraic-
differential independence of the function I'(s) and the functional equation

7 P(s/2)¢(s) = 7~ TIED((1 — 5)/2)¢(1 — 5).

Moreover, he also conjectured that there is no algebraic-differential equation
with partial derivatives which is satisfied by the function

oo :L'm
m=1
The latter conjecture was proved by Ostrowski in [8]. The investigations were
continued by Postnikov in [9, 10]. For example, in [10] he considered the

function
o0
_ x(m)z™
L(vaux) - Zl Tu
m=

where x(m) is a Dirichlet character, and obtained that the equality

O L(s, 2, x) ) _
P (w, S, 9ok o] ) =0

can not be satisfied by any polynomial p # 0.

The further progress in the field belongs to Voronin. In [11, 12], see also
[15, 3], he obtained the functional independence of the function ((s). More
precisely, he proved that if fo, f1,..., fn : CN¥ — C,n € Ny = NU{0}, N € N,
are continuous functions, and the equality

D5 e (65). (s, (Y (5)) = 0

k=0
holds identically for s, then f = 0 for £k = 0,1,...,n. In [14], the latter
result was generalized for a collection of Dirichlet L-functions with pairwise
non-equivalent Dirichlet characters.

The aim of this note is a generalization of the functional independence

for certain compositions of the function ¢(s). Let D = {s € C:1/2 < o < 1}.
Denote by H(G) the space of analytic functions on the region G endowed
with the topology of uniform convergence on compacta. Let S = {g € H(D) :
1/g(s) € H(D) or g(s) = 0}. In this note, we continue investigations of [7] of
the compositions F'(¢(s)).
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THEOREM 1.1. Suppose that F : H(D) — H(D) is a continuous operator
such that, for every open set G C H(D), the set (F~1G)N S is non-empty. If

the functions ®q, ®1,...,®, : CN — C are continuous, and the equality
S s (P (P - (P ) =0
k=0

holds identically for s € D, then &, =0 for k=0,1,...,n.

Sometimes it is more convenient to deal with operators in the space of
analytic functions in a bounded region. Let V' be an arbitrary positive number,
Dy ={seC:1/2<0o <1, |t|]<V}and Sy ={g € HDv) : 1/g(s) €
H(Dy) or g(s) = 0}. Since ((s+i1) € H(Dy) for all 7 € R, F({(s +i1)) =
g-(s) with some g,(s) € H(Dy), 7 € R. Hence, F(¢(o + it)) = ¢i(o) for
1/2<o0<1,teR.

THEOREM 1.2. Suppose that F : H(Dy) — H(Dy) is a continuous op-
erator such that, for each polynomial p = p(s), the set (F~*{p}) N Sy is
non-empty. Then the assertion of Theorem 1.1 is true.

For example, the operator F' : H(Dy ) — H(Dy) given by
F(g) = Clg/+ "'+c’l‘g(r)7 g€ H(DV)7 Cly...,Cr € (C\{O}7
satisfies the hypotheses of Theorem 1.2. Actually, for each polynomial
p(s) = ars® +---+ar1s +ao,  ag #0,
there exists a polynomial
q(s) = bey1s" + -+ bys + bo, bry1 # 0,
such that F(¢) = p because the coefficients by1,...,b; can be expressed by
ak, . ..,a9. Moreover, we may choose by to be |bg| large enough such that
q(s) # 0 in Dy. Thus, by Theorem 1.2, we have the functional independence
for the function
arl'(s) 4 -+ e ().
For F: H(D) — H(D) and a € C, define the set

Hroya(D) = {g € H(D) - e H(D)} U {F(0).

1
9(s) —a

THEOREM 1.3. Suppose that F': H(D) — H(D) is a conlinuous operator
such that F'(S) D Hp(y,o(D). Then the same assertion as in Theorem 1.1 is
true.

For example, the operator F' : g — ¢V, N € N, satisfies the hypotheses
of the theorem with a = 0.
For F: H(D) — H(D), define the set

Hpo)-1,1(D) ={g € H(D) : g(s) # =1, g(s) # 1} U{F(0)}.
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THEOREM 1.4. Suppose that F : H(D) — H(D) is a continuous operator
such that F(S) D Hp();—1,1(D). Then the same assertion as in Theorem 1.1
18 lrue.

For example, the operator F' : g — cosg satisfies the hypotheses of the
theorem. Thus, we have that if the functions ®q, ®1,...,®, : CV — C are
continuous, and the equality

Z sk, (cos((s), —('(s)sin((s),. .., (cos((s))(Nfl)) =0

k=0
holds identically for s, then ®; = 0 for £ = 0,1,...,n. In other words, we
have the functional independence for the function cos((s). The same is true
for the functions sin {(s), sinh {(s), cosh ((s).

2. UNIVERSALITY

Proofs of Theorems 1.1-1.4 are based on the universality property of
compositions F(¢(s)). We recall that the universality property of the function
((s) was discovered by Voronin in [13], and means that a wide class of analytic
functions can be approximated by shifts ((s +i7), 7 € R. More precisely, he
proved that if f(s) is a continuous non-vanishing function in the disc |s| < r,
0 < r < 1/4, and analytic for |s| < r, then, for every ¢ > 0, there exists
7 =7(¢) € R such that

‘rnlzix IC(s +3/4+it) — f(s)| <e.

The modern version of the Voronin theorem, see, for example, [4], uses
the following notation. Let I be the class of compact subsets of the strip D
with connected complements and Hy(K) with K € K the class of continuous
non-vanishing functions on K that are analytic in the interior of K. Then we
have that, for every € > 0,

lim inf lmeaus {T €[0,T):sup |[¢(s+iT) — f(s)] < E} > 0.

T—oo 1’ s€K

Here measA denotes the Lebesgue measure of a measurable set A C R.
Generalizations of the Voronin universality theorem for composite func-

tions F(((s)) were obtained in [5, 6]. Let H(K) with K € K be the class

of continuous functions on K that are analytic in the interior of K. Thus,

Hy(K) C H(K).

LEMMA 2.1. Suppose that the operator F : H(D) — H(D) satisfies the
hypotheses of Theorem 1.1. Let K € K and f(s) € H(K). Then, for every
e>0,

lim inf %meas {T €10,T):sup |F({(s +i1)) — f(s)| < E} > 0.

T—o0 seK
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The proof of the lemma is given in [5, Theorem 5].

LEMMA 2.2. Let K € K and f(s) € H(K). Suppose that V. > 0 is
such that K C Dy, and that the operator F : H(Dy) — H(Dy) satisfies the
hypotheses of Theorem 1.2. Then the same assertion as in Lemma 2.1 is true.

The proof of the lemma can be found in [5, Theorem 6].

LEMMA 2.3. Suppose that the operator F' : H(D) — H(D) salisfies the
hypotheses of Theorem 1.3. Let K C D be an arbitrary compact subset, and
f(s) € Hpy.a(D). Then the same assertion as in Lemma 2.1 is true.

PROOF. In [6], a stronger statement with K € K and f(s) # a on K, was
proved. If K and f(s) are as in the lemma, then the proof is the same as that
of the case r > 2 of [6, Theorem 4.4]. O

LEMMA 2.4. Suppose that the operator F : H(D) — H(D) satisfies the
hypotheses of Theorem 1.4. Let K C D be an arbitrary compact subset, and
f(s) € Hpy;—1,1(D). Then the same assertion as in Lemma 2.1 is true.

Proof of the lemma is given in [6, Theorem 4.4] where a more general
case of the set Hp(o).a,,....a, (D) = {9 € H(D) : g(s) # aj, j =1,...,r} with
arbitrary distinct aq,...,a, € C is considered.

In [7], the above universality theorems were applied for estimation of the
number of zeros of compositions F({(s)).

3. DENSENESS THEOREMS

In this section, we will prove the denseness in CV for some sets defined
by means of the compositions F({(s)).

THEOREM 3.1. Suppose that o, 1/2 < o < 1, is fized, and the operator
F: H(D) — H(D) satisfies the hypotheses of Theorem 1.1. Then the set

{F(C(U i), (F(C(o+ i), ..., (F(C(o+it)N=D .t e R}
is everywhere dense in CV.

PROOF. It is sufficient to show that, for any arbitrary collection (ag, a1,
...,an_1) € CN and every ¢ > 0, there exists a real number 7 such that

(F(¢(o + iT)))(j) —aj| <e

for all j =0,1,..., N — 1. Define the polynomial
N—-1
U C I T,
pN(s) = ap + T +-+ oD
Then we have that

(3.1) PR (0) = a;
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forall j =0,1,...,N—1. We fix 6, 1/2 < 5 < 1, and take K € K such that
the number 6 was an interior point of K. Let § be the distance of & from
the boundary of the set K. Then, in view of Lemma 2.1, there exists 7 € R
(actually, there exists a sequence 7, — 00) such that

. 6(;Nfl
sup [F(Cs +i7)) = p(s = 0)| < oxmr oy — 1

Therefore, the application of the Cauchy integral formula and (3.1) shows
that, for j =0,1,...,N — 1,

(F(G(o +im)9) — 5| = 2=

dz| <,
o < e

/ F(¢(z +1i71)) —pn(2 = 0)
|z—6|=6/2

(z — 6)it1
and the theorem is proved. O

THEOREM 3.2. Suppose that o, 1/2 < o < 1, is fized, V > 0, and the
operator F': H(Dy) — H(Dy) satisfies the hypotheses of Theorem 1.2. Then
the same assertion as in Theorem 3.1 is true.

PROOF. We repeat the proof of Theorem 3.1 with using of Lemma 2.2.
O

THEOREM 3.3. Suppose that the operator F : H(D) — H (D) satisfies the
hypotheses of Theorem 1.3. Then the same assertion as in Theorem 5.1 is
true.

PRrROOF. We slightly modify the method of [3]. Let (ag,a1,...,an—1) €
CN, ag # a. We will prove that there exists a collection (bg, by, ...,by_1) €
CV such that

N-1
bo+bys+-+by_15V 1 — _ @ o aN-18 N
(3.2) et N1 =a—a+ T + +7(N—1)! (mod s™).
Really, (3.2) is true for N = 1, since ag — a # 0 and by = log(ag — a). Now,
suppose that (3.2) true for N =m > 1. Then, with some ¢ € C

m a1s ans™
ebo+b1s+ Foms™ — ap —a + T S n—| + CSerl (mod Sm+2) )
: n:

Hence, since
m—+1
ebs =1+4bsmt! (mod sm”) ,

m m+1 a1 s
eb0+b15+ +bms™ +bs = (GO —a + T + - + CSm+l)

X (1 + bsm'H) (mod sm+2) .

Therefore, putting
Am+1

b(ao—a)—l—c: m,
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we find

1 Q41
b= -
ao—a<(m+1)! C)’

and this shows that with b,,41 = b

ehotbrstotbmias™ " — (0 o4 us . 7am+lsm+l (mod s™?) .
1! (m+1)!
Thus, (3.2) follows by induction.
Now define the function
N-1
N-—1 a1 s aN—-1S8
f(s) = gbotbrst+bn-1s +a=ag+ 5T + -+ 7(1\[ Y (modsN) .

Then, obviously, f(s) € H(D) and f(s) # a, thus, f(s) € Hp(g);a(D). More-

over,
(3.3) F9(0) = a;

forallj =0,1,...,N—1. Let 6, 1/2 < & < 1, be a fixed interior point of the
set K € K, K C D. By Lemma 2.3, there exists 7 € R such that, for every
e >0,

(3.0 sup |[F(C(s + 7)) — F(5)] < mmm
' seK ON-I(N — 1)’

where ¢ is the distance of & from the set K. Now, taking into account (3.3)
and (3.4), we find by using the Cauchy integral formula that, for all j =
0,1,...,N —1,

WG ! F(z+i7)) = f(2)]
O _ g < I |
P+ -a|< i [ D) IO s <
|z—&|=6/2
This inequality implies the assertion of the theorem. O

THEOREM 3.4. Suppose that the operator F : H(D) — H (D) satisfies the
hypotheses of Theorem 1.4. Then the same assertion as in Theorem 3.1 is
true.

PROOF. Let (ag,ai,...,an_1) € CN with ag # £1. We will prove that
there exists a collection (bg, by, ...,by_1) € CV such that

; (ebo+b15+"'+bN715N71 +e—(b0+b18+"'+bN718N71))

N-1
o a1 s aN—-1S8 N
(35) :ao—i-T—i—-i-W(mods )

As in the case of Theorem 3.3, we apply the inductive method. For N = 1,
we have e + e~% = 2qq. Hence, by = log(ag & /a3 — 1). Now suppose that



62 A. LAURINCIKAS

(3.5) is true with N = m > 1. Then, with some ¢ € C,

l (ebo+b1s+m+bmsm + e—(bo+b1s+m+bm5m)> =ag+ @S 4+t ams™
2 1! m!
+ g™l (mod sm+2) .
Hence,
% (ebo+bls+---+bmsm+bsm+1 + ef(bo+b15+“~+bmsm+bsm+1))
E% (ebo+bls+~»+bmsm (14 bs™ 1)
+e—(b0+b15+"'+bm5m) (1 o b8m+1)> (mOd Sm-‘r?)
E% (eb0+bls+...+bm,lsm*1 i 67(b0+bls+---+bmflsm*1))
1
+ 3 (eb" — eib“) hs™m 1 (mod sm+2)
ais ams™ m
=0+~ + b T s
1
+ 3 (ebo — e_bo) bs™mH1 (mod sm+2) .
We take )
b —b _ Om41
5(60—6 0)b+C—m

Since ag # +1, we have that e? — e~t0 £ 0. Therefore, taking
_ Am+1 bo _ —bo\ !
b1 =2 (7(7”_'_ Ol c) (e o —e 0) ;

we obtain (3.5) with N = m + 1. Thus, by induction, (3.5) is true for all
N e N.
Now, consider the function

f(s) = 1 (ebo+bls+»~+bzvfls”*1 + ef(bo+b1s+---+bN71sN*1)>

2
N-1
- ai1s aN—-18 N
Clearly, f(s) € H(D), and
(3.6) f90)=a;, j=0,1,...,N—1.

Moreover, since
ghotbrst by 1V _ F(s) £V F2(s) — 1,
f(s) can’t take values —1 and 1 for s € D. Thus, f(s) € Hp);—1,1(D).

Therefore, an application of Lemma 2.4, equality (3.6) and the Cauchy integral
formula complete the proof. O
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4. PROOF OF THE MAIN THEOREMS

PROOF OF THEOREM 1.1. Let ® : CV — C be a continuous function.
We will prove that if the equality

(4.1) @ (FC(), (FE)) - (FEC) M) =0
holds identically for s, then & = 0. Suppose, on the contrary, that & % 0.
Then there exists a collection (ag, a1, ...,an_1) € CV such that ®(ag,a1,...,

an—1) # 0. The continuity of ® implies the existence of an open set G € CV
such that (ag,a1,...,any—1) € G and, for all points a € G,

(4.2) [®(a)] > c>0.

Let 0, 1/2 < 0 < 1, be fixed. Then, by Theorem 3.1, there exist real number
t such that

(F(cto+it), (R +i),... (FC(o +it) ¥ ) e G.
However, this and (4.2) contradict the equality (4.1).

We may suppose that ®q # 0 because, in the opposite case, the equality
of the theorem becomes

0.

>k () () (FIL) YD)
k=1

Then there exists a bounded region Gy C CV such that
[®o(a)l > co >0

for all points a € Gg. Let

ko = max <0§k§n: sup |®x(a)| ¢0>-
a€Go

If kg = 0, then the assertion of the theorem follows from the first part of the
proof.
Now, let ky > 1. Then there exists a region G C G such that

(4.3) inf (@4, (a)| > ¢ > 0.

By the proof of Theorem 3.1, there exists a sequence {7,,,} C R, lim,;, 00 Ty =
~+00, such that, for fixed o, 1/2 < 0 < 1,

(F(<(a + 7)), (F(C(o +imm))) s - -, (F(Clo + iTm)))UV—l)) cC.
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This together with (4.3) shows that
lim |o + 97, |*0
m— 00
% [@r, (P +imm)), (F(Clo +imn))' s (F(Clo + ima))) YD)

= +o0.

However, this contradicts the equality

> sk (FC(9), ()Y (FE)D ) =0,
k=0
The contradiction shows that &, =0 for all £k =0,1,...,n. O

Proofs of Theorems 1.2, 1.3 and 1.4 repeat the proof of Theorem 1.1 with
using in the corresponding places Theorems 3.2, 3.3 and 3.4, respectively.
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