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EXTENSION OF THE FUNCTIONAL INDEPENDENCE OF

THE RIEMANN ZETA-FUNCTION

Antanas Laurinčikas

Vilnius University, Lithuania

Abstract. In 1972, Voronin proved the functional independence of
the Riemann zeta-function ζ(s), i. e., if the functions Φj are continuous

in CN and Φ0(ζ(s), . . . , ζ(N−1)(s)) + · · ·+ snΦn(ζ(s), . . . , ζ(N−1)(s)) ≡ 0,
then Φj ≡ 0 for j = 0, . . . , n. The problem goes back to Hilbert who
obtained the algebraic-differential independence of ζ(s). In the paper, the
functional independence of compositions F (ζ(s)) for some classes of op-
erators F in the space of analytic functions is proved. For example, as a
particular case, the functional independence of the function cos ζ(s) follows.

1. Introduction

In the theory of functions, various functional relations occupy an impor-
tant place. The problem goes back to Hölder and Hilbert. In [2], Hölder
proved the algebraic-differential independence of the Euler gamma-function
Γ(s), i. e., that there is no any polynomial p(s1, . . . , sr) 6≡ 0 such that
p
(

Γ(s),Γ′(s), . . . ,Γ(r−1)(s)
)

≡ 0.
We recall that the Riemann zeta-function ζ(s), s = σ + it, is defined, for

σ > 1, by

ζ(s) =
∞
∑

m=1

1

ms
=
∏

p

(

1−
1

ps

)−1

,
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where the product is taken over all prime numbers, and has analytic continu-
ation to the whole complex plane, except for a simple pole at the point s = 1
with residue 1.

Hilbert, presenting the list of the most important problems of mathe-
matics at the International Congress of Mathematicians (Paris, 1900), in the
description of the 18th problem, mentioned, see [1], that the function ζ(s) is
algebraically-differentially independent, and this follows from the algebraic-
differential independence of the function Γ(s) and the functional equation

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1− s).

Moreover, he also conjectured that there is no algebraic-differential equation
with partial derivatives which is satisfied by the function

ζ(s, x) =

∞
∑

m=1

xm

ms
.

The latter conjecture was proved by Ostrowski in [8]. The investigations were
continued by Postnikov in [9, 10]. For example, in [10] he considered the
function

L(s, x, χ) =
∞
∑

m=1

χ(m)xm

ms
,

where χ(m) is a Dirichlet character, and obtained that the equality

p

(

x, s,
∂k+lL(s, x, χ)

∂sk∂xl

)

≡ 0

can not be satisfied by any polynomial p 6≡ 0.
The further progress in the field belongs to Voronin. In [11, 12], see also

[15, 3], he obtained the functional independence of the function ζ(s). More
precisely, he proved that if f0, f1, . . . , fn : CN → C, n ∈ N0 = N∪{0}, N ∈ N,
are continuous functions, and the equality

n
∑

k=0

skfk

(

ζ(s), ζ′(s), . . . , ζ(N−1)(s)
)

= 0

holds identically for s, then fk ≡ 0 for k = 0, 1, . . . , n. In [14], the latter
result was generalized for a collection of Dirichlet L-functions with pairwise
non-equivalent Dirichlet characters.

The aim of this note is a generalization of the functional independence
for certain compositions of the function ζ(s). Let D = {s ∈ C : 1/2 < σ < 1}.
Denote by H(G) the space of analytic functions on the region G endowed
with the topology of uniform convergence on compacta. Let S = {g ∈ H(D) :
1/g(s) ∈ H(D) or g(s) ≡ 0}. In this note, we continue investigations of [7] of
the compositions F (ζ(s)).
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Theorem 1.1. Suppose that F : H(D) → H(D) is a continuous operator

such that, for every open set G ⊂ H(D), the set (F−1G)∩S is non-empty. If

the functions Φ0,Φ1, . . . ,Φn : CN → C are continuous, and the equality

n
∑

k=0

skΦk

(

F (ζ(s)), (F (ζ(s)))′ , . . . , (F (ζ(s)))(N−1)
)

= 0

holds identically for s ∈ D, then Φk ≡ 0 for k = 0, 1, . . . , n.

Sometimes it is more convenient to deal with operators in the space of
analytic functions in a bounded region. Let V be an arbitrary positive number,
DV = {s ∈ C : 1/2 < σ < 1, |t| < V } and SV = {g ∈ H(DV ) : 1/g(s) ∈
H(DV ) or g(s) ≡ 0}. Since ζ(s+ iτ) ∈ H(DV ) for all τ ∈ R, F (ζ(s + iτ)) =
gτ (s) with some gτ (s) ∈ H(DV ), τ ∈ R. Hence, F (ζ(σ + it)) = gt(σ) for
1/2 < σ < 1, t ∈ R.

Theorem 1.2. Suppose that F : H(DV ) → H(DV ) is a continuous op-

erator such that, for each polynomial p = p(s), the set (F−1{p}) ∩ SV is

non-empty. Then the assertion of Theorem 1.1 is true.

For example, the operator F : H(DV ) → H(DV ) given by

F (g) = c1g
′ + · · ·+ crg

(r), g ∈ H(DV ), c1, . . . , cr ∈ C \ {0},

satisfies the hypotheses of Theorem 1.2. Actually, for each polynomial

p(s) = aks
k + · · ·+ a1s+ a0, ak 6= 0,

there exists a polynomial

q(s) = bk+1s
k+1 + · · ·+ b1s+ b0, bk+1 6= 0,

such that F (q) = p because the coefficients bk+1, . . . , b1 can be expressed by
ak, . . . , a0. Moreover, we may choose b0 to be |b0| large enough such that
q(s) 6= 0 in DV . Thus, by Theorem 1.2, we have the functional independence
for the function

c1ζ
′(s) + · · ·+ crζ

(r)(s).

For F : H(D) → H(D) and a ∈ C, define the set

HF (0);a(D) =

{

g ∈ H(D) :
1

g(s)− a
∈ H(D)

}

∪ {F (0)}.

Theorem 1.3. Suppose that F : H(D) → H(D) is a continuous operator

such that F (S) ⊃ HF (0);a(D). Then the same assertion as in Theorem 1.1 is

true.

For example, the operator F : g → gN , N ∈ N, satisfies the hypotheses
of the theorem with a = 0.

For F : H(D) → H(D), define the set

HF (0);−1,1(D) = {g ∈ H(D) : g(s) 6= −1, g(s) 6= 1} ∪ {F (0)}.
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Theorem 1.4. Suppose that F : H(D) → H(D) is a continuous operator

such that F (S) ⊃ HF (0);−1,1(D). Then the same assertion as in Theorem 1.1

is true.

For example, the operator F : g → cos g satisfies the hypotheses of the
theorem. Thus, we have that if the functions Φ0,Φ1, . . . ,Φn : CN → C are
continuous, and the equality

n
∑

k=0

skΦk

(

cos ζ(s),−ζ′(s) sin ζ(s), . . . , (cos ζ(s))(N−1)
)

= 0

holds identically for s, then Φk ≡ 0 for k = 0, 1, . . . , n. In other words, we
have the functional independence for the function cos ζ(s). The same is true
for the functions sin ζ(s), sinh ζ(s), cosh ζ(s).

2. Universality

Proofs of Theorems 1.1–1.4 are based on the universality property of
compositions F (ζ(s)). We recall that the universality property of the function
ζ(s) was discovered by Voronin in [13], and means that a wide class of analytic
functions can be approximated by shifts ζ(s+ iτ), τ ∈ R. More precisely, he
proved that if f(s) is a continuous non-vanishing function in the disc |s| ≤ r,
0 < r < 1/4, and analytic for |s| < r, then, for every ε > 0, there exists
τ = τ(ε) ∈ R such that

max
|s|≤r

|ζ(s+ 3/4 + iτ)− f(s)| < ε.

The modern version of the Voronin theorem, see, for example, [4], uses
the following notation. Let K be the class of compact subsets of the strip D
with connected complements and H0(K) with K ∈ K the class of continuous
non-vanishing functions on K that are analytic in the interior of K. Then we
have that, for every ε > 0,

lim inf
T→∞

1

T
meas

{

τ ∈ [0, T ] : sup
s∈K

|ζ(s+ iτ)− f(s)| < ε

}

> 0.

Here measA denotes the Lebesgue measure of a measurable set A ⊂ R.
Generalizations of the Voronin universality theorem for composite func-

tions F (ζ(s)) were obtained in [5, 6]. Let H(K) with K ∈ K be the class
of continuous functions on K that are analytic in the interior of K. Thus,
H0(K) ⊂ H(K).

Lemma 2.1. Suppose that the operator F : H(D) → H(D) satisfies the

hypotheses of Theorem 1.1. Let K ∈ K and f(s) ∈ H(K). Then, for every

ε > 0,

lim inf
T→∞

1

T
meas

{

τ ∈ [0, T ] : sup
s∈K

|F (ζ(s+ iτ)) − f(s)| < ε

}

> 0.
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The proof of the lemma is given in [5, Theorem 5].

Lemma 2.2. Let K ∈ K and f(s) ∈ H(K). Suppose that V > 0 is

such that K ⊂ DV , and that the operator F : H(DV ) → H(DV ) satisfies the

hypotheses of Theorem 1.2. Then the same assertion as in Lemma 2.1 is true.

The proof of the lemma can be found in [5, Theorem 6].

Lemma 2.3. Suppose that the operator F : H(D) → H(D) satisfies the

hypotheses of Theorem 1.3. Let K ⊂ D be an arbitrary compact subset, and

f(s) ∈ HF (0);a(D). Then the same assertion as in Lemma 2.1 is true.

Proof. In [6], a stronger statement with K ∈ K and f(s) 6= a on K, was
proved. If K and f(s) are as in the lemma, then the proof is the same as that
of the case r ≥ 2 of [6, Theorem 4.4].

Lemma 2.4. Suppose that the operator F : H(D) → H(D) satisfies the

hypotheses of Theorem 1.4. Let K ⊂ D be an arbitrary compact subset, and

f(s) ∈ HF (0);−1,1(D). Then the same assertion as in Lemma 2.1 is true.

Proof of the lemma is given in [6, Theorem 4.4] where a more general
case of the set HF (0);a1,...,ar

(D) = {g ∈ H(D) : g(s) 6= aj , j = 1, . . . , r} with
arbitrary distinct a1, . . . , ar ∈ C is considered.

In [7], the above universality theorems were applied for estimation of the
number of zeros of compositions F (ζ(s)).

3. Denseness theorems

In this section, we will prove the denseness in CN for some sets defined
by means of the compositions F (ζ(s)).

Theorem 3.1. Suppose that σ, 1/2 < σ < 1, is fixed, and the operator

F : H(D) → H(D) satisfies the hypotheses of Theorem 1.1. Then the set
{

F (ζ(σ + it)), (F (ζ(σ + it)))′, . . . , (F (ζ(σ + it)))(N−1) : t ∈ R

}

is everywhere dense in CN .

Proof. It is sufficient to show that, for any arbitrary collection (a0, a1,
. . . , aN−1) ∈ CN and every ε > 0, there exists a real number τ such that

∣

∣

∣
(F (ζ(σ + iτ)))(j) − aj

∣

∣

∣
< ε

for all j = 0, 1, . . . , N − 1. Define the polynomial

pN (s) = a0 +
a1s

1!
+ · · ·+

aN−1s
N−1

(N − 1)!
.

Then we have that

(3.1) p
(j)
N (0) = aj



60 A. LAURINČIKAS

for all j = 0, 1, . . . , N − 1. We fix σ̂, 1/2 < σ̂ < 1, and take K ∈ K such that
the number σ̂ was an interior point of K. Let δ be the distance of σ̂ from
the boundary of the set K. Then, in view of Lemma 2.1, there exists τ ∈ R

(actually, there exists a sequence τm → ∞) such that

sup
s∈K

|F (ζ(s + iτ))− pN (s− σ̂)| <
εδN−1

2N−1(N − 1)!
.

Therefore, the application of the Cauchy integral formula and (3.1) shows
that, for j = 0, 1, . . . , N − 1,

∣

∣

∣
(F (ζ(σ̂ + iτ)))(j) − aj

∣

∣

∣
=

j!

2π

∣

∣

∣

∣

∣

∫

|z−σ̂|=δ/2

F (ζ(z + iτ))− pN (z − σ̂)

(z − σ̂)j+1
dz

∣

∣

∣

∣

∣

< ε,

and the theorem is proved.

Theorem 3.2. Suppose that σ, 1/2 < σ < 1, is fixed, V > 0, and the

operator F : H(DV ) → H(DV ) satisfies the hypotheses of Theorem 1.2. Then

the same assertion as in Theorem 3.1 is true.

Proof. We repeat the proof of Theorem 3.1 with using of Lemma 2.2.

Theorem 3.3. Suppose that the operator F : H(D) → H(D) satisfies the
hypotheses of Theorem 1.3. Then the same assertion as in Theorem 3.1 is

true.

Proof. We slightly modify the method of [3]. Let (a0, a1, . . . , aN−1) ∈
CN , a0 6= a. We will prove that there exists a collection (b0, b1, . . . , bN−1) ∈
CN such that

(3.2) eb0+b1s+···+bN−1s
N−1

≡ a0 − a+
a1s

1!
+ · · ·+

aN−1s
N−1

(N − 1)!

(

mod sN
)

.

Really, (3.2) is true for N = 1, since a0 − a 6= 0 and b0 = log(a0 − a). Now,
suppose that (3.2) true for N = m > 1. Then, with some c ∈ C

eb0+b1s+···+bmsm ≡ a0 − a+
a1s

1!
+ · · ·+

ans
m

n!
+ csm+1

(

mod sm+2
)

.

Hence, since

ebs
m+1

≡ 1 + bsm+1
(

mod sm+2
)

,

eb0+b1s+···+bmsm+bsm+1

≡
(

a0 − a+
a1s

1!
+ · · ·+ csm+1

)

×
(

1 + bsm+1
) (

mod sm+2
)

.

Therefore, putting

b(a0 − a) + c =
am+1

(m+ 1)!
,
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we find

b =
1

a0 − a

(

am+1

(m+ 1)!
− c

)

,

and this shows that with bm+1 = b

eb0+b1s+···+bm+1s
m+1

≡ a0 − a+
a1s

1!
+ · · ·+

am+1s
m+1

(m+ 1)!

(

mod sm+2
)

.

Thus, (3.2) follows by induction.
Now define the function

f(s) = eb0+b1s+···+bN−1s
N−1

+ a ≡ a0 +
a1s

1!
+ · · ·+

aN−1s
N−1

(N − 1)!

(

mod sN
)

.

Then, obviously, f(s) ∈ H(D) and f(s) 6= a, thus, f(s) ∈ HF (0);a(D). More-
over,

(3.3) f (j)(0) = aj

for all j = 0, 1, . . . , N − 1. Let σ̂, 1/2 < σ̂ < 1, be a fixed interior point of the
set K ∈ K, K ⊂ D. By Lemma 2.3, there exists τ ∈ R such that, for every
ε > 0,

(3.4) sup
s∈K

|F (ζ(s+ iτ)) − f(s)| <
εδN−1

2N−1(N − 1)!
,

where δ is the distance of σ̂ from the set K. Now, taking into account (3.3)
and (3.4), we find by using the Cauchy integral formula that, for all j =
0, 1, . . . , N − 1,
∣

∣

∣
(F (ζ(σ̂ + iτ)))(j) − aj

∣

∣

∣
≤

j!

2π

∫

|z−σ̂|=δ/2

|F (ζ(z + iτ))− f(z)|

|z − σ̂|j+1
|dz| < ε.

This inequality implies the assertion of the theorem.

Theorem 3.4. Suppose that the operator F : H(D) → H(D) satisfies the
hypotheses of Theorem 1.4. Then the same assertion as in Theorem 3.1 is

true.

Proof. Let (a0, a1, . . . , aN−1) ∈ CN with a0 6= ±1. We will prove that
there exists a collection (b0, b1, . . . , bN−1) ∈ CN such that

1

2

(

eb0+b1s+···+bN−1s
N−1

+ e−(b0+b1s+···+bN−1s
N−1)

)

≡ a0 +
a1s

1!
+ · · ·+

aN−1s
N−1

(N − 1)!

(

mod sN
)

.(3.5)

As in the case of Theorem 3.3, we apply the inductive method. For N = 1,
we have eb0 + e−b0 = 2a0. Hence, b0 = log(a0 ±

√

a20 − 1). Now suppose that
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(3.5) is true with N = m > 1. Then, with some c ∈ C,

1

2

(

eb0+b1s+···+bmsm + e−(b0+b1s+···+bmsm)
)

≡ a0 +
a1s

1!
+ · · ·+

amsm

m!

+ csm+1
(

mod sm+2
)

.

Hence,

1

2

(

eb0+b1s+···+bmsm+bsm+1

+ e−(b0+b1s+···+bmsm+bsm+1)
)

≡
1

2

(

eb0+b1s+···+bmsm
(

1 + bsm+1
)

+e−(b0+b1s+···+bmsm)
(

1− bsm+1
)

)

(

mod sm+2
)

≡
1

2

(

eb0+b1s+···+bm−1s
m−1

+ e−(b0+b1s+···+bm−1s
m−1)

)

+
1

2

(

eb0 − e−b0
)

bsm+1
(

mod sm+2
)

≡a0 +
a1s

1!
+ · · ·+

amsm

m!
+ csm+1

+
1

2

(

eb0 − e−b0
)

bsm+1
(

mod sm+2
)

.

We take
1

2

(

eb0 − e−b0
)

b+ c =
am+1

(m+ 1)!
.

Since a0 6= ±1, we have that eb0 − e−b0 6= 0. Therefore, taking

bm+1 = 2

(

am+1

(m+ 1)!
− c

)

(

eb0 − e−b0
)−1

,

we obtain (3.5) with N = m + 1. Thus, by induction, (3.5) is true for all
N ∈ N.

Now, consider the function

f(s) =
1

2

(

eb0+b1s+···+bN−1s
N−1

+ e−(b0+b1s+···+bN−1s
N−1)

)

≡ a0 +
a1s

1!
+ · · ·+

aN−1s
N−1

(N − 1)!

(

mod sN
)

.

Clearly, f(s) ∈ H(D), and

(3.6) f (j)(0) = aj , j = 0, 1, . . . , N − 1.

Moreover, since

eb0+b1s+···+bN−1s
N−1

= f(s)±
√

f2(s)− 1,

f(s) can’t take values −1 and 1 for s ∈ D. Thus, f(s) ∈ HF (0);−1,1(D).
Therefore, an application of Lemma 2.4, equality (3.6) and the Cauchy integral
formula complete the proof.
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4. Proof of the main theorems

Proof of Theorem 1.1. Let Φ : CN → C be a continuous function.
We will prove that if the equality

(4.1) Φ
(

F (ζ(s)), (F (ζ(s)))′, . . . , (F (ζ(s)))(N−1)
)

= 0

holds identically for s, then Φ ≡ 0. Suppose, on the contrary, that Φ 6≡ 0.
Then there exists a collection (a0, a1, . . . , aN−1) ∈ C

N such that Φ(a0, a1, . . . ,
aN−1) 6= 0. The continuity of Φ implies the existence of an open set G ⊂ CN

such that (a0, a1, . . . , aN−1) ∈ G and, for all points a ∈ G,

(4.2) |Φ(a)| > c > 0.

Let σ, 1/2 < σ < 1, be fixed. Then, by Theorem 3.1, there exist real number
t such that

(

F (ζ(σ + it)), (F (ζ(σ + it)))′, . . . , (F (ζ(σ + it)))(N−1)
)

∈ G.

However, this and (4.2) contradict the equality (4.1).
We may suppose that Φ0 6≡ 0 because, in the opposite case, the equality

of the theorem becomes

n
∑

k=1

sk−1Φk

(

F (ζ(s)), (F (ζ(s)))′ , . . . , (F (ζ(s)))(N−1)
)

≡ 0.

Then there exists a bounded region G0 ⊂ CN such that

|Φ0(a)| > c0 > 0

for all points a ∈ G0. Let

k0 = max

(

0 ≤ k ≤ n : sup
a∈G0

|Φk(a)| 6= 0

)

.

If k0 = 0, then the assertion of the theorem follows from the first part of the
proof.

Now, let k0 ≥ 1. Then there exists a region G ⊂ G0 such that

(4.3) inf
a∈G

|Φk0
(a)| > c > 0.

By the proof of Theorem 3.1, there exists a sequence {τm} ⊂ R, limm→∞ τm =
+∞, such that, for fixed σ, 1/2 < σ < 1,

(

F (ζ(σ + iτm)), (F (ζ(σ + iτm)))′, . . . , (F (ζ(σ + iτm)))(N−1)
)

∈ G.
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This together with (4.3) shows that

lim
m→∞

|σ + iτm|k0

×
∣

∣

∣
Φk0

(

F (ζ(σ + iτm)), (F (ζ(σ + iτm)))′, . . . , (F (ζ(σ + iτm)))(N−1)
)∣

∣

∣

= +∞.

However, this contradicts the equality

n
∑

k=0

skΦk

(

F (ζ(s)), (F (ζ(s)))′, . . . , (F (ζ(s)))(N−1)
)

≡ 0.

The contradiction shows that Φk ≡ 0 for all k = 0, 1, . . . , n.

Proofs of Theorems 1.2, 1.3 and 1.4 repeat the proof of Theorem 1.1 with
using in the corresponding places Theorems 3.2, 3.3 and 3.4, respectively.
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