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ON THE FAITHFULNESS OF 1-DIMENSIONAL
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Abstract. This paper explores 1-dimensional topological quantum
field theories. We separately deal with strict and strong 1-dimensional
topological quantum field theories. The strict one is regarded as a sym-
metric monoidal functor between the category of 1-cobordisms and the
category of matrices, and the strong one is a symmetric monoidal functor
between the category of 1-cobordisms and the category of finite dimensional
vector spaces. It has been proved that both strict and strong 1-dimensional
topological quantum field theories are faithful.

1. Introduction

The concept of topological quantum field theory goes back to the work
of Witten ([19]). Mathematical axioms for topological quantum field theories
are given by Atiyah ([1]). The categorical viewpoint is developed in Quinn’s
lectures ([16]). According to Atiyah and Quinn, an n-dimensional topolog-
ical quantum field theory (n-TQFT) is a symmetric monoidal functor from
the category of oriented n-cobordisms to the category of finite dimensional
vector spaces over some field. Such functor associates a vector space with
each closed oriented (n−1)-dimensional manifold and associates a linear map
with each oriented n-cobordism. It is well known that there is a one-to-one
correspondence between 2-TQFTs and commutative Frobenius algebras (the
best reference here is [12, Theorem 3.3.2]). For another proof of this classical
correspondence see [11, Theorem 4.1].
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The faithfulness property of TQFTs is very important, since it provides
a complete set of invariants for the classification of cobordisms. However, the
faithfulness problem of TQFTs is seldom investigated in relevant literature.
Inspired by the representation of a class of diagrammatic algebras given by
Brauer ([3]), Došen and Petrić have obtained a result that demonstrates the
faithfulness of a 1-TQFT (see [7, Section 14]). This example of a faithful
1-TQFT maps the 0-dimensional sphere S0 to a matrix Frobenius algebra,
as explained in [2, Section 5]. It is shown by Gajović, Petrić and the author
([9]) that there is a faithful 2-TQFT which corresponds to the commutative
Frobenius algebra QZ5⊗Z(QS3), the tensor product of the group algebra and
the center of the group algebra. One question remains unanswered: is there
a faithful n-TQFT, for n ≥ 3?

The aim of this paper is to prove the faithfulness of all 1-TQFTs, map-
ping the 0-dimensional manifold consisting of one point to a vector space
of dimension at least 2. In Section 2, we summarize the relevant material
on the category of 1-cobordisms, and associate a 0 − 1 matrix with each 1-
cobordism. This association is motivated by Brauer’s matrix representation
of the class of diagrammatic algebras ([3]). A generalization of Brauer’s rep-
resentation given by Došen and Petrić ([6, 7]) leads to a symmetric monoidal
functor between the category of 1-cobordisms and the category of matrices.
In this way we obtain what will be referred to as the Brauerian functor.
Our results on the faithfulness of this functor are presented in Section 3. In
Section 4, we introduce the notion of a strict 1-TQFT in order to use ma-
trix techniques. The main result of this section is that every strict 1-TQFT,
F : 1Cob → MatK, mapping the 0-dimensional manifold consisting of one
point to a natural number p ≥ 2, is faithful, since it coincides with the Braue-
rian functor up to multiplication by invertible matrices. Roughly speaking,
the faithfulness of F means that F (K) is a complete set of algebraic invariants
for 1-cobordisms. The last section is devoted to the study of strong 1-TQFTs
(symmetric strong monoidal functors between the category of 1-cobordisms
and the category of finite dimensional vector spaces over a chosen field). We
extend our faithfulness result to the case of strong 1-TQFTs.

Throughout the paper by a 1-dimensional manifold we mean a compact,
oriented 1-dimensional manifold with boundary.

2. The Category 1Cob

Objects of the category 1Cob are closed oriented 0-dimensional man-
ifolds, consisting of a finite number of points. Every particular point is as-
sociated with a sign, that represents its orientation. From now on, we will
consider the objects of 1Cob as ordered pairs (n, ε), where n = {0, . . . , n− 1},
and ε : n → {−1, 1}.
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The morphisms of 1Cob are the equivalence classes of 1-cobordisms
(M, f0 : (n, ε0) → M, f1 : (m, ε1) → M), where M is a compact oriented
1-dimensional manifold, such that its boundary ∂M is a disjoint union of Σ0,
and Σ1; f0 is an orientation preserving embedding which image is Σ0, while f1
is an orientation reversing embedding which image is Σ1. The manifolds Σ0

and Σ1 are called the ingoing and outgoing boundary of M , respectively. Two
1-cobordisms K = (M, f0, f1) and K ′ = (M ′, f ′

0, f
′
1) are equivalent, denoted

byK ∼ K ′, if there is an orientation preserving homeomorphism F : M → M ′

such that the following diagram commutes.

(n, ε0)

M

M ′

(m, ε1)

f0 f1

f ′
0 f ′

1

F

✟✟✟✟✟✯

❍❍❍❍❍❥

❍❍❍❍❍❨

✟✟✟✟✟✙
❄

The category 1Cob is a strict monoidal with respect to the sum on objects

(n, ε0) + (n′, ε1) = (n+ n′, ε0 + ε1),

where ε0 + ε1 : n+ n′ → {−1, 1} is defined by

(ε0 + ε1)(x) =

{

ε0(x), if x ∈ n,

ε1(x− n), if x 6∈ n,

and the operation of “putting side by side” on morphisms, denoted by ⊗.
The category 1Cob is also a symmetric monoidal with respect to the

family of cobordisms τn,m : (n+m, ε0 + ε1) → (m+n, ε1 + ε0) corresponding
to permutations on n + m. For example, τ3,2 is illustrated by the following
picture

❅
❅
❅❘

❅
❅❅❘❅

❅❅■

✟✟✟✟✟✯

✟✟✟✟✟
+ − + − +

− + + − +
✙

Every morphism of 1Cob is completely determined by a 1-dimensional
manifold M and two sequences of its boundary points, denoted by

(0, 0), (1, 0), . . . , (n− 1, 0),

(0, 1), (1, 1), . . . , (m− 1, 1),

where the first one corresponds to the ingoing boundary Σ0, and the second
one to the outgoing boundary Σ1.

Every 1-cobordism K = (M,Σ0,Σ1) : (n, ε0) → (m, ε1) induces the fol-
lowing equivalence relation RK on the set (n×{0})∪(m×{1}). For (i, k), (j, l)
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elements of (n× {0}) ∪ (m× {1}), we have that

((i, k), (j, l)) ∈ RK

⇔

points (i, k) and (j, l) belong to the same connected component of M.

Let cK denote the number of connected components of K, which are
homeomorphic to the circle S1. It is clear that for cobordisms K,L : (n, ε0) →
(m, ε1) the following proposition holds.

Proposition 2.1. The 1-cobordisms K and L are equivalent iff RK = RL

and cK = cL.

Let X be an arbitrary set, let R ⊆ X2 be an equivalence relation on X

and let p be the set {0, 1, . . . , p − 1}, p ≥ 2. Consider the following set of
functions:

F =(R) = {f : X → p | (∀x, y ∈ X)
(
(x, y) ∈ R ⇒ f(x) = f(y)

)
}.

Proposition 2.2. (Došen and Petrić [4], [5]) If R1, R2 ⊆ X2 are equiv-
alence relations, then R1 = R2 iff F =(R1) = F =(R2).

We associate a non-zero matrix A(K) of order pm × pn with each cobor-
dism K : (n, ε0) → (m, ε1) in the following way. Let RK ⊆ ((n × {0}) ∪
(m× {1}))2 be equivalence relation corresponding to the cobordism K. The
number of rows of A(K) is equal to the number of functions m → p. Each
of these functions can be envisaged as a sequence of length m of elements of
{0, 1, . . . , p− 1}. The set of these sequences may be ordered lexicographically
so that 00 . . . 0 is the first, and (p − 1)(p − 1) . . . (p − 1) is the last in this
ordering. Since (pm,≤) is isomorphic to the set of these sequences, the rows
of A(K) can be identified by functions from m to p. Let fi : m → p denote the
function corresponding to the i-th row. Columns of A(K) can be identified
by functions from n to p. Let gj : n → p denote the function corresponding
to the j-th column. Let [gj, fi] : (n × {0}) ∪ (m × {1}) → p be the function
defined by

[gj , fi](x) =

{
gj(π0(x)), if x ∈ n× {0},
fi(π1(x)), if x ∈ m× {1},

where π0 : n × {0} → n and π1 : m × {1} → m are bijections given by
π0(u, 0) = u and π1(v, 1) = v, respectively. Element A(K)[i, j] in the i-th row
and j-th column of A(K) is equal to 1 iff [gj , fi] ∈ F =(RK), otherwise it is 0.

Example 2.3. If K : (4, ε0) → (2, ε1) is 1-cobordism illustrated by the
following picture

❅
❅❅■

�
��

−+ +−

+ −

✲
✠
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and p = 2, the corresponding matrix A(K) is equal to









0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
01 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
10 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
11 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1









.

For example, element A(K)[2, 3] is equal to 1, since the sequences 01 and
0010 corresponding to the second row and the third column “match” into the
picture.

❅
❅❅

�
��

10 00

0 1

3. Brauerian representation

Let MatK be a category whose objects are natural numbers, and whose
morphisms from n to m are all m× n matrices over the field K of character-
istic zero. The composition of morphisms is matrix multiplication, and the
identity morphism n → n is the identity matrix of order n. The category
(MatK,⊗, 1, Sn,m) is a symmetric strict monoidal with respect to the multi-
plication on objects, and the Kronecker product on morphisms, and the family
of mn× nm matrices Sn,m. The matrix Sn,m is the matrix representation of
the linear map σ : Kn⊗Km → Km⊗Kn with respect to the standard ordered
bases, defined on the basis vectors by σ(ei ⊗ fj) = fj ⊗ ei. We call Sn,m the
commutation matrix.

Let us now consider the following functor B from 1Cob to MatK. It is
defined by B(n, ε) = pn on objects, where p ≥ 2. For morphism K : (n, ε0) →
(m, ε1) of 1Cob, it is given by B(K) = pa · A(K), where a is the number
of circular components of K, and A(K) is (0, 1)-matrix of order pm × pn

associated with K.
It can be proved that the following proposition holds.

Proposition 3.1. B is a strict symmetric monoidal functor from
(1Cob,⊗, (0, ε), τn,m) to (MatK,⊗, 1, Sn,m).

The proof of this proposition can be adapted from [5, Section 5, Proposi-
tion 4].

The functor B is related to the matrix representation of a class of dia-
grammatic algebras given by Brauer (see [3],[6] for more details). Therefore,
we call B Brauerian functor.

Proposition 3.2. B is faithful.
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Proof. Suppose thatK,L : (n, ε0) → (m, ε1) are two morphisms of 1Cob

such that B(K) = B(L). Let a and b denote numbers of circular components
of K and L, respectively. Since the non-zero matrices pa ·A(K) and pb ·A(L)
are equal, they have the same order pm× pn and the corresponding elements,
which are either zero or the powers of p, are identical. We have a = b, because
p ≥ 2, and

A(K)[i, j] = 1 iff A(L)[i, j] = 1.

This means that for every gj : n → p and every fi : m → p we have

[gj, fi] ∈ F =(RK) iff [gj, fi] ∈ F =(RL).

As every function f : (n × {0}) ∪ (m × {1}) → p is of the form [gj, fi] for
some gj : n → p and some fi : m → p, it follows that F =(RK) = F =(RL).
Applying Proposition 2.2, we conclude that RK = RL. By Proposition 2.1 it
follows that K and L are equivalent.

It is worth pointing out that the faithfulness of the Brauerian functor B is a
consequence of the maximality given in [7, Section 14].

4. Strict 1-dimensional Topological Quantum Field Theories

Let us denote by + a 0-dimensional manifold, which consists of one point
with positive orientation, and by − the same manifold with the opposite ori-
entation. Then, every object of 1Cob can be regarded as a sequence a1 . . . an,
where ai ∈ {+,−}. Any 1-dimensional manifold M is homeomorphic to a
disjoint union of its connected components. Those connected components are
either homeomorphic to a closed interval [0, 1] or to a circle S1. Depending
on how the boundary ∂M is decomposed into ingoing and outgoing pieces, we
have the following connected cobordisms:

10 Unit interval [0, 1] with its standard orientation regarded as a cobor-
dism from + to +. It represents the identity morphism id+ in 1Cob.

20 Unit interval [0, 1] with its standard orientation regarded as a cobor-
dism from − to −. It represents the identity morphism id− in 1Cob.

30 Unit interval [0, 1] with its standard orientation regarded as a cobor-
dism from +− to ∅. It represents the morphism of 1Cob, which we denote by
B.

40 The cobordism from −+ to ∅, which we denote by B.
50 Unit interval [0, 1] with its standard orientation regarded as a cobor-

dism from ∅ to −+. It represents the morphism of 1Cob, which we denote by
C.

60 The cobordism from ∅ to +−, which we denote by C.
70 The circle S1 regarded as a cobordism from the empty set to itself.
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❄
+

+

id+

✻

−

−

id−

✲

+ −

B

✛

− +

B

✲

− +

C

✛

+ −

C

✫✪
✬✩∅

∅

✻S
1

Definition 4.1. A strict 1-dimensional topological quantum field theory
(1-TQFT) is a strict symmetric monoidal functor between the category 1Cob

and the category MatK.

The following proposition is motivated by [13, Proposition 1.1.8].

Proposition 4.2. Let F be a strict 1-TQFT. If p = F (+) and q = F (−),
then p = q.

Proof. Applying the functor F to the morphism B : +− → ∅ of 1Cob,
we obtain the morphism F (B) : F (+−) → F (∅) of MatK. Since the functor
F is a strict monoidal, we have F (+−) = F (+)⊗ F (−) = p · q and F (∅) = 1.
Hence, the matrix F (B) has order 1× (pq). Let us introduce the notation

F (B) =
[
β11 . . . β1q

∣
∣ β21 . . . β2q

∣
∣ . . .

∣
∣ βp1 . . . βpq

]

and

X =








β11 . . . β1q

β21 . . . β2q

...
...

...
βp1 . . . βpq







.

Under the standard isomorphism H : Mp×q → M1×pq, we have H(X) =
F (B).

Similarly, applying the functor F to the morphism C : ∅ → −+, we obtain
the morphism F (C) : 1 → q · p of MatK, i.e. the matrix of order (qp)× 1. Set

F (C) =
[
γ11 . . . γ1p

∣
∣ γ21 . . . γ2p

∣
∣ . . .

∣
∣ γq1 . . . γqp

]T

and

Y =








γ11 . . . γ1p
γ21 . . . γ2p
...

...
...

γq1 . . . γqp







.

Under the standard isomorphism L : Mq×p → Mqp×1, we have L(Y ) = F (C).
We consider the identity cobordism id+ and its decomposition into two

cobordisms id+ ⊗ C and B ⊗ id+, as shown in the picture below.
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❄
+

+

=
❄
+

+

✲

− +

✲

❄+B

C

Applying the functor F to both sides of the equation id+ = (B⊗id+)◦(id+⊗C)
and using the functorial properties of F , we obtain

idF (+) = (F (B)⊗ idF (+)) · (idF (+) ⊗ F (C)),

i.e.

Ep = (F (B)⊗ Ep) · (Ep ⊗ F (C)),

where Ep is the identity matrix of order p. As a result of matrix multiplication,
we get the system of p2 equations

(4.1)

q
∑

k=1

βik · γkj = δij , i, j ∈ {1, . . . , p},

that can be written in the matrix form

X · Y = Ep.

Therefore, the matrix X ∈ Mp×q has a right inverse, so its rows are linearly
independent, i.e. row rank is equal to p.

If we apply the functor F to the morphism τ−+ : −+ → +− of 1Cob,
shown in the following picture

❅
❅

❅■

�
�
�

✠

− +

+ −

we obtain the morphism F (τ−+) : F (−) ⊗ F (+) → F (+) ⊗ F (−) of MatK,
i.e. the matrix of order (pq) × (qp). The symmetry of F implies F (τ−+) =
Sq,p, where Sq,p is the commutation matrix. The crucial fact is that the
commutative matrix Sq,p satisfies the following conditions:

(4.2) Sqp · L(Y ) = L(Y T ),

(4.3) H(X) · Sqp = H(XT ),

(more details can be found in [15, 17, 18]).
Since the cobordisms B and C can be decomposed as B = B ◦ τ−+ and

C = τ−+ ◦ C,
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✛

− + =
❍❍❍❍❍❍❨

✟✟✟✟✟✟

✙

− +

+ −

✲

✛

+ − =

❍❍❍❍❍❍❨

✟✟✟✟✟✟

✙

− +

+ −

✲

B B

C
C

it follows that F (B) = F (B) · F (τ−+) and F (C) = F (τ−+) · F (C), i.e.

F (B) =
[
β11 . . . β1q

∣
∣ β21 . . . β2q

∣
∣ . . .

∣
∣ βp1 . . . βpq

]
· Sqp

(4.3)
===

[
β11 . . . βp1

∣
∣ β12 . . . βp2

∣
∣ . . .

∣
∣ β1q . . . βpq

]
,

F (C) = Sqp ·
[
γ11 . . . γ1p

∣
∣ γ21 . . . γ2p

∣
∣ . . .

∣
∣ γq1 . . . γqp

]T

(4.2)
===

[
γ11 . . . γq1

∣
∣ γ12 . . . γq2

∣
∣ . . .

∣
∣ γ1p . . . γqp

]T
.

Analogously, we can decompose the cobordism id− into two cobordisms
id− ⊗ C and B ⊗ id−,

✻

−

−

=

✻

−

−

✛

+ −

✛
✻

−B

C

Applying F , we see that

idF (−) = (F (B)⊗ idF (−)) · (idF (−) ⊗ F (C)), i.e.

Eq = (F (B)⊗ Eq) · (Eq ⊗ F (C)),

where Eq is the identity matrix of order q. This yields the system of q2

equations
p

∑

i=1

βik · γli = δkl, k, l ∈ {1, . . . , q},

equivalent to the matrix equation

Y ·X = Eq.

Consequently, the matrix X ∈ Mp×q has a left inverse, so its columns are
linearly independent, i.e. its column rank is equal to q. Since the row rank
and the column rank of a matrix are equal, it follows that p = q as claimed.
Note that we have proved more, namely that the matrices X and Y are
inverses to each other.
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The object part of every strict 1-TQFT is completely determined by the
image p of positively oriented point. By the Proposition 4.2 the value of F on
any object a1 . . . an of 1Cob, consisting of k positively and l negatively oriented
points, is pk · pl = pk+l = pn. Hence, every strict 1-TQFT, mapping the
manifold consisting of one point to a number p ≥ 2, on objects coincide with
Brauerian representation. Since every cobordism is a finite tensor product of
connected cobordisms composed with some applications of τ ’s, we only need
to know where F sends id+, id−, B, B, C, C and S1. The matrices F (id+)
and F (id−) are equal to the identity matrix Ep of order p. Due to the fact

that the cobordisms B and C can be decomposed into compositions of the
cobordism τ−+ with B and C, respectively, and the equality F (τ−+) = Spp,
we only need to describe the following matrices

F (B) =
[
β11 . . . β1p

∣
∣ β21 . . . β2p

∣
∣ . . .

∣
∣ βp1 . . . βpp

]
∈ M1×p2 ,

F (C) =
[
γ11 . . . γ1p

∣
∣ γ21 . . . γ2p

∣
∣ . . .

∣
∣ γp1 . . . γpp

]T
∈ Mp2×1,

and F (S1) ∈ M1×1.

Proposition 4.3. F (S1) = p.

Proof. Let us look at S1 as the composition B ◦ τ−,+ ◦ C.

✫✪
✬✩

✻ =
❍❍❍❍❍❍❨

✟✟✟✟✟✟

✙

− +

+ −

✲

✲
B

C

S1

Thus we see that F (S1) = F (B) · F (τ−+) · F (C), i.e.

F (S1) =
[
β11 . . . β1p

∣
∣ β21 . . . β2p

∣
∣ . . .

∣
∣ βp1 . . . βpp

]
· Spp

·
[
γ11 . . . γ1p

∣
∣ γ21 . . . γ2p

∣
∣ . . .

∣
∣ γp1 . . . γpp

]T

(4.2)
===

[
β11 . . . β1p

∣
∣ β21 . . . β2p

∣
∣ . . .

∣
∣ βp1 . . . βpp

]

·
[
γ11 . . . γp1

∣
∣ γ12 . . . γp2

∣
∣ . . .

∣
∣ γ1p . . . γpp

]T

= β11γ11 + β12γ21 + . . .+ β1pγp1
︸ ︷︷ ︸

1

+ β21γ12 + β22γ22 + . . .+ β2pγp2
︸ ︷︷ ︸

1

+ · · ·+ βp1γ1p + βp2γ2p + . . .+ βppγpp
︸ ︷︷ ︸

1

(4.1)
=== p.



ON THE FAITHFULNESS OF 1-TQFTS 77

We can rewrite the matrix equation X · Y = Ep (see for instance [10,
Section 2.8], [18]) as H(X) · (Ep ⊗ Y ) = H(Ep), i.e.

(4.4)

[
β11 . . . β1p

∣
∣ β21 . . . β2p

∣
∣ . . .

∣
∣ βp1 . . . βpp

]
· (Ep ⊗ Y )

=
[
1 0 . . . 0

∣
∣ 0 1 . . . 0

∣
∣ . . .

∣
∣ 0 0 . . . 1

]
,

as well as (X ⊗ Ep) · L(Y ) = L(Ep), i.e.

(4.5)
(X ⊗ Ep) ·

[
γ11 . . . γ1p

∣
∣ γ21 . . . γ2p

∣
∣ . . .

∣
∣ γp1 . . . γpp

]T

=
[
1 0 . . . 0

∣
∣ 0 1 . . . 0

∣
∣ . . .

∣
∣ 0 0 . . . 1

]T
.

Since the Brauerian representation assigns the matrices

[
1 0 . . . 0

∣
∣ 0 1 . . . 0

∣
∣ . . .

∣
∣ 0 0 . . . 1

]

and

[
1 0 . . . 0

∣
∣ 0 1 . . . 0

∣
∣ . . .

∣
∣ 0 0 . . . 1

]T

to the cobordisms B and C, respectively, we conclude that every strict 1-TQFT
on B and C coincides with the Brauerian representation up to multiplication
by invertible matrices.

Proposition 4.4. Let F : 1Cob → MatK be a strict 1-TQFT such that
F (+) = p ≥ 2, and B : 1Cob → MatK be the Brauerian representation. Then,
there is a monoidal natural isomorphism θ : B ⇒ F .

Proof. Let us assign to each object a of 1Cob an invertible morphism
θa : B(a) → F (a) of MatK, i.e. an invertible matrix in the following way. We
first define θ∅ : 1 → 1, θ+ : p → p and θ− : p → p to be E1, Ep and X−1,
respectively. Then, for every object a = a1 . . . an of 1Cob we define θa by
the Kronecker product θa1

⊗ . . . ⊗ θan
. We proceed to show that for every

morphism f : a → a′ of 1Cob the following diagram commutes in MatK.

B(a)

B(a′)

F (a)

F (a′)

θa

θa′

B(f) F (f)

✲

✲
❄ ❄

It suffices to prove for generators id+, id−, S
1, B, C, B and C. From

B(id+) = F (id+) = Ep and B(id−) = F (id−) = Ep, we obtain θ+ · Ep =
Ep · θ+ and θ− · Ep = Ep · θ−. We have θ∅ · B(S1) = F (S1) · θ∅ because
1 · p = p · 1. The following diagrams commute
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B(+−)

B(∅)

F (+−)

F (∅)

θ+−

B(
+ −
∪ ) F (

+ −
∪ )

✲

=
❄ ❄

B(∅)

B(−+)

F (∅)

F (−+)
θ−+

B( ∩
−+

) F ( ∩
−+

)

=

✲
❄ ❄

which follows from

B(
+ −
∪ )

(4.4)
=== F (

+ −
∪ ) · (Ep ⊗X−1) = F (

+ −
∪ ) · (θ+ ⊗ θ−) = F (

+ −
∪ ) · θ+−

and

F ( ∩
−+

)
(4.5)
=== (X−1 ⊗ Ep) ·B( ∩

−+
) = (θ− ⊗ θ+) · B( ∩

−+
) = θ−+ · B( ∩

−+
).

Using the key property of the commutation matrix that enables us to inter-
change the two matrices of a Kronecker product, we can see that

B(
− +
∪ ) = B(

+ −
∪ ) · Spp = F (

+ −
∪ ) · (Ep ⊗X−1) · Spp

= F (
+ −
∪ ) · Spp · (X

−1 ⊗ Ep) = F (
− +
∪ ) · (X−1 ⊗ Ep) = F (

− +
∪ ) · θ−+,

F ( ∩
+−

) = Spp · F ( ∩
−+

) = Spp · (X
−1 ⊗ Ep) · B( ∩

−+
)

= (Ep ⊗X−1) · Spp ·B( ∩
−+

) = θ+− ·B( ∩
+−

).

A direct consequence of this last result and the faithfulness of the Braue-
rian representation is as follows.

Corollary 4.5. Every strict 1-TQFT, F : 1Cob → MatK, such that
F (+) = p ≥ 2, is faithful.

5. Strong 1-dimensional Topological Quantum Field Theories

The category V ectK of finite dimensional vector spaces over a fixed field K

with ordinary tensor product ⊗ and 1-dimensional vector space K as the unit
is a symmetric monoidal, but not a strict monoidal. By the universal property
of the tensor product, there is a unique isomorphism αV,W,U : V ⊗ (W ⊗U) ∼=
(V ⊗W )⊗U , such that v⊗(w⊗u) 7→ (v⊗w)⊗u. The structural isomorphisms
λV : K⊗V ∼= V and ρV : V ⊗K ∼= V are given by a⊗v 7→ av and v⊗a 7→ av,
respectively. The symmetry is brought by σV,W : V ⊗W ∼= W ⊗ V defined
by v ⊗ w → w ⊗ v.

Definition 5.1. Strong 1-TQFT is a strong symmetric monoidal functor
(F, F0, F2) between the strict symmetric monoidal category (1Cob,⊗, ∅, τn,m)
and the non-strict symmetric monoidal category (V ectK,⊗,K, α, λ, ρ, σV,W )
(for the notion of strong monoidal functor see [14]).
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For every closed oriented 0-dimensional manifold, regarded as a sequence
of points a = a1 . . . an, where ai ∈ {+,−}, the functor F assigns a vector space
F (a), and for every oriented 1-cobordism K from a to b it assigns a linear
map F (K) : F (a) → F (b). The components of a natural transformation F2

are isomorphisms F2(a, b) : F (a)⊗F (b)
∼=
−→ F (ab), and F0 : K

∼=
−→ F (∅) is also

an isomorphism of V ectK. Together, they must make the diagrams involving
the structural maps α, λ, ρ, and σ commute in V ectK (see [14]).

Our goal is to prove that every strong 1-TQFT, F : 1Cob → V ectK,
mapping ai ∈ {+,−} to a vector space of dimension at least 2, is faithful.
For this purpose, let us consider the category V ectBK whose objects are the
ordered pairs (V, e), where V is a finite dimensional vector space, and e is
a chosen ordered basis for V . The morphisms (V, e) → (V ′, e′) are just the
usual linear maps V → V ′. If e = [e0, . . . , en−1] and f = [f0, . . . , fm−1]
are ordered bases for V and W , respectively, let e ⊗ f denote the ordered
basis for V ⊗W , having vector ϕ(ei, fj) at the [i ·m+ j]-th position, where
ϕ : V ×W → V ⊗W is canonical bilinear map. The monoidal structure of
V ectBK is given on objects by

(V, e)⊗ (W, f) = (V ⊗W, e⊗ f),

with (K, 1K) serving as the unit. The tensor product of two morphisms is
defined in the same way as in V ectK.

We now proceed to introduce a new functor F ∗ : 1Cob → V ectBK. It is
recursively defined on objects in the following way, while it coincides with F

on morphisms.

The image of 1K under the isomorphism F0 : K
∼=
−→ F (∅) is taken to be

the basis of F (∅), so we set F ∗(∅) = (F (∅), F0(1K)).
Once we have chosen bases e+ and e− for the spaces F (+) and F (−),

respectively, we define F ∗(+) = (F (+), e+) and F ∗(−) = (F (−), e−).
If a = a1 . . . an is an object of length n, we define F ∗(a1 . . . an) =
(F (a1 . . . an), ea1...an

), where a basis ea1...an
for the space F (a1 . . . an) is ob-

tained by taking the image of an ordered basis of domain under the isomor-
phism

F2(a1, a2 . . . an) : F (a1)⊗ F (a2 . . . an) → F (a1 . . . an).

More precisely, if ea1
is a given basis for F (a1), and ea2...an

is recursively
defined basis for F (a2 . . . an), then the basis for the space F (a1 . . . an) is taken
to be the image of basis ea1

⊗ ea2...an
under the isomorphism F2.

Our next task is to prove that F ∗ is faithful. To do this, take a dimensional
functor G : V ectBK → MatK, sending a vector space to its dimension, and a
linear map to its matrix with respect to the chosen ordered bases

G(V, e) = dimV,

G(L : (V, e) → (V ′, e′)) = [L]e,e′ .
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Lemma 5.2. Let e = [e0, . . . , en−1], f = [f0, . . . , fm−1] and g =
[g0, . . . , gk−1] be bases for U , V and W , respectively. If α : (U, e)⊗ ((V, f) ⊗
(W, g)) → ((U, e)⊗ (V, f))⊗ (W, g) is defined by

α(ei ⊗ (fj ⊗ gh)) = (ei ⊗ fj)⊗ gh,

then

G(α) = En·m·k,

where En·m·k is the identity matrix of order n ·m · k.

Proof. The vector ei⊗ (fj ⊗ gh) is the [i · (mk)+ j · k+h]-th element of
the basis e⊗ (f ⊗ g) for the space U ⊗ (V ⊗W ), and the vector (ei ⊗ fj)⊗ gh
is the [(i · m + j) · k + h]-th element of the basis (e ⊗ f) ⊗ g for the space
(U ⊗ V ) ⊗ W . The image under α of the l-th basis vector ei ⊗ (fj ⊗ gh) is
the l-th basis vector (ei ⊗ fj) ⊗ gh. Thus, the matrix representation of α
with respect to bases e⊗ (f ⊗ g) and (e⊗ f)⊗ g is the identity matrix of the
appropriate order.

Lemma 5.3. Given any objects a and b of 1Cob, we have

G(F2(a, b) : F (a)⊗ F (b)
∼=
−→ F (ab)) = E.

Proof. The proof is by induction on the length of the object a. Base
case: Let a1 ∈ {+,−} be an object of length 1 and let b = a2 . . . an be an
object of an arbitrary length. Fix ordered basis ea1

= [e0, . . . , ep−1], p ≥ 2,
and ea2...an

= [f0, . . . , fm−1] for F (a1) and F (a2 . . . an), respectively. Then
the corresponding basis [g0, . . . , gpm−1] for F (a1) ⊗ F (a2 . . . an) is given by
gi·m+j = ei ⊗ fj . The matrix representation of

F2(a1, a2 . . . an) : F (a1)⊗ F (a2 . . . an)
∼=
−→ F (a1 . . . an)

with respect to the bases [g0, . . . , gpm−1] and [F2(g0), . . . , F2(gpm−1)] is the
identity matrix of order p ·m, i.e. G(F2(a1, b)) = E. Induction step: Suppose
that the claim is true for all objects a of length less than n, where n > 1.
Take an arbitrary object a = a1 . . . an of 1Cob. By the commutativity of the
following diagram

F (a1)⊗ F (a2 . . . anb)

F (a1(a2 . . . anb))

F (a1a2 . . . an)⊗ F (b)

F ((a1a2 . . . an)b)

F (a1)⊗ (F (a2 . . . an)⊗ F (b)) (F (a1)⊗ F (a2 . . . an))⊗ F (b)
α

F2(a1, a2 . . . anb) F2(a1a2 . . . an, b)

1⊗ F2(a2 . . . an, b) F2(a1, a2 . . . an)⊗ 1

✲

=
❄ ❄

❄ ❄
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we have that
F2(a1a2 . . . an, b) =

F2(a1, a2 . . . anb) ◦ (1⊗ F2(a2 . . . an, b)) ◦ α
−1 ◦ (F2(a1, a2 . . . an)⊗ 1)−1.

Now, by the induction hypothesis and Lemma 5.2 it follows that

G(F2(a1a2 . . . an, b)) = E.

Lemma 5.4. (see [8, Chapter 11, Proposition 17]) Let L : (V, e) → (V ′, e′)
and H : (W, f) → (W ′, f ′) be linear maps of finite dimensional vector spaces.
Then the Kronecker product of matrices [L]e,e′ and [H ]f,f ′ , representing L

and H, is equal to the matrix [L⊗H ]e⊗f,e′⊗f ′ , representing L⊗H : V ⊗W →
V ′ ⊗W ′, i.e.

G(L ⊗H) = G(L)⊗G(H).

Proposition 5.5. The composition GF ∗ : 1Cob → MatK is a strict
monoidal functor.

Proof. It can be easily seen that GF ∗ maps unit to unit

(GF ∗)(∅) = G(F (∅), F0(1K)) = dim(F (∅)) = 1.

For any two objects a and b of 1Cob we have

(GF ∗)(ab) = G(F (ab), eab) = dimF (ab) = dim(F (a)⊗ F (b))

= dim(F (a)) · dim(F (b)) = G(F (a), ea) ·G(F (b), eb)

= G(F ∗(a)) ·G(F ∗(b)).

By the naturality of F2, the following diagram commutes for every two
morphisms f : a → a′ and g : b → b′.

F (a)⊗ F (b)

F (a′)⊗ F (b′)

F (ab)

F (a′b′)

F2(a, b)

F2(a
′, b′)

Ff ⊗ Fg F (f ⊗ g)

✲

✲
❄ ❄

It follows that

(GF ∗)(f ⊗ g) = G(F (f ⊗ g)) = G(F2(a
′, b′) ◦ (F (f)⊗ F (g)) ◦ F−1

2 (a, b))

= G(F2(a
′, b′)) ·G(F (f)⊗ F (g)) ·G(F−1

2 (a, b))

(Lemma 5.3)
====== G(F (f)⊗ F (g))

(Lemma 5.4)
====== G(F (f))⊗G(F (g))

= (GF ∗)(f)⊗ (GF ∗)(g).
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In our next Proposition we show that the composition GF ∗ maps sym-
metry to symmetry.

Proposition 5.6. (GF ∗)(τa,b) = Sn,m.

Proof. From the commutativity of the following diagram

F (a)⊗ F (b)

F (ab)

F (b)⊗ F (a)

F (ba)

σF (a),F (b)

F (τa,b)

F2(a, b) F2(b, a)

✲

✲
❄ ❄

we can see that

(GF ∗)(τa,b) = G(F (τa,b)) = G(F2(b, a) ◦ σF (a),F (b) ◦ F
−1
2 (a, b))

= G(F2(b, a)) ·G(σF (a),F (b)) ·G(F−1
2 (a, b))

(Lemma 5.3)
====== G(σF (a),F (b)).

Since the matrix representation of the linear map σF (a),F (b) : F (a)⊗ F (b) →
F (b) ⊗ F (a) is independent of the choice of the bases e = [e0, . . . , en−1] and
f = [f0, . . . , fm−1] for F (a) and F (b), we conclude that G(σF (a),F (b)) = Sn,m.

Note that we have actually proved that GF ∗ : 1Cob → MatK is a strict
1-TQFT. Clearly, GF ∗ satisfies the condition of Corollary 4.5. Therefore,
GF ∗ is faithful.

Corollary 5.7. F ∗ : 1Cob → V ectBK is faithful.

We can now formulate our main result.

Theorem 5.8. Suppose (F, F0, F2) : 1Cob → V ectK is a strong 1-TQFT,
mapping the 0-dimensional manifold consisting of one point to a vector space
of dimension at least 2. Then F is faithful.
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