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Abstract. We introduce a new approach for dealing with scalar
conservation laws with the flux discontinuous with respect to the space
variable and merely continuous with respect to the state variable which
employs a variant of the kinetic formulation. We use it to improve results
about the existence of solutions for non-degenerate scalar conservation laws
with Caratheodory flux under a variant of non-degeneracy conditions.

1. Introduction

Scalar conservation laws with discontinuous flux are a non-trivial general-
ization of scalar conservation law with smooth flux, and they describe different
physical phenomena occurring in highly heterogeneous environments. Typi-
cal examples are flow in porous media, sedimentation processes, traffic flow,
radar shape-from-shading problems, blood flow, gas flow in a variable duct
etc. (see e.g. [1, 7, 8, 10] and references therein). Therefore, since the eight-
ies (probably from [28]), scalar conservation laws with discontinuous flux are
under intensive investigations.

Unlike the situation when the flux depends regularly on the space vari-
able, the questions of existence and uniqueness of solution as well as existence
of traces of entropy solutions are still open in the case when the flux is dis-
continuous. Indeed, in the classical work [13] one can find a comprehensive
concept (well known entropy solutions) leading to the well posedness of scalar
conservation laws with regular coefficients (continuously differentiable with
respect to all the variables). It appeared that it is highly non-trivial to ex-
tend the concept to the case when the flux is discontinuous with respect to
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the space variable and several interesting approaches appeared in [2, 3, 12, 22]
most of them adapting the approach from [13]. Still, the question of existence
and uniqueness of solution in the case when the flux is merely of bounded
variation with respect to the space variable is still open.

The situation is even more complicated when the flux is merely continuous
with respect to the state variable as in that case we do not have well-posedness.
More precisely, in [21] one can find an example of a Cauchy problem for scalar
conservation law with continuous flux admitting two different entropy solution
with the same initial data. As for the existence, it holds even in the case
when the flux is Caratheodory vector i.e. bounded variation with respect to
the space variable and continuous with respect to the state variable under the
so called non-degeneracy conditions ([23]). Under stronger non-degeneracy
conditions, we shall improve and simplify the result from [23] (see also [20]).

In order to precisely formulate the problem, let us introduce the equation
that we are going to consider:

(1.1) ∂tu+ divxf(x.u) = 0,

where

A1. f ∈ BV (Rd;C(Rd)) and max
λ∈[−M,M ]

|f(x, λ)| ∈ L1+σ
loc (Rd));

A2. it holds f(x, λ) = 0 for λ /∈ (a, b) for some a, b ∈ R.

To proceed, denote

fδ = f ⋆
1

δ
ω

(

λ

δ

)

=

∫

f(x, η)
1

δ
ω

(

λ− η

δ

)

dη and f′δ = ∂λfδ.

We shall also assume the following non-degeneracy conditions.

Definition 1.1. We say that the flux f satisfies the non-degeneracy con-
ditions if there exists a non-negative function ω ∈ C∞

c (R) with total mass one
and p > 1 such that for any interval I ⊂⊂ R, every (τ, ξ) ∈ Sd, where Sd is
a sphere in R

d+1, and almost every x ∈ R
d, it holds for any δ = δ(δ0) < δ0

and some σ(δ0) → 0 as δ0 → 0:

(1.2) lim inf
δ0→0

∥

∥

∥

(

τ + 〈f′δ(x, λ), ξ〉
)(

τ + 〈f′δ0 (x, λ), ξ〉
)

∣

∣

∣τ + 〈f′δ0 (x, λ), ξ〉
∣

∣

∣

2

+ σ(δ0)
− 1

∥

∥

∥

L2(I)
= 0.

The previous definition essentially states that when the function g(λ) =
τ + 〈f(x, λ), ξ〉 is differentiable, then its derivative must be different from
zero on non-zero sets. If it is not differentiable, then we need to be able
to choose the convolution kernel ω such that (1.2) holds (very informally

speaking, for every (τ, ξ) ∈ Sd and almost every (t,x) ∈ R
d+1
+ , the inequality

lim sup
δ→0

∣

∣

∣τ + 〈f′δ0(x, λ), ξ〉
∣

∣

∣ ≥ c > 0 should hold almost everywhere for some

fixed c, where c can also be ∞).
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In [23], the non-degeneracy conditions are much simpler and it is required
that for every (τ, ξ) ∈ Sd, where Sd is a sphere in R

d+1, and almost every
x ∈ R

d, the mapping

(1.3) λ 7→ τλ+ 〈f(x, λ), ξ〉

is non-constant on non-degenerate intervals.
It is not clear what the relation between (1.2) and (1.3) is, but if f is

continuously differentiable then (1.2) follows from (1.3) (see e.g. proof of [16,
Theorem 3.4]).

The main result of the article is the following theorem.

Theorem 1.2. Equation (1.1) satisfying A1, A2, and the non-degeneracy
conditions (1.2) augmented with the initial conditions u|t=0 = u0(x) such that
a ≤ u0 ≤ b admits at least one weak solution.

The method of the proof consists in considering standard vanishing viscos-
ity approximation and then proving that the family of approximate solutions
is strongly L1

loc-precompact. The main tool for the convergence proof will be
the reformulation of the problem in the kinetic formulation ([18]), and then
applying H-measures ([9, 26]) and H-distributions ([2, 16]) in order to obtain
precompactness of the family of approximating solutions.

The paper is organized as follows. After the introduction, we recall the
necessary notions from the H-measures and H-distributions. In the continu-
ation of the section, we introduce the vanishing viscosity approximation and
show that it admits a strongly converging subsequence in L1

loc(R
+ ×R

d).

2. H-measures and H-distributions

Let us first recall basic notions concerning H-measures and H-distributions.
The first works concerning micro-local defect functionals are due to P.

Gerard ([9]) and L. Tartar ([26]) in the L2-setting (independently of each
other), and a generalization to the Lp-setting was achieved twenty years later
in [2]. Further generalizations can be found in [4, 5, 14, 15, 16, 17, 19, 24, 27]
and in [25] where the connection between micro-local defect functionals and
Young measures is discovered.

H-measures, as well as any other micro-local defect functional describe
the lack of Lp-strong convergence of the sequence (un) for appropriate p ≥ 1.
More precisely, if the H-measure equals zero, then the sequence defining it
strongly converges to zero in L2

loc(R
d;Rm) as well. It is a similar situation

with the H-distributions.
Here, we shall recall (probably) the most up-to date version of the H-

measures and H-distributions introduced in [16] on a new type of space. Let
us introduce the notions that we are going to use here. We fix the notation
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by denoting by s′ the conjugate of s:

1

s
+

1

s′
= 1.

Next, let s̄ > s > 1 and r > 1 such that 1/s′+1/s̄ = 1/r. We denote || · ||W (s̄,s)

the following functional

‖φ‖W (s̄,s) = sup
‖ρ‖

Ls′ (Rd+m)
=1

(
∫

Rd

∥

∥

∫

Rm

ρ(x, λ)φ(x, λ, ξ)dλ
∥

∥

r

Cd(Sd−1)
dx

)1/r

(2.1)

‖φ‖
W

(s̄,s)
0

= sup
‖ρ‖

Ls′ (Rd+m)
=1

(
∫

Rd

∥

∥

∫

Rm

ρ(x, λ)φ(x, λ, ξ)dλ
∥

∥

r

C(Sd−1)
dx

)1/r

.

(2.2)

for a measurable function φ for which (2.1) is finite.
The latter two functionals define the vector spaces introduced originally

in [16]

W (s̄,s) : =W (s̄,s)(Rd,Rm, Sd−1) = {φ : ||φ||W (s̄,s) <∞}

W
(s̄,s)
0 : =W

(s̄,s)
0 (Rd,Rm, Sd−1) = {φ : ||φ||

W
(s̄,s)
0

<∞}.

In the sequel, we shall use the notation W (s̄,s) and W
(s̄,s)
0 whenever it is

clear over which sets the space is defined. The space W (s̄,s) has the following

properties [17] (analogous properties hold for the space W
(s̄,s)
0 ).

• By identifying two functions φ1, φ2 ∈W (s̄,s) such that for almost every
x ∈ R

d, every ξ ∈ Sd−1, and almost every λ ∈ R
m it holds φ1−φ2 = 0,

relation (2.1) defines a norm on W (s̄,s).
• A function φ is zero in W (s̄,s) if and only if for almost every x ∈ R

d,
every ξ ∈ Sd−1 the function λ→ φ(x, λ, ξ) is zero a.e.

• The space Ls̄(Rd;Ls(Rm;Cd(Sd−1))) is continuously embedded into
W (s̄,s) since

(2.3)

‖

∫

Rm

ρ(x, λ)φ(x, λ, ξ)dλ‖Cd(Sd−1) ≤

∫

Rm

|ρ(x, λ)| ‖φ(x, λ, ·)‖Cd(Sd−1)dλ.

• Let Ωx and Ωλ be relatively compact sets in R
d and R

m, respectively.
Let q > s and 1/s′ + 1/s̄ = 1/q′ + 1/q̄ = 1/r. Then the following
continuous embedding holds ([17, Lemma 2.3])

(2.4) W (q̄,q)(Ωx,Ωy, S
d−1) →֒ W (s̄,s)(Ωx,Ωy, S

d−1).

• The set Cdc (R
d+m × Sd−1) ∩W (q̄,q) is dense in W (q̄,q).

Now, we introduce a completition of the space W s̄,s on which we can
define the micro-local defect functional that we need.
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We call the N -partition, N ∈ N, the decomposition of the space R
d on

disjoint equal hyper-cubes with the edge parallel to the coordinate axis and of
the length 1/2N where the vertex of some of the hyper-cubes is at the origin.

Fix a relatively compact set K ⊂⊂ R
m. Let Υ be a family of functions

of the form

(2.5) Υ = {

Ñ
∑

j=1

αj(ξ, λ)χ
N
j (x) : αNj ∈ Cd(Sd−1 ×K), N, Ñ ∈ N},

where χNj are characteristic functions of appropriate hypercubes from the

N -partitions of Rd.
By W̃ (s̄,s) we denote the closure of Υ in W (s̄,s):

(2.6) W̃ (s̄,s) = Cl
‖·‖

W(s̄,s)
(Υ).

The following two theorems are slight modifications of the results from [17].

Theorem 2.1. Let (un) be a bounded sequence in Lp(Rd+m), p ∈ (1, 2],
and let (vn) be a uniformly compactly supported bounded sequence of functions
converging weakly to zero in Lq(Rd) for some (finite) q > p′. Let r ∈ (1, p) be
such that 1

p +
1
r′ +

1
q = 1. Then, after passing to a subsequence (not relabeled),

there exists a continuous bilinear functional µ on Lr(Rd)⊗Lp
′

(Rm;Cd(Sd−1))

such that for every φ ∈ Lr(Rd) and ψ ∈ Lp
′

(Rm;Cd(Sd−1)), it holds

(2.7) µ(φ, ψ) = lim
n→∞

∫

Rd+m

φ(x)un(x, λ)Aψ(λ,ξ/|ξ|)

(

vn
)

(x)dxdλ ,

where Aψ(λ,ξ/|ξ|) is the Fourier multiplier operator on R
d with the symbol

ψ(λ, ξ/|ξ|).
The functional µ is called the H-distribution corresponding to (sub)sequences

(of) (un) and (vn). It extends continuously to W̃ (s̄,s).

In the similar manner, we can introduce the completition of the space
W s̄,s

0 simply be replacing ‖ · ‖W s̄,s by ‖ · ‖W s̄,s
0

in (2.6). This is possible in

the case when the sequence (un) is bounded in Lp(Rd+m), p ≥ 2, since in
this case we do not need to apply the Marcinkiewitz multiplier theorem but
simply use the fact that a multiplier operator is bounded L2 → L2 mapping
if it symbol is bounded. Therefore, we can use the norm in C0(S

d−1) instead
of the norm in Cd(Sd−1). We then have the following theorem.

Theorem 2.2. Let (un) be a bounded sequence in Lp(Rd+m), p ≥ 2, and
let (vn) be a uniformly compactly supported bounded sequence of functions
converging weakly to zero in Lq(Rd) for some (finite) q > p′. Let r ∈ (1, p) be
such that 1

p +
1
r′ +

1
q = 1. Then, after passing to a subsequence (not relabeled),

there exists a continuous bilinear functional µ on Lr(Rd)⊗Lp
′

(Rm;C(Sd−1))
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such that for every φ ∈ Lr(Rd) and ψ ∈ Lp
′

(Rm;C(Sd−1)), it holds

(2.8) µ(φ, ψ) = lim
n→∞

∫

Rd+m

φ(x)un(x, λ)Aψ(λ,ξ/|ξ|)

(

vn
)

(x)dxdλ ,

where Aψ(λ,ξ/|ξ|) is the Fourier multiplier operator on R
d with the symbol

ψ(λ, ξ/|ξ|).
The functional µ is called the H-measure corresponding to (sub)sequences

(of) (un) and (vn). It extends continuously to W̃
(s̄,s)
0 .

3. Proof of Theorem 1.2

We are now ready to prove the main theorem. To this end, take the family
of the mollifiers ωδ given in Definition 1.1 and consider the following family
of approximations to (1.1) with the initial data u0:

∂tuδ + divxfδ(x, uδ) = 0,(3.1)

for fδ = f ⋆ 1
δωδ(x/δ) where ⋆ denotes the convolution operator. Since the

flux fδ is smooth, there exists an entropy admissible solution to (3.1) in the
standard Kruzhkov sense ([13]), uδ

∣

∣

t=0
= u0(x) satisfying for any λ ∈ R:

(3.2)
∂t|uδ − λ|+ divx (sgn(uδ − λ)(fδ(x, uδ)− fδ(x, λ)))

≤ sgn(uδ − λ)divxfδ(x, λ).

Moreover, since fδ(x, 2a) = fδ(x, 2b) = 0 for δ small enough, the family of
solutions (uδ) will remain bounded between 2a and 2b (see e.g. [23]).

We fix δ0 > 0 and, using also Schwartz lemma on non-negative distribu-
tions, we rewrite the equation in the form

∂t|uδ − λ|+ divx (sgn(uδ − λ)(fδ0(x, uδ)− fδ0(x, λ)))

= divx (sgn(uδ − λ)((fδ0 − fδ)(x, uδ)− (fδ0 − fδ)(x, λ)))

+ sgn(uδ − λ)divxfδ(x, λ) −mδ(t,x, λ),

for a non-negative Radon measure mδ ∈ M(R+ ×R
d ×R).

Then, by finding derivative of the such expression with respect to λ, we
get

(3.3)

∂thδ(t,x, λ) + divx(f
′
δ0(x, λ)hδ(t,x, λ))

= ∂λdivx (sgn(uδ − λ)((fδ0 − fδ)(x, uδ)− (fδ0 − fδ)(x, λ)))

+ ∂λ
(

sgn(uδ − λ)divxfδ(x, λ)
)

+ ∂λmδ(t,x, λ),

where f′δ0(x, λ) = ∂λfδ0(x, λ) and hδ(t,x, λ) = ∂λ|uδ − λ|.
As usual when applying the micro-local defect functionals, we first need to

derive the localization principle from equation (3.3). The localization principle
describes the support of the corresponding micro-local defect functional. To
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this end, for fixed ρ ∈ Cc(R
m) and ϕ̃ ∈ Cc(R

d
+), denote by V a weak-∗

L∞(Rd
+) limit along some not relabelled subsequence of the sequence

(3.4) Vδ =







ϕ̃(t,x)
∫
Rm ρ(λ)hδ(t,x,λ)dλ

|
∫
Rm ρ(λ)hδ(t,x,λ)dλ|

,
∫

Rm ρ(λ)hδ(t,x, λ)dλ 6= 0,

0, otherwise.

Denote vδ = Vδ −V and note that the subsequence of the family (vδ) satisfies
the conditions of Theorem 2.1 and Theorem 2.2.

Denote

U δ0δ = sgn(uδ − λ)((fδ0 − fδ)(x, uδ)− (fδ0 − fδ)(x, λ)),

where ϕ̃ ∈ C1
c ([0, T ]× Ω) for a fixed T > 0 and Ω ⊂⊂ R

d.

Due to linearity, we can assume without losing on generality that hδ
∗
⇀ 0

in L∞(Rd
+ × R). Remark that this implies mδ⇀0 in the space of Radon

measures. We then denote by

(HM) µ – the H-measure corresponding to a subsequence of the families (hδ)
and (vδ);

(HD) µδ0 – the H-distribution corresponding to a subsequence of the families

(U δ0δ ) and (vδ).

We can assume that both µ and µδ0 are defined along the same subsequences.
According to Lemma A.2, we know that

(3.5) ‖µδ0‖ . σ̃(δ0),

where σ̃(δ0) → 0 as δ0 → 0.
Now, we take the test function of the form

φn(t,x, λ) = ϕ1(t,x)ρ1(λ)(T−1 ◦ Aψ((τ,ξ)/|(τ,ξ)|)(vn))(t,x),

where T−1 is the Riesz transform ([11]), i.e. the multiplier operator with
the symbol 1

|(τ,ξ)| , which, as is well known, maps continuously Lp(Rd) →

W 1,p(Rd). As for the other functions, we have ψ ∈ Cd(Sd), ϕ1 ∈ C1
c (R

d),
ρ1 ∈ C1

c (R
m). We test (3.3) with respect to the φn and then let n→ ∞ along

the subsequence defining the H-measure µ and the H-distribution µδ0 . We get
(see e.g. [16, Theorem 3.4]):

(3.6)

〈ϕ1(t,x)ρ1(λ)ψ(τ, ξ)(τ + 〈fδ0(x, λ), ξ〉〉), µ〉

= 〈ϕ1(t,x)ϕ̃(t,x)ρ
′
1(λ)ψ(τ, ξ)

d
∑

k=1

ξj , µδ0〉.

According to the density arguments, we can replace ϕ1(t,x)ρ1(λ)ψ(τ, ξ) by an
arbitrary φ ∈W (p,p̃). Having this in mind, we take the following test function
to substitute in (3.6) instead of ϕ1ρ1ψ:

φδ0 (t,x, λ, τ, ξ) = ϕ(t,x)ρ(λ)ψ(τ, ξ)
(τ + 〈fδ̃(x, λ), ξ〉)

∣

∣τ + 〈fδ̃(x, λ), ξ〉〉
∣

∣

2
+ σ(δ0)
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where ϕ is an arbitrary Cc(R
d
+)-function, and we choose

δ̃(δ0) ≫ δ0 and σ(δ0) ≫ δ0

such that, for σ̃(δ0) from (3.5), we have

σ̃(δ0)‖∂λφδ0‖W (p,p̃) → 0.

Such a choice is clearly possible by taking for instance δ̃(δ0) = exp(− 1
σ̃(δ0)

),

taking into account (3.5) and definition of W (p,p̃). Substituting the test func-
tion φδ0 into (3.6), according to Lemma A.1 and Lemma A.2, we get after
letting δ0 → 0

(3.7) 〈ϕρ, µ〉 = 0.

Since ϕ is arbitrary, we conclude that the (weighted) H-measure ρµ is zero
and thus, the family (

∫

ρ(λ)hδdλ) contains an L1
loc-strongly convergent sub-

sequence. Using the density argument, we can choose ρ(λ) = χ[−M,M ](λ) for
the characteristic function χ[−M,M ] of the interval [−M,M ]. Thus we get

∫

ρ(λ)hδdλ =

∫ M

−M

sgn(uδ − λ)dλ = 2uδ

implying that (uδ) is L1
loc-strongly precompact. The strong L1

loc-limit along
any subsequence is the solution to the considered problem (1.1), u|t=0 =
u0(x).

Appendix A.

Lemma A.1. Assume that the flux f from (1.1) satisfies the non-

degeneracy conditions. Then, for any φ ∈ Lpc(R
d+1
+ ;Cd(Sd)) and ρ defined in

(3.4) the following holds:

(A.1) lim inf
δ0→0

〈φρ

(

τ + 〈f′δ0(x, λ), ξ〉
)

·
(

τ + 〈f′δ(x, λ), ξ〉
)

∣

∣

∣τ + 〈f′δ(x, λ), ξ〉
∣

∣

∣

2

+ σ(δ0)
, µ〉 = 〈φρ, µ〉,

where µ is the H-measure defined in HM.

Proof. We can rewrite (A.1) in the form

〈φρ, µ〉+ lim inf
δ0→0

〈φρ







(

τ + 〈f′δ0(x, λ), ξ〉
)

·
(

τ + 〈f′δ(x, λ), ξ〉
)

∣

∣

∣τ + 〈f′δ(x, λ), ξ〉
∣

∣

∣

2

+ σ(δ0)
− 1






, µ〉

= 〈φρ, µ〉

which is clearly correct since the second term on the right-hand side of the
latter expression tends to zero according to the non-degeneracy conditions
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and Theorem 2.2:

∣

∣

∣〈φρ







(

τ + 〈f′δ0(x, λ), ξ〉
)

·
(

τ + 〈f′δ(x, λ), ξ〉
)

∣

∣

∣τ + 〈f′δ(x, λ), ξ〉
∣

∣

∣

2

+ σ(δ0)
− 1






, µ〉

∣

∣

∣

≤ ‖φρ







(

τ + 〈f′δ0 (x, λ), ξ〉
)

·
(

τ + 〈f′δ(x, λ), ξ〉
)

∣

∣

∣τ + 〈f′δ(x, λ), ξ〉
∣

∣

∣

2

+ σ(δ0)

− 1






‖
W 2,2̃

0

‖µ‖.

Having in mind definition of the norm ‖ · ‖Wp,p̃
0

and using the Lebesgue dom-

inated convergence theorem, we conclude the lemma.

Lemma A.2. Under the assumptions |uδ| ≤ M , it holds (for δ small
enough)

(A.2) ‖µδ‖ . ‖ sup
λ,η∈[−M,M ]

|f(x, λ + δη)− f(x, λ)‖Lp(Ω) = σ̃(δ) → 0

as δ → 0.

Proof. From [17], we know that the bound of the H-distribution µδ0
equals (for the interval I ⊂ [−M,M ] where ρ from (3.4) is supported)

‖µδ0‖ ≤ C‖ϕ̃1sgn(uδ − λ)((fδ0 − fδ)(x, uδ)− (fδ0 − fδ)(x, λ)‖Lp([0,T )×Ω×I)

‖vδ‖Lp̃([0,T )×Ω).

Clearly, according to the definition of the convolution, we have

‖ϕ̃1sgn(uδ − λ)((fδ0 − fδ)(x, uδ)− (fδ0 − fδ)(x, λ)‖Lp([0,T )×Ω×I)

≤ C(T )‖ sup
λ,η∈[−M,M ]

|f(x, λ+ δη)− f(x, λ)|‖Lp(Ω).

Since f is a continuous function with respect to λ, we know that for almost
every x ∈ Ω, it must hold

sup
λ,η∈[−M,M ]

|f(x, λ+ δη)− f(x, λ)| → 0

since a continuous function on a compact set is uniformly continuous as well.
Now, from the Lebesgue dominated convergence theorem, we conclude (A.2).
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1307–1335.

[3] B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of L1-dissipative solvers

for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal. 201
(2011), 27–86.
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