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Abstract. In this paper we study the hyperspace of all nonempty
closed totally disconnected subsets of a space, equipped with the Vietoris
topology. We show results of compactness, connectedness and local con-
nectedness for this hyperspace. We also include a study of path connected-
ness, particularly we prove that for a smooth dendroid this hyperspace is
pathwise connected, and we present a general result which implies that for
an Euclidean space this hyperspace has uncountably many arc components.

1. Introduction

In this paper the spaces are T1, we mean the one-point sets are closed
sets. For a space X we denote by 2X the collection of all nonempty closed
subsets of X , equipped with the Vietoris topology, [8, Definition 1.7] and [10,
Definition (0.12)]. A subspace of 2X is called a hyperspace of the space X .
A problem treated by many authors is to investigate topological properties of
a space through its hyperspaces and vice versa, see references in the classical
books in this matter [5] and [10]. Here we begin the study of the hyperspace
of closed and totally disconnected subsets of a space X , that we denote by
TD(X). After Definitions, in Section 3, we show some basic facts concern-
ing the topological structure of this hyperspace, and we present conditions
for compactness, connectedness and local connectedness for it. In Section 4,
we prove that for every smooth dendroid X the hyperspace TD(X) is con-
tractible, and we include an example of a (non-smooth) dendroid for which
this hyperspace is not pathwise connected. We also prove that for a Hausdorff,
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locally compact, not compact and Lindelöf space X , the hyperspace TD(X)
has uncountably many arc components.

2. Definitions

Given a subset A of a space X , the interior and the closure of A in X
are denoted by int(A) and A, respectively. The cardinality of the set A is
denoted by |A|. We use the symbols R and N to denote the set of all real
numbers and the set of all positive integers, respectively. Also |R| es denoted
by c. A cellular family in a space X is a family of pairwise disjoint nonempty
open subsets of X . The collection of all finite cellular families of a space X is
denoted by C(X). The dimension of a space X is denoted by dim(X).

A subset A of a spaceX is totally disconnected provided that no connected
subset of A consists of more than one point. We recall that if p is a point
of a space X , then X is said to be locally connected (connected im kleinen)
at p provided that for each open subset U of X such that p ∈ U , there
exists a connected open subset (a connected subset) V of X such that p ∈ V
(p ∈ int(V )) and V ⊂ U . The space X is said to be locally connected provided
that it is locally connected at each of its points. It is clear that if a space
is locally connected at a point p, then it is connected im kleinen at p; the
converse is false (see the example in [11, Figure 5.22, p. 84]). Nevertheless, it
is easy to prove that these two notions are globally equivalent, i.e., a space is
locally connected if and only if it is connected im kleinen at each of its points.

For a space X , let

2X = {A ⊆ X : A is closed in X and A 6= ∅},

TD(X) = {A ∈ 2X : A is totally disconnected}, and

K(X) = {A ∈ 2X : A is compact}.

Given a finite family of open subsets U1, . . . , Un of X , we define 〈U1, . . . , Un〉
as the subset of 2X consisting of those elements A such that A ⊆ U1∪· · ·∪Un

and Ui ∩A 6= ∅ for each i ∈ {1, . . . , n}. The Vietoris topology is the topology
in 2X generated by the base consisting of all sets of the form 〈U1, . . . , Un〉
where n ∈ N and Ui is an open subset of X , see [8, Proposition 2.1, p. 155].
The hyperspace TD(X) will be considered as subspace of 2X . In particular, a
base for the topology of TD(X) consists of all sets of the form 〈U1, . . . , Un〉 ∩
TD(X).

An arc is a space homeomorphic to the closed interval [0, 1]. A contin-
uum is a nondegenerate compact connected metric space. A continuum X is
unicoherent provided that whenever A and B are closed connected subsets of
X such that X = A∪B, then A∩B is connected; X is hereditarily unicoher-
ent if each subcontinuum of X is unicoherent. A dendroid is a hereditarily
unicoherent and arcwise connected continuum. Given different points a and
b in a dendroid X , the unique arc in X with end points a and b is denoted
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by ab. A dendroid is smooth if there exists some point p ∈ X such that given
any sequence {an}n∈N in X with lim an = a, it holds that lim anp = ap.

3. Basic facts, compactness, connectedness and local

connectedness

In this section we prove some basic facts about interior, compactness, con-
nectedness, local connectedness and compactness of the hyperspace TD(X).

Lemma 3.1. If A is a nonempty compact and totally disconnected subset
of a Hausdorff space X, then for each finite collection of open subsets of X,
V1, . . . , Vn, such that A belongs to 〈V1, . . . , Vn〉, there exist a finite collection
of pairwise disjoint nonempty closed subsets of X, A1, . . . , Ak, and a finite
collection of pairwise disjoint open subsets of X, U1, ..., Uk, satisfying the
following conditions:

(1) A = A1 ∪ · · · ∪Ak;
(2) For each i ∈ {1, . . . , k}, Ai ⊆ Ui;
(3) For each i ∈ {1, . . . , k}, there exists ji ∈ {1, . . . , n} such that Ui ⊆ Vji ;

and
(4) For each j ∈ {1, . . . , n}, there exists rj ∈ {1, . . . , k} such that Urj ⊆ Vj.

Proof. Suppose that A ∈ 〈V1, . . . , Vn〉 satisfies the hypothesis. Then A
is a compact zero-dimensional space (it is well-known that every locally com-
pact totally disconnected Hausdorff space is zero-dimensional and completely
regular). Then we can find open subsets W1, . . . ,Wk of X such that for every
i ≤ k there is j ≤ n such that Wi ⊆ Uj, {A ∩Wi : i ≤ k} is pairwise disjoint

and A∩Wi = A∩Wi for every i ≤ k. Thus, we define Ui = Wi−
⋃

{Wj : i 6= j}
and Ai = A ∩ Wi for every i ≤ k. Clearly {Ai : Ai 6= ∅} and {Ui : Ui 6= ∅}
satisfies the Lemma.

Next proposition follows from Lemma 3.1, see also [8, Lemma 2.3.1].

Proposition 3.2. If X is a compact Hausdorff space, then the collection
{〈V1, . . . , Vn〉 : n ∈ N and {V1, ..., Vn} ∈ C(X)} is a base for the Vietoris
topology on TD(X).

Proposition 3.3. If X is a regular space, then TD(X) has nonempty
interior in 2X if and only if X contains a nonempty open totally disconnected
subset.

Proof. Suppose that TD(X) has nonempty interior in 2X . Let
U1, . . . , Un be nonempty open subsets of X such that 〈U1, . . . , Un〉 ⊂ TD(X).
For each i ∈ {1, . . . , n} let xi be a point in Ui. Let V be an open subset
of X such that x1 ∈ V and V ⊂ U1. We assert that V is a totally dis-
connected subset of X . Let A be a nonempty connected subset of V . Let
B = A ∪ {x1, . . . , xn}. Clearly B ∈ 〈U1, . . . , Un〉, so B ∈ TD(X). It follows
that A is a one-point set.
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Conversely, if U is a nonempty open totally disconnected subset of X ,
then 〈U〉 is a nonempty open set contained in TD(X). Thus, TD(X) has
nonempty interior in 2X .

Corollary 3.4. If X is a compact connected Hausdorff space, then
TD(X) has empty interior in 2X.

In [8, Theorem 4.2] it is proved that compactness of a subset of the hy-
perspace 2X containing the singletons of X implies compactness of the space
X . As a consequence of this fact we have the next proposition. We recall that
all the spaces that we consider are T1-spaces.

Proposition 3.5. If X is a space such that TD(X) is compact, then X
is compact.

Proposition 3.6. If X is a Hausdorff space such that TD(X) is compact,
then X is totally disconnected.

Proof. By Proposition 3.5, we have that X is compact. Thus, X is
a normal space. Consequently 2X is a Hausdorff space, [8, Theorem 4.9,
4.9.3]. Since TD(X) is compact, we have that TD(X) is a closed subset
of 2X . We notice that each finite subset of X belongs to TD(X), so this
hyperspace is a dense subset of 2X ([8, Proposition 2.4, 2.4.1]). It follows that
TD(X) = 2X . Therefore X is an element of TD(X), which means that X is
totally disconnected.

Remark 3.7. The negation of the last proposition says that if X is a
Hausdorff space containing a nondegenerate connected subset, then the hy-
perspace of totally disconnected subsets of X is not compact. In particular,
for each nondegenerate continuum this hyperspace is not compact. In this
way we also see that the compactness of X does not imply the compactness
of TD(X).

Corollary 3.8. Let X be a Hausdorff space. Then TD(X) is compact
if and only if X is compact and totally disconnected.

Proof. Necessity follows from Propositions 3.5 and 3.6. For the con-
verse, we notice that the assumptions imply that TD(X) coincides with 2X .
Therefore, by [8, Theorem 4.2], we obtain that TD(X) is compact.

In [8, Theorem 4.10] it is proved that a subset of the hyperspace 2X

containing every finite set of X is connected if and only if the space X is
connected. So, we have next proposition.

Proposition 3.9. For any space X, TD(X) is connected if and only if
X is connected.
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In [8, Theorem 4.12] it is proved that, for a compact space X , a subset
of the hyperspace 2X containing every finite set of X is locally connected if
and only if the space X is locally connected. Similarly, we have the next
proposition.

Proposition 3.10. Let p be a point of a space X. If H(X) is a subset of
2X containing the singletons of X and H(X) is connected im kleinen at {p},
then X is connected im kleinen at p.

Proof. Let U be an open subset of X such that p ∈ U . By hypothesis,
there exists a connected subset V of H(X) such that {p} ∈ intH(X)(V) and
V ⊆ 〈U〉. Let V =

⋃

{A ∈ H(X) : A ∈ V}. We have that V is a connected
subset of X , [10, Lemma (1.43)]. Clearly p ∈ V . We assert that p ∈ intX(V )
and V ⊆ U . Let U1, . . . , Un be open subsets ofX such that {p} ∈ 〈U1, ..., Un〉∩
H(X) ⊂ intH(X)(V) and let W = U1 ∩ · · · ∩ Un. We have that W is an
open subset of X containing p. If x is a point in W then x ∈ Ui for each
i ∈ {1, ..., n}, so {x} ∈ 〈U1, ..., Un〉 ∩ H(X) ⊆ intH(X)(V). Thus, {x} ∈ V .
Hence, x ∈ V . Thus we have that W is an open subset of X such that
p ∈ W ⊆ V . So, p ∈ intX(V ). Finally, if x is a point of V there exists A ∈ V
such that x ∈ A. Since V ⊆ 〈U〉 we have that A ⊂ U , so x ∈ U . Thus,
V is contained in U . We have that V is a connected subset of X such that
p ∈ intX(V ) and V ⊆ U .

Corollary 3.11. If X is a space such that TD(X) is locally connected,
then X is locally connected.

Proposition 3.12. If X is a compact Hausdorff space, then TD(X) is
locally connected if and only if X is locally connected.

Proof. Necessity follows from the more general fact stated in Corol-
lary 3.11. Conversely, let A be a nonempty closed totally disconnected sub-
set of X and let W1, . . . ,Wn be open subsets of X such that A belongs to
〈W1, . . . ,Wn〉∩TD(X). By Lemma 3.1 there exist r nonempty compact sub-
sets of A, A1, . . . , Ar, such that A = A1 ∪ · · · ∪ Ar, Ai ∩ Aj = ∅ if i 6= j and
they satisfy the following conditions.

(1) For each i ∈ {1, . . . , r}, there exists ji ∈ {1, . . . , n} such that Ai ⊆ Wji .
(2) For each j ∈ {1, . . . , n}, there exists rj ∈ {1, . . . , r} such that Arj ⊆

Wj .

Let U1, . . . , Ur be pairwise disjoint open subsets of X such that Ai ⊆ Ui,
for each i ∈ {1, . . . , r} and we define Vi = Ui ∩ (∩{Wj : Ai ⊆ Wj}), for
each i ∈ {1, . . . , r}. If i ∈ {1, ..., r}, for each x ∈ Ai there exists Cx an open
connected subset of X such that x ∈ Cx and Cx ⊆ Vi. Since Ai is compact
there exists a finite subset, {xi1, ..., xiki

}, such that Ai ⊆ Cxi1 ∪ · · · ∪ Cxiki
.

Let Di = Cxi1 ∪ · · · ∪ Cxiki
. Observe that Di has only a finite number of
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components, M i
1, ...,M

i
pi
, and every M i

j is an open subset of X . Let

V = 〈M1
1 , . . . ,M

1
p1
, . . . ,M r

1 , . . . ,M
r
pr
〉 ∩ TD(X).

Clearly V is an open subset of TD(X). We assert that V is connected. We
know that V ∩Fm(X) is connected, for each m ≥ p1 + · · ·+ pr, [6, Lemma 1],
where Fm(X) denotes the hyperspace of all nonempty subsets of X having at
most m points. Let U = ∪{V ∩ Fm(X) : m ≥ p1 + · · ·+ pr}, we have that U
is a connected subset of TD(X). Now, since ∪{Fm(X) : m ≥ p1 + · · · + pr}
is a dense subset of TD(X) and U = V ∩ (∪{Fm(X) : m ≥ p1 + · · · + pr}),
we have that U is dense in V . Thus, V is connected. We will see that A ∈ V .

Observe that A =
r
⋃

i=1

Ai ⊆
r
⋃

i=1

(
ki
⋃

j=1

Cxij
) =

r
⋃

i=1

(
pi
⋃

j=1

M i
j). For each M i

j , there

exists a point xil ∈ {xi1, . . . , xiki
} ⊆ Ai such that Cxil

⊆ M i
j , so Ai∩M i

j 6= ∅,

thus A ∩ M i
j 6= ∅. This shows that A ∈ V . Finally we assert that V ⊆

〈W1, . . . ,Wn〉. Let B ∈ V . According to condition (2), if j ∈ {1, . . . , n},

there exists rj ∈ {1, ..., r} such that Arj ⊆ Wj . Since B ∩ (
prj
⋃

l=1

M
rj
l ) 6= ∅

and B ∩ (
prj
⋃

l=1

M
rj
l ) ⊆ Wj we have that B ∩Wj 6= ∅, so B ∩Wj 6= ∅, for each

j ∈ {1, . . . , n}. Now, if i ∈ {1, ..., r} and l ∈ {1, ..., pi} then M i
l is a component

of Di and by definition of Di we have that Di ⊆ Vi and Vi ⊆ Wji , for some
ji ∈ {1, ..., n}. Therefore B ∈ 〈W1, ...,Wn〉. We have shown that V is an open
connected subset of TD(X) such that A ∈ V ⊆ 〈W1, ...,Wn〉.

4. Path connectedness

In this section, we prove that for every smooth dendroid X the hyper-
space TD(X) is contractible, so it is pathwise connected, and we include an
example of a (non-smooth) dendroid for which this hyperspace is not pathwise
connected. We also prove that for a Hausdorff, locally compact, not compact
and Lindelöf space X , the hyperspace TD(X) has uncountably many arc
components.

Theorem 4.1. If X is a smooth dendroid, then TD(X) is contractible.

Proof. Let p be a point of smoothness of X . By [9, Theorem 1.16] there
is a continuous function, H : X × [0, 1] → X , such that for each x ∈ X and
for each t ∈ [0, 1], H satisfies the following conditions:

(i) H((x, 0)) = p;
(ii) d(H((x, t)), p) = t, if t ≤ d(x, p); and
(iii) H((x, t)) = x, if d(x, p) ≤ t.

We define H : TD(X) × [0, 1] → 2X by H((A, t)) = H(A × {t}) for each
(A, t) ∈ TD(X)× [0, 1]. We will prove that H is the required homotopy. Let
Bt = {x ∈ X : d(x, p) = t} and Ft = {x ∈ X : d(x, p) ≤ t} for each t in
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the open interval (0, 1). Notice that for each x ∈ X , H((x, t)) ∈ Ft. We will
prove that each Bt is a totally disconnected set. Fix t ∈ (0, 1). Let x ∈ Bt

and K be the component of x in Bt. Suppose that there exists z ∈ K − {x}.
Thus K is a nondegenerate subdendroid of X . We have that xz ⊂ K. Since
t > 0, we have that p is not in Bt, thus p is not in xz. Let w be the first
time that the arc px intersects the arc xz. Thus w ∈ xz and pw ∩ xz = {w}.
Notice that p 6= w. Without loss of generality, assume that z 6= w. The fact
that p, z ∈ H({z} × [0, t]) (z ∈ Ft) and H({z} × [0, t]) is connected implies
that w ∈ H({z} × [0, t]) (pz = pw ∪ wz). There exists r ∈ [0, t] such that
H((z, r)) = w. If r = t, then w = H((z, t)) = z (z ∈ Bt ⊆ Ft) and hence
w = z but this is a contradiction. Therefore r ∈ [0, t) and H((z, r)) = w, i.e.
w ∈ Fr with r < t, this implies that w /∈ Bt but this contradicts the fact that
w ∈ xz ⊆ K ⊆ Bt. Hence, we have proved that Bt is totally disconnected.

On the other hand, it is easy to see that H is a continuous function. Now
by conditions (i) and (iii) we have thatH((A, 0)) = {p} andH((A, 1)) = A for
each A ∈ TD(X) (we are assuming that maximum{d(x, y) : x, y ∈ X} = 1).
We will prove that H((A, t)) ∈ TD(X) for each t ∈ (0, 1) and each A ∈
TD(X). Let t ∈ (0, 1) and A ∈ TD(X). Since for each x ∈ X , H((x, t)) ∈ Ft,
we have that H(A × {t}) ⊆ Ft. Hence according to conditions (ii) and (iii),
H(A × {t}) ⊆ (A ∩ Ft) ∪ Bt. In order to prove that H((A, t)) is a totally
disconnected set, we will prove that (A∩Ft)∪Bt is totally disconnected. Let
C be a component of (A∩Ft)∪Bt. Suppose that |C| ≥ 2. Since Bt is totally
disconnected we have that C ∩ ((A∩Ft)−Bt) 6= ∅. Let a ∈ C ∩ (A∩Ft−Bt).
By [10, (1.8) and (1.11)], there is an order arc, γ : [0, 1] → {E ∈ 2X :
E is connected}, from {a} to C. Since γ(0) = {a} ∈ 〈X −Bt〉 there is r > 0
such that γ(r) ∈ 〈X − Bt〉. We have that γ(r) ⊆ A ∩ Ft and γ(r) is a
nondegenerate connected subset of A ∩ Ft, this contradicts that A ∩ Ft is
totally disconnected. Thus |C| ≤ 1. Hence, we have proved that H((A, t)) is
totally disconnected. Therefore TD(X) is contractible.

Corollary 4.2. If X is a smooth dendroid, then TD(X) is pathwise
connected.

Corollary 4.3. If X is a dendrite, then TD(X) is pathwise connected.

Problem 4.1. Is it true that if X is a contractible dendroid, then TD(X)
is contractible?

Problem 4.2. Give conditions on X under which TD(X) is contractible.

Next we give an example of a (non-smooth) dendroid X whose hyperspace
TD(X) is not pathwise connected. In order to do this we include the following
lemma that can be proved in the same way as Lemma 2.7 of [3].

Lemma 4.4. Let X be a regular space. If f : [0, 1] → TD(X) is
a continuous function, C is a nonempty closed subset of

⋃

f([0, 1]) and
u = inf{s ∈ [0, 1] : f(s) ∩ C 6= ∅}, then f(u) ∩C 6= ∅.
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Also we recall that a continuum X is uniformly arcwise connected if it
is arcwise connected and for each number ε > 0 there is a positive integer k
such that every arc A contained in X contains points a0, a1, . . . , ak such that
A = a0a1 ∪ · · · ∪ ak−1ak and diam(aiai+1) < ε for each i ∈ {0, . . . , k − 1}, [1,
D5].

Example 4.5. A dendroidX such that TD(X) is not pathwise connected.
Let L0 be the line segment in the plain from the point (0, 0) to the point

(1, 0). For each n ∈ N, let xn = (1, 1
n
), yin = (1, 1

n
− i

2n2(n+1) ) with i ∈

{1, . . . , n} and zin = (34 ,
3
4

n
− (34 )

i
2n2(n+1) ) for each i ∈ {1, . . . , n}. For each

n ∈ N let Hn be the line segment of the point xn to the point z1n, In the line
segment of the point (0, 0) to the point xn, Jin the line segment of the point
zin to the point yin for each i ∈ {1, . . . , n} and Kin the line segment of the
point yin to the point z(i+1)n for each i ∈ {1, . . . , n− 1}. For each n ∈ N, let
Ln = Hn ∪ In ∪ (

⋃

{Jin : i ∈ {1, . . . , n}})∪ (
⋃

{Kin : i ∈ {1, . . . , n− 1}}) and
X = L0 ∪ (

⋃

{Ln : n ∈ N}), see Figure 1. We will prove that TD(X) is not
pathwise connected.

Figure 1. A dendroid with non-pathwise connected hyper-
space TD(X)

Let S0 = {(0, 0)} and S1 = {xn : n ∈ N}
⋃

{(1, 0)}
⋃

{yin : n ∈ N and i ∈
{1, . . . , n}}. Suppose there is a path f : [0, 1] → TD(X) such that f(0) =
S0 and f(1) = S1. We notice that S0 is contained in a uniformly arcwise
connected subcontinuum of X and S1 is not. Let r be the least upper bound
of the set of all numbers s ∈ [0, 1] such that f(t) is contained in a uniformly
arcwise connected subcontinuum of X for each t ≤ s. By Proposition 3.2 we
can choose pairwise disjoint open sets U1, . . . , Uk ofX such that diam(Ui) <

1
8 ,

for each i ∈ {1, . . . , k} and f(r) ∈ U = 〈U1, . . . , Uk〉. We have to consider two
cases:

Case 1. f(r) is contained in a uniformly arcwise connected subcontinuum
of X . Clearly 0 ≤ r < 1. Let t0 ∈ (r, 1] such that f([r, t0]) ⊆ U and f(t0) is
not contained in a uniformly arcwise connected subcontinuum of X . We have
that for each n ∈ N there exists N ∈ N with N > n such that f(t0)∩ JiN 6= ∅
or f(t0) ∩ KiN 6= ∅ for some i > N . Then f(t0) has a limit point in the
line segment from the point (34 , 0) to the point (1, 0). Let x0 be a point
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limit of f(t0) in the line segment from the point (34 , 0) to the point (1, 0).
Without loss of generality assume that x0 ∈ U1. Since f(r) is contained in a
uniformly arcwise connected subcontinuum of X there exists m ∈ N such that
f(r)∩Jin = ∅ for each n ≥ m and for each i ∈ {m, . . . , n}; and f(r)∩Kin = ∅
for each n ≥ m and for each i ∈ {m, . . . , n − 1}. Now choose a connected
component C of U1 such that f(t0) ∩C ∩ (JjN ∪KlM ) 6= ∅ with N,M > 2m,
j ∈ {2m, . . . , N} and l ∈ {2m, . . . ,M}. We notice that f(r) ∩ C = ∅. Let
D = C ∩ [

⋃

f([r, t0])]. Observe that D is a closed subset of
⋃

f([r, t0]).
Since f|[r,t0] and D satisfy the conditions of Lemma 4.4, f(u) ∩D 6= ∅ where

u = inf{s ∈ [r, t0] : f(s) ∩ D 6= ∅}. Since f(r) ∩ C = ∅ and D ⊆ C we
have that r < u. Consider the open sets C and V = 〈C,U1, . . . , Um〉. Since
f(u) ∩D 6= ∅ and f(u) ∈ f([r, t0]) ⊆ U we have that f(u) ∈ V . Then f−1(V)
is an open subset of [0, 1] such that u ∈ f−1(V) and f−1(V)∩ [r, u) = ∅, which
contradicts the continuity of f .

Case 2. f(r) is not contained in a uniformly arcwise connected subcon-
tinuum of X . In this case, we notice that 0 < r and for each n ∈ N there
exists N ∈ N with N > n such that either f(r) ∩ JiN 6= ∅ or f(r) ∩KiN 6= ∅
for some i > N . We have that f(r) has a limit point in the line segment from
the point (34 , 0) to the point (1, 0). Let x0 be a limit point of f(r) in the line

segment from the point (34 , 0) to the point (1, 0). Without loss of generality
assume that x0 ∈ U1. Let t0 be a point in [0, r) such that f([t0, r]) ⊆ U .
Observe that f(t0) is contained in a uniformly arcwise connected subcon-
tinuum of X . Then, we may take m ∈ N such that f(t0) ∩ Jin = ∅ for
each n ≥ m and for each i ∈ {m, . . . , n}; and f(t0) ∩ Kin = ∅ for each
n ≥ m and for each i ∈ {m, . . . , n − 1}. We choose a connected compo-
nent C of U1 such that f(r) ∩ C ∩ (JjN ∪ KlM ) 6= ∅ with N,M > 2m,
j ∈ {2m, ..., N} and l ∈ {2m, ...,M}. We have that f(t0) ∩ C = ∅. Let
D = C ∩ [

⋃

f([t0, r])]. Observe that D is a closed subset of
⋃

f([t0, r]). By
Lemma 4.4, if u = inf{s ∈ [t0, r] : f(s) ∩ D 6= ∅}, then f(u) ∩ D 6= ∅. Since
f(t0)∩C = ∅ and D ⊆ C we have that t0 < u. Consider the open sets C and
V = 〈C,U1, ..., Um〉. Since f(u) ∩ D 6= ∅ and f(u) ∈ f([t0, r]) ⊆ U we have
that f(u) ∈ V . Then f−1(V) is an open subset of [0, 1] such that u ∈ f−1(V)
and f−1(V)∩ [t0, u) = ∅, but this also contradicts the continuity of f . There-
fore S0 and S1 cannot be connected by a path in TD(X). This proves that
for the dendroid in Figure 1 the hyperspace of totally disconnected sets is not
pathwise connected.

Note that the dendroid in the previous example is not uniformly arcwise
connected and that smooth dendroids are uniformly arcwise connected, see
[2, Corollary 16]. In this context it is interesting to ask:

Problem 4.3. Is TD(X) pathwise connected for every uniformly arcwise
connected continuum X?
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Problem 4.4. Let X be a continuum that is not uniformly arcwise con-
nected. Is it true that TD(X) has c arc components?

Next we will present a class of spaces, that include the Euclidean spaces
R

n, for which the hyperspace of totally disconnected subsets has at least c

path components, see Theorem 4.11 below. First we state several technical
lemmas.

Lemma 4.6. Let X be a normal space such that dim(X) = 0. If Y = {yn :
n ∈ N} is a discrete, infinite and closed subset of X and {Qn : n ∈ N} is a
cellular family of closed-open subsets of X such that yn ∈ Qn for each n ∈ N,
then there exists a cellular family of closed-open subsets of X, {Vn : n ∈ N},
such that yn ∈ Vn for each n ∈ N and

⋃

{Vn : n ∈ N} ∈ 2X. Moreover, if
{Pn : n ∈ N} ⊆ 2X satisfies that Pn ⊆ Vn for each n ∈ N, then

⋃

{Pn : n ∈
N} ∈ 2X .

Proof. Let L =
⋃

{Qn : n ∈ N} −
⋃

{Qn : n ∈ N}. If L = ∅, then the
Lemma is true. Suppose that L is not empty. Since X is a normal space, there
exists an open subset of X , W0 such that Y ⊆ W0 ⊆ W0 ⊆ X − L. Observe
that for each n ∈ N, yn ∈ Qn∩W0 and Qn∩W0 is an open subset of X . Since
dim(X) = 0, for each n ∈ N, there exists a closed-open subset of X , Vn, such
that yn ∈ Vn ⊆ Qn ∩W0. Clearly {Vn : n ∈ N} is a cellular family in X . We
assert that

⋃

{Vn : n ∈ N} ∈ 2X . Since Vn ⊆ Qn∩W0, for each n ∈ N, we have

that
⋃

{Vn : n ∈ N} ⊆ (
⋃

{Qn : n ∈ N}) ∩W0, consequently
⋃

{Vn : n ∈ N} ⊆
⋃

{Qn : n ∈ N}∩W0 ⊆
⋃

{Qn : n ∈ N}∩(X−L). So
⋃

{Vn : n ∈ N} ⊆
⋃

{Qn :

n ∈ N}. Now, we take a point x in
⋃

{Vn : n ∈ N}. We have that x ∈ Qn,
for some n ∈ N. If x ∈ Qn − Vn, then (Qn − Vn) ∩ (

⋃

{Vn : n ∈ N}) = ∅
(Qn ∩Qm = ∅, if n 6= m), which is a contradiction. Therefore, x ∈ Vn. This
proves that

⋃

{Vn : n ∈ N} ∈ 2X . Similarly one can prove that if {Pn : n ∈
N} ⊆ 2X satisfies that Pn ⊆ Vn for each n ∈ N, then

⋃

{Pn : n ∈ N} ∈ 2X .

Lemma 4.7. Let X be a normal space. If {Pn : n ∈ N} is a family of
subsets of X such that Pn ∩ Pm = ∅ if n 6= m,

⋃

{Pn : n ∈ N} ∈ 2X and Pn

is closed-open subset of
⋃

{Pn : n ∈ N} for each n ∈ N, then there exists a
cellular family, {Un : n ∈ N}, such that Pn ⊆ Un for each n ∈ N.

Proof. Observe that for each m ∈ N, Pm and
⋃

{Pn : n ∈ N − {m}}
are closed subsets of

⋃

{Pn : n ∈ N}, so Pm and
⋃

{Pn : n ∈ N − {m}} are
closed disjoint subsets of X . Since X is a normal space, for each m ∈ N,
there exists an open subset of X , Vm such that Pm ⊆ Vm and Vm ∩

⋃

{Pn :
n ∈ N− {m}} = ∅. Let U1 = V1 and Um = Vm − (V1 ∪ · · · ∪ Vm−1). Clearly
{Um : m ∈ N} satisfies the Lemma.

Lemma 4.8. Let X be a locally compact and normal space and let E,B ∈
TD(X). If Y is a discrete, countably infinite and closed subset of E −B,
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then there exists an open subset of X, V , and for each n ∈ N there exists an
open subset of X, Un, satisfying the following conditions:

(1) For each n ∈ N we have that V ∩ Un = ∅ and Un ∩ Um = ∅, if n 6= m.
(2) B ⊆ V ; and for each n ∈ N, Un ∩ E 6= ∅.
(3) E ⊆ V ∪ (

⋃

{Un : n ∈ N}).

Proof. Let Y = {yn : n ∈ N}. We know that for each n ∈ N there
exists an open subset of X , Wn, such that yn ∈ Wn and Wn ∩ Wm = ∅ if
n 6= m. We also know that E has dimension zero, consequently, for each
n ∈ N there exists a closed-open subset of E, On, such that yn ∈ On ⊆ Wn.
Now, by Lemma 4.6, there exists a cellular family of closed-open subsets of
E, {Vn : n ∈ N}, such that yn ∈ Vn for each n ∈ N and

⋃

{Vn : n ∈ N} ∈ 2E.
Observe that

⋃

{Vn : n ∈ N} ∈ 2X . Since for each n ∈ N, yn ∈ E −B
and yn ∈ Vn there exists a point xn in Vn ∩ (E − B) = Vn − B. Since
dim(E) = 0 we have that for each n ∈ N there exists a closed-open subset of
E, Pn, such that xn ∈ Pn ⊆ Vn − B. Now, by Lemma 4.6 we may assume
⋃

{Pn : n ∈ N} ∈ 2E so
⋃

{Pn : n ∈ N} ∈ 2X . Observe that {Pn : n ∈ N}
satisfies the assumptions of the Lemma 4.7, consequently for each n ∈ N

there exists an open subset of X , Qn, such that Pn ⊆ Qn and Qn ∩ Qm = ∅
if n 6= m. On the other hand, observe that

⋃

{Pn : n ∈ N} ⊆ E − B. Thus
B ∪ (E−

⋃

{Pn : n ∈ N}) and
⋃

{Pn : n ∈ N} are disjoint closed subsets of X .
Since X is a normal space there exist disjoint open subsets of X , V and W ,
such that B ∪ (E −

⋃

{Pn : n ∈ N}) ⊆ V and
⋃

{Pn : n ∈ N} ⊆ W . For each
n ∈ N let Un = Qn ∩W . Clearly {V } ∪ {Un : n ∈ N} satisfies conditions (1)
and (3). Finally in order to see condition (2), observe that for each n ∈ N,
xn ∈ Pn ⊆ Qn ∩W ∩ E = Un ∩E.

Lemma 4.9. Let X be a space and let A be a connected subset of 2X. If
K is a nonempty open and closed subset of

⋃

A, then A ∩ K 6= ∅ for each
A ∈ A.

Proof. Assume that there exists A ∈ A such that A ∩ K = ∅. Since
K is an open subset of

⋃

A, there exists an open subset U of X such that
K = U ∩ (

⋃

A). We have that 〈K,X〉 ∩ A = 〈U,X〉 ∩ A, which is an open
subset of A. Now, since K is a closed subset of

⋃

A we have that (
⋃

A)−K
is an open subset of

⋃

A, consequently there exists an open subset V of X
such that (

⋃

A)−K = V ∩ (
⋃

A). We have that 〈(
⋃

A)−K〉∩A = 〈V 〉∩A,
which is an open subset of A. Note that A = [〈(

⋃

A)−K〉∩A]∪ [〈K,X〉∩A]
and that A ∈ 〈

⋃

(A)−K〉 ∩A. Also, since K 6= ∅ and K ⊆
⋃

A we have that
〈K,X〉∩A 6= ∅. Observe that [〈(

⋃

A)−K〉∩A]∩ [〈K,X〉∩A] = ∅. Therefore
A is not connected.

Lemma 4.10. Let X be a locally compact and Hausdorff space. Let K be
a compact subset of X, P ∈ 2X and B ⊆ X such that P −K ⊆ B. Suppose
that P −K = {cn : n ∈ N} ∈ 2X is discrete and cn 6= cm for each n 6= m. If
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there exists {Pk : k ∈ N} ⊆ 2X such that Pk → P and Pk −B is not compact
for each k ∈ N, then there exist an open set V , M ∈ N, and for each m ∈ N,
an open set Um and nm ∈ N such that:

(1) The elements of {Um : m ∈ N} ∪ {V } are pairwise disjoint.
(2) K ⊆ V and cm ∈ Um, for each m ∈ N.
(3) nm < nm+1, for each m ∈ N.
(4) For each m ∈ N, there exists xm ∈ PM+m ∩ (Unm

− {cnm
}).

Proof. There exists an open subset V of X such that K ⊆ V ⊆ V ⊆
X − (P −K) and V is compact. We know that for each m ∈ N, there exists
an open subset Vm of X such that cm ∈ Vm and Vn ∩ Vm = ∅, if n 6= m.
Now, for each m ∈ N, there exist open subsets Wm and W ′

m of X such
that cm ∈ Wm, V ⊆ W ′

m and Wm ∩ W ′
m = ∅. For each m ∈ N, we define

U ′
m = Wm ∩ Vm. For each m ∈ N there exists an open subset Um of X such

that cm ∈ Um ⊆ Um ⊆ U ′
m and Um is compact. It is easy to verify that

{Um : m ∈ N} ∪ {V } satisfies conditions (1) and (2). In order to prove (3)
and (4) let U = V ∪ (

⋃

{Um : m ∈ N}). Observe that P ∈ 〈U〉. Since Pk → P ,
there exists M ∈ N such that Pk ∈ 〈U〉, for each k > M . Suppose that
PM+1 −B ⊆ V . Since V is compact, we have that PM+1 −B is compact,
which is a contradiction. Then, there is y1 ∈ PM+1 −B − V ⊆ PM+1 − V .
Let n1 ∈ N such that y1 ∈ Un1 . Hence, there is x1 ∈ (PM+1 − B) ∩ Un1 .
Observe that x1 6= cn1 because cn1 ∈ P −K ⊆ B, thus x1 ∈ (PM+1 − B) ∩
(Un1 −{cn1}) ⊆ PM+1 ∩ (Un1 −{cn1}). Suppose that there are n1 < · · · < nj

and points x1, . . . , xj ∈ X such that xi ∈ PM+i ∩ (Uni
− {cni

}) for each

i ∈ {1, . . . , j}. Then, since PM+j+1 −B ⊆ PM+j+1 is not compact and

V ∪ Un1 ∪ · · · ∪ Unj
is compact, there exists yj+1 ∈ PM+j+1 −B − (V ∪

Un1 ∪ · · · ∪ Unj
). Then, there is nj+1 ∈ N such that yj+1 ∈ Unj+1 . Let

xj+1 ∈ (PM+j+1 −B) ∩ (Unj+1 − {cnj+1}) ⊆ PM+j+1 ∩ (Unj+1 − {cnj+1}).

Theorem 4.11. Let X be a locally compact, Hausdorff and Lindelöf space.
If C is a closed, discrete and countably infinite subset of X, and A,B ∈
TD(X) are subsets of C such that A − B is infinite, then there is no path
from A to B in TD(X).

Proof. Suppose that there exists a path in TD(X) such that α(0) = B

and α(1) = A. Let T = {t ∈ [0, 1] : α(t) −B is compact } and t0 = sup T .

Observe that 0 ∈ T and 1 /∈ T . Suppose first that t0 /∈ T , i.e. α(t0)−B is
not compact, so it is not countably compact. Then there exists a subset Y of
α(t0)−B such that Y is closed, discrete and countably infinite. By Lemma
4.8 there exists an open subset, V , of X and for each n ∈ N there exists an
open subset, Un, of X such that:

(1) For each n ∈ N, Un ∩ V = ∅ and Un ∩ Um = ∅ if n 6= m.
(2) For each n ∈ N, Un ∩ α(t0) 6= ∅.
(3) α(t0) ⊆ V ∪ (

⋃

{Un : n ∈ N}) and B ⊆ V .
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Let U = V ∪ (
⋃

{Un : n ∈ N}). Observe that α(t0) ∈ 〈U〉 and t0 > 0.
Since α is continuous there exists δ > 0 such that α([t0 − δ, t0]) ⊆ 〈U〉. Let

t1 ∈ [t0−δ, t0]∩T . Since α(t1)−B is compact there exists a finite subset F of

N such that α(t1)−B ⊆ V ∪ (
⋃

{Un : n ∈ F}). Observe that α([t0 − δ, t0]) ⊆
2X is connected. Let N ∈ N − F . We have that UN ∩ (

⋃

α([t0 − δ, t0])) is a
nonempty, open and closed subset of

⋃

α([t0 − δ, t0]). Now, by Lemma 4.9,
α(t) ∩ UN 6= ∅, for each t ∈ [t0 − δ, t0], in particular α(t1) ∩ UN 6= ∅. Since

B ⊆ V , UN ∩ V = ∅ and α(t1) ⊆ U we have that (α(t1)−B) ∩ UN 6= ∅, a
contradiction. This proves that t0 ∈ T . Now, since 1 /∈ T , we have that t0 < 1.
We assert that α(t0) is not compact. Suppose that α(t0) is compact and let U
be an open subset ofX such that α(t0) ∈ 〈U〉. SinceX is locally compact there
exists an open subset V of X such that α(t0) ⊆ V ⊆ V ⊆ U and V is compact.
There exists ε > 0 such that α((t0, t0+ε)) ⊆ 〈V 〉. Then, for each t ∈ (t0, t0+ε)
we have that α(t) ⊆ V ⊆ V . Since V is compact, α(t) is compact too, for

each t ∈ (t0, t0 + ε). Now α(t) −B is a closed subset of α(t), so α(t)−B is
compact, for each t ∈ (t0, t0+ε), a contradiction. This proves that α(t0) is not

compact, consequently α(t0) is infinite. We define K = α(t0)−B. Observe
that α(t0)−K ⊆ B, hence it is closed, discrete and countably infinite. Assume
that α(t0) −K = {cn : n ∈ N and cn 6= cm if n 6= m}. Now, take a sequence
{tk}k∈N of points in [0, 1] − T such that {tk}k∈N converges to t0. Since α
is continuous, we have that {α(tk)}k∈N converges to α(t0). Observe that

α(tk)−B is not compact, for each k ∈ N. Then K, α(t0) and B satisfy the
conditions of Lemma 4.10. Thus there is an open subset of X , V , and there
exists M ∈ N such that for each m ∈ N there exists an open subset of X , Um,
and there exists nm ∈ N such that:

(1) The elements of {Um : m ∈ N} ∪ {V } are pairwise disjoint.
(2) K ⊆ V and cm ∈ Um, for each m ∈ N.
(3) nm < nm+1, for each m ∈ N.
(4) For each m ∈ N, there exists xm ∈ α(tM+m) ∩ (Unm

− {cnm
}).

For each m ∈ N, we define

Vm =

{

Um, if m 6= nk, for each k ∈ N

Unk
− {xk}, if m = nk, for some k ∈ N.

Let W = V ∪ (
⋃

{Vm : m ∈ N}). Clearly α(t0) ∈ 〈W 〉. Since {α(tk)}k∈N

converges to α(t0), there exists N ∈ N such that α(tM+N ) ∈ 〈W 〉. Observe
that xN ∈ α(tM+N ) ∩ (UnN

− {cnN
}). The fact that Ur ∩ Us = ∅, if r 6= s,

implies that xN ∈ VnN
= UnN

− {xN}, a contradiction. Hence, there is no
path from A to B in TD(X).

Proposition 4.12. We define a relation ∼ on P(N) as follows: If A,B ⊆
N, we set A ∼ B if and only if there exists N ∈ N such that A ∩ [N,∞) =
B ∩ [N,∞). The following conditions hold:
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(1) The relation ∼ is an equivalence relation.
(2) If A,B ⊆ N are finite, then A ∼ B.
(3) The equivalence class [A]∼ is countably infinite, for each A ∈ P(N).
(4) ∼ has c equivalence classes.

Theorem 4.13. If X is a locally compact, not compact, Hausdorff and
Lindelöf space, then TD(X) has at least c path components.

Proof. Since X is a Lindelöf space but it is not compact, we have that
X contains a discrete, countably infinite and closed subset, C. Assume that
C = {xn : n ∈ N} and let N,M ⊆ N such that N is not related to M in the
sense of Proposition 4.12. We define A = {xn : n ∈ M} and B = {xn : n ∈
N}. Without loss of generality assume that A − B is infinite. By Theorem
4.11 we have that there is no path in TD(X) from A to B. Since this happens
whenever M,N ⊆ N are such that [M ] 6= [N ], from Proposition 4.12, ∼ has c
equivalence classes. Consequently TD(X) has at least c path components.

Corollary 4.14. If X is locally compact, not compact, Hausdorff, second
countable space, then TD(X) has exactly c path components.

Proof. Since X has a base of cardinality ω, then X has at most 2ω open
sets. In other words, X has at most c closed set. Thus |TD(X)| ≤ c. The
result follows from Theorem 4.13.

Corollary 4.15. If X is a noncompact manifold, then TD(X) has ex-
actly c path components.

Corollary 4.16. Let X be a locally compact, Hausdorff and Lindelöf
space. If TD(X) is pathwise connected, then X is compact.

We note that the converse of Corollary 4.16 is not true: for this it is
enough to consider the dendroid of Example 4.5.

Theorem 4.17. Let X be a locally compact, Lindelöf and Hausdorff space.
If L and M can be connected by a path in TD(X), then L is compact if and
only if M is compact.

Proof. Let L,M ∈ TD(X) and let α : [0, 1] → TD(X) be a continuous
function such that α(0) = L and α(1) = M . It is enough to prove that if L
is compact, then M is compact. Suppose that L is compact and M is not
compact. Let r = sup {t ∈ [0, 1] : α(t) is compact}. We assert that α(r)
is not compact. If r = 1, then α(r) is not compact. Now, suppose that
r < 1 and α(r) is compact. Since X is locally compact, there exists an open
subset, V , of X such that α(r) ⊆ V ⊆ V ⊆ X and V is compact. Since α
is continuous, there exists ε > 0 such that α((r, r + ε)) ⊆ 〈V 〉. Consequently
α(t) is compact, for each t ∈ (r, r + ε), a contradiction. Therefore α(r) is not
compact and so r > 0. On the other hand, since X is a Lindelöf space and
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α(r) is a closed subset of X , we have that α(r) is a Lindelöf space. So α(r)
is not countably compact, consequently α(r) contains a closed, discrete and
countably infinite subset A. Assume that A = {xn : n ∈ N}. Now, for each
n ∈ N there is an open subset V ′

n of X such that xn ∈ V ′
n and V ′

n ∩ V ′
m = ∅

if n 6= m. We know that α(r) is 0-dimensional, then for each n ∈ N there
is an open-closed subset Wn of α(r) such that xn ∈ Wn ⊂ V ′

n. By Lemma
4.6 there exists a cellular family {Vn : n ∈ N} of open-closed subsets of α(r)
such that xn ∈ Vn ⊂ Wn ⊂ V ′

n and
⋃

{Vn : n ∈ N} ∈ 2α(r) ⊂ 2X . Note that
the family {Vn : n ∈ N} ∪ {α(r) −

⋃

{Vn : n ∈ N}} satisfies the conditions of
Lemma 4.7, so there exists a cellular family {Un : n ∈ N ∪ {0}} in X such
that (α(r)−

⋃

{Vn : n ∈ N}) ⊆ V0 and for each n ∈ N, Vn ⊆ Un. Observe that
α(r) ⊆

⋃

{Un : n ∈ N ∪ {0}}, i.e. α(r) ∈ 〈
⋃

{Un : n ∈ N ∪ {0}}〉. Since α is
continuous, there is ε > 0 such that α([r− ε, r+ ε]) ⊆ 〈

⋃

{Un : n ∈ N∪{0}}〉.
Take t0 ∈ [r − ε, r) such that α(t0) is compact. So there exists N ∈ N such
that α(t0)∩UN = ∅. Since (

⋃

α([r−ε, r+ε]))∩UN = (
⋃

α([r−ε, r+ε]))∩UN

we have that (
⋃

α([r− ε, r+ ε]))∩UN is a nonempty open and closed subset
of

⋃

α([r − ε, r + ε]). Since α([r − ε, r + ε]) is a connected subset of 2X , by
Lemma 4.9, we have that α(t) ∩ ((

⋃

α([r − ε, r + ε])) ∩ UN) 6= ∅, for each
t ∈ [r − ε, r + ε], so α(t0) ∩ UN 6= ∅, a contradiction. This proves that M is
compact.

The next Theorem can be proved in the same way as Theorem 3.2 of [4].

Theorem 4.18. If X is a Hausdorff space, α : [0, 1] → TD(X) ∩K(X)
is a path and p ∈ α(0), then there exists a continuous function f : [0, 1] → X
such that f(0) = p and f(t) ∈ α(t) for each t ∈ [0, 1].

Theorem 4.19. If X is a locally compact, Lindelöf and Hausdorff space
such that TD(X) is pathwise connected, then X is pathwise connected.

Proof. Let x, y ∈ X and α : [0, 1] → TD(X) be a path such that
α(0) = {x} and α(1) = {y}. Note that {x} is compact, so by Theorem 4.17
we have that α([0, 1]) ⊆ TD(X)∩K(X). Now, by Theorem 4.18 there exists
a path γ : [0, 1] → X such that γ(0) = x and γ(1) ∈ {y}.

Note that the converse of Theorem 4.19 is not true, for this it is enough
to consider the dendroid of Example 4.5.
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