APPROXIMATE INVERSE LIMITS AND (m, n)-DIMENSIONS

Matthew Lynam and Leonard R. Rubin
East Central University, USA and University of Oklahoma, USA

Abstract

In 2012, V. Fedorchuk, using m-pairs and n-partitions, introduced the notion of the (m, n)-dimension of a space. It generalizes covering dimension. Here we are going to look at this concept in the setting of approximate inverse systems of compact metric spaces. We give a characterization of (m, n) - $\operatorname{dim} X$, where X is the limit of an approximate inverse system, strictly in terms of the given system.

1. Introduction

In [2], V. Fedorchuk introduced a new generalization of covering dimension which he called (m, n)-dimension, written (m, n)-dim, and such that for each normal space $X,(2,1)-\operatorname{dim} X=\operatorname{dim} X$. Fedorchuk's (m, n)-dim is defined using m-pairs and n-partitions; in Section 2 we will provide what is needed to define such pairs and partitions, and with that in hand, we shall give the definition of the (m, n)-dimension of a space. We shall also cite in that section a few fundamental facts from this theory that will be used in the sequel.

Since the introduction of (m, n)-dimension, the theory has been developed in parallel to that of the classical notions of dimension which one can find in [1]. For example, a strong inductive version was presented in [4], a transfinite type in [10], and for (m, n)-dimension, both a factorization theorem and one about the existence of universal spaces were given in [9] and [12], respectively. In [11], Martynchuk proved that for every strongly hereditarily normal space X, (m, n)- $\operatorname{dim} X=\left\lfloor\frac{\operatorname{dim} X}{n}\right\rfloor$; therefore Fedorchuk's notion of dimension deviates from that of covering dimension in infinitely many cases. One may also consult [3] and [5] for additional contributions of Fedorchuk.

[^0]Our main result gives a characterization of the (m, n)-dimension of a space X where X is the limit of an approximate (inverse) system, strictly in terms of the given system. One of the consequences of our result, Corollary 6.3 , is that (m, n)-dim $\leq k$ is preserved by limits of approximate inverse systems of metric compacta. Most readers are familiar with inverse systems and their limits, but are perhaps not as well-versed with approximate systems. Approximate systems were introduced in [7] where it was shown that each compact Hausdorff space X can be written as the limit of an approximate system of compact polyhedra each having dimension less than or equal to $\operatorname{dim} X$. In general, this fact is not true of inverse systems.

In Section 3 we will provide the definition of an approximate system and its limit, as well as some basic results. The reader will see that the coordinate spaces of an approximate system are compact metric spaces each of which is assigned a positive number. The limit of such a system is always compact and Hausdorff. In Section 4 we shall prove several new facts dealing with finite covers of limits of approximate systems. These will be used in the proof of our main result, Theorem 5.2, which appears in Section 5. Section 6 gathers some corollaries to Theorem 5.2.

2. Introduction to (m, n)-dim

Throughout this paper, map will mean continuous function. We will denote the order of a nonempty finite family Φ of sets by ord (Φ). By order we mean the largest $n \in\{0\} \cup \mathbb{N}$ such that Φ contains a subset Ψ with $\operatorname{card}(\Psi)=n$ and $\bigcap \Psi \neq \emptyset$. By this definition, ord $(\Phi)=0$ if and only if $\Phi=\{\emptyset\}$. On the other hand, ord $(\Phi)=1$ if and only if Φ is pairwise disjoint and there exists $F \in \Phi$ such that $F \neq \emptyset$. If B is a subspace of a metric space X and $\rho>0$, then $N(B, \rho)$ will denote the ρ-neighborhood of B in X. In this section, X will always denote a normal space.

DEFINITION 2.1 ([2, Definition 2.1]). Let $u=\left(U_{1}, \ldots, U_{m}\right)$ be a finite open cover of X and $\Phi=\left(F_{1}, \ldots, F_{m}\right)$ be a family of closed subsets of X such that

$$
\begin{aligned}
F_{j} \subset U_{j}, \quad j & =1, \ldots, m \\
& \operatorname{ord}(\Phi)
\end{aligned}
$$

Then (u, Φ) is said to be an m-pair in X.
Definition 2.2 ([2, Definition 2.5]). Let (u, Φ) be an m-pair in X where $u=\left(U_{1}, \ldots, U_{m}\right)$ and $\Phi=\left(F_{1}, \ldots, F_{m}\right)$. A closed set $P \subseteq X$ is said to be an n-partition of (u, Φ) if there exists a family of open sets $v=\left(V_{1}, \ldots, V_{m}\right)$ of X such that $F_{j} \subseteq V_{j} \subseteq U_{j}$, for $j=1, \ldots, m$; ord $(v) \leq n$; and $X \backslash P=\bigcup v$.

Definition 2.3 ([2, Definition 2.7]). For each $i=1, \ldots, r$, let $\left(u_{i}, \Phi_{i}\right)$ be an m-pair in X. The sequence $\left(u_{i}, \Phi_{i}\right), i=1, \ldots, r$, is called n-inessential
in X if for each i, there exists an n-partition P_{i} of $\left(u_{i}, \Phi_{i}\right)$ such that $P_{1} \cap$ $\cdots \cap P_{r}=\emptyset$.

Definition 2.4 ([2, Definition 2.8]). Let $m, n \in \mathbb{N}$ with $n \leq m$. To every space X one assigns the (m, n)-dimension $(m, n)-\operatorname{dim} X$, which is an element of $\{-1\} \cup\{0\} \cup \mathbb{N} \cup\{\infty\}$ in the following way.
(1) $(m, n)-\operatorname{dim} X=-1$ if and only if $X=\emptyset$.

In case $X \neq \emptyset$, then:
(2.1) $(m, n)-\operatorname{dim} X=\infty$, if for each $k \in\{0\} \cup \mathbb{N}$, there is a sequence $\left(u_{i}, \Phi_{i}\right)$, $i=1, \ldots, k+1$, of m-pairs in X, that is not n-inessential in X;
(2.2) $(m, n)-\operatorname{dim} X=r$, where $r \in\{0\} \cup \mathbb{N}$, if $(m, n)-\operatorname{dim} X \neq \infty$ and r is the minimum of those $k \in\{0\} \cup \mathbb{N}$ such that every sequence $\left(u_{i}, \Phi_{i}\right)$, $i=1, \ldots, k+1$, of m-pairs in X, is n-inessential in X.
Theorem 2.5 ([2, Theorem 2.9]). One has that $(2,1)-\operatorname{dim} X=\operatorname{dim} X$.
Of course Theorem 2.5 follows from Martynchuk's result mentioned in the Introduction. Moreover, from that very same expression, one can get values for (m, n)-dim X that are different from m. For example, if $X=[0,1]^{3}$, then $\operatorname{dim} X=3$, but $(3,2)-\operatorname{dim} X=\left\lfloor\frac{3}{2}\right\rfloor=1$.

Proposition 2.6 ([2, Proposition 2.19]). Let Y be a space, $f: X \rightarrow Y$ be a map, and let a sequence $\left(u_{i}, \Phi_{i}\right), i=1, \ldots, r$, of m-pairs in Y be n inessential in Y. Then $\left(f^{-1}\left(u_{i}\right), f^{-1}\left(\Phi_{i}\right)\right), i=1, \ldots, r$, is an n-inessential sequence of m-pairs in X.

Proposition 2.7 ([2, Proposition 2.20]). Let $\left(u_{i}, \Phi_{i}\right)$ and $\left(w_{i}, \Psi_{i}\right), i=$ $1, \ldots, r$, be sequences of m-pairs in X where $u_{i}=\left(U_{1}^{i}, \ldots, U_{m}^{i}\right), \Phi_{i}=$ $\left(F_{1}^{i}, \ldots, F_{m}^{i}\right), w_{i}=\left(W_{1}^{i}, \ldots, W_{m}^{i}\right)$, and $\Psi_{i}=\left(G_{1}^{i}, \ldots, G_{m}^{i}\right)$. Assume that

$$
F_{j}^{i} \subseteq G_{j}^{i} \subseteq W_{j}^{i} \subseteq U_{j}^{i}, \quad i=1, \ldots, r, \quad j=1, \ldots, m
$$

If the sequence $\left(w_{i}, \Psi_{i}\right), i=1, \ldots, r$, is n-inessential in X, then the sequence $\left(u_{i}, \Phi_{i}\right), i=1, \ldots, r$, is n-inessential in X.

3. Approximate Inverse Systems

The following definition is from [7].
Definition 3.1. An approximate inverse system, $\mathbf{X}=\left\{X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right\}$, of metric compacta consists of the following: a partially ordered set (A, \leq) which is directed and has no maximal element; for each $a \in A$, a compact metric space X_{a} with metric d and a real number $\varepsilon_{a}>0$; for each pair $a \leq a^{\prime}$ from A, a map $p_{a a^{\prime}}: X_{a^{\prime}} \rightarrow X_{a}$. Moreover, the following three conditions must be satisfied:
(A1) $d\left(p_{a_{1} a_{2}} p_{a_{2} a_{3}}, p_{a_{1} a_{3}}\right) \leq \varepsilon_{a_{1}}, a_{1} \leq a_{2} \leq a_{3}, p_{a a}=\mathrm{id}$.
(A2) For all $a \in A$ and $\eta>0$ there exists an $a^{\prime} \geq$ a such that for all $a_{2} \geq a_{1} \geq a^{\prime}$ we have that $d\left(p_{a a_{1}} p_{a_{1} a_{2}}, p_{a a_{2}}\right) \leq \eta$.
(A3) For all $a \in A$ and $\eta>0$ there exists an $a^{\prime} \geq a$ such that for all $a^{\prime \prime} \geq a^{\prime}$ and $x, x^{\prime} \in X_{a^{\prime \prime}}$ we have that if $d\left(x, x^{\prime}\right) \leq \varepsilon_{a^{\prime \prime}}$ then $d\left(p_{a a^{\prime \prime}}(x), p_{a a^{\prime \prime}}\left(x^{\prime}\right)\right) \leq \eta$.

Definition 3.2. A point $x=\left(p_{a}(x)\right) \in \prod_{a \in A} X_{a}$ belongs to $X=\lim \mathbf{X}$ provided the following condition is satisfied.
(L) For all $a \in A$ and $\eta>0$ there exists $a^{\prime} \geq a$ such that for all $a^{\prime \prime} \geq a^{\prime}$ we have that $d\left(p_{a}(x), p_{a a^{\prime \prime}} p_{a^{\prime \prime}}(x)\right) \leq \eta$.

In the sequel we shall shorten the expression "approximate inverse system of metric compacta" to "approximate system."

The following theorem has several facts about approximate systems. The proofs can be found in [7].

Theorem 3.3. Given an approximate system $\mathbf{X}=\left\{X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right\}$ with $X=\lim \mathbf{X}$,

1. $X \neq \emptyset$ if and only if for all $a \in A, X_{a} \neq \emptyset$;
2. X is a compact Hausdorff space;
3. the collection of all sets of the form $p_{a}^{-1}\left(V_{a}\right)$, where $a \in A$ and $V_{a} \subseteq X_{a}$ is open, is a basis for the topology of X;
4. for every $a \in A$ and $\eta>0$ there is an $a^{\prime} \geq a$ such that for every $a^{\prime \prime} \geq a^{\prime}$ one has $d\left(p_{a a^{\prime \prime}} p_{a^{\prime \prime}}, p_{a}\right) \leq \eta$.

Proposition 3.4 (Proposition 5.2 of [6]). Given an approximate system $\mathbf{X}=\left\{X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right\}$ with $X=\lim \mathbf{X}$, if F is closed in X, then for any neighborhood U of F in X, there exists an $a \in A$ such that for all $a^{\prime} \geq a$, $p_{a^{\prime}}^{-1}\left(p_{a^{\prime}}(F)\right) \subseteq U$.

4. New Results About Approximate Systems

We shall establish several facts concerning approximate systems. In this section, $\mathbf{X}=\left\{X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right\}$ will denote an approximate system, and X will be its limit.

Definition 4.1. In case $a \in A$ and $u=\left(U_{1}, \ldots, U_{m}\right)$ is a sequence of subsets of X, then by $p_{a}(u)$ we mean $\left(p_{a}\left(U_{1}\right), \ldots, p_{a}\left(U_{m}\right)\right)$.

The following is Theorem 3 of [7].
Theorem 4.2. If \mathcal{U} is an open cover of X, then there exist $a \in A$ and an open cover \mathcal{V} of X_{a} such that $p_{a}^{-1}(\mathcal{V})$ refines \mathcal{U}.

Corollary 4.3. For each finite open cover $u=\left(U_{1}, \ldots, U_{m}\right)$ of X, there exist $a \in A$ and an open cover $\left(V_{1}, \ldots, V_{m}\right)$ of X_{a} such that $p_{a}^{-1}\left(V_{j}\right) \subseteq U_{j}$, for $j=1, \ldots, m$.

Proof. Use Theorem 4.2 to choose an index $a \in A$ and an open cover \mathcal{V} of X_{a} such that $p_{a}^{-1}(\mathcal{V})$ refines u. For each $j=1, \ldots, m$, set

$$
V_{j}=\bigcup\left\{V \in \mathcal{V} \mid p_{a}^{-1}(V) \subseteq U_{j}\right\}
$$

Then the collection $\left(V_{1}, \ldots, V_{m}\right)$ is an open cover of X_{a}, and $p_{a}^{-1}\left(V_{j}\right) \subseteq U_{j}$ for all $j=1, \ldots, m$.

Lemma 4.4. For each finite open cover $u=\left(U_{1}, \ldots, U_{m}\right)$ of X and each index $a \in A$, there exists an index $a^{\prime} \geq a$ such that for all $a^{\prime \prime} \geq a^{\prime}$, there is an open cover $\left(V_{1}, \ldots, V_{m}\right)$ of $X_{a^{\prime \prime}}$ with $p_{a^{\prime \prime}}^{-1}\left(V_{j}\right) \subseteq U_{j}$, for $j=1, \ldots, m$.

Proof. Using Corollary 4.3, choose an index $a_{0} \in A$ and an open cover $\left(W_{1}, \ldots, W_{m}\right)$ of $X_{a_{0}}$ such that $p_{a_{0}}^{-1}\left(W_{j}\right) \subseteq U_{j}$ for all $j=1, \ldots, m$.

Choose a collection $\left(F_{1}, \ldots, F_{m}\right)$ of closed subsets of $X_{a_{0}}$ that covers $X_{a_{0}}$ and $F_{j} \subseteq W_{i}$ for all $j=1, \ldots, m$. There exists an $\eta>0$ such that for all j, $N\left(F_{j}, \eta\right) \subseteq W_{j}$.

Using Theorem 3.3(4.), choose an $a^{\prime} \in A$ so that $a^{\prime} \geq a, a^{\prime} \geq a_{0}$, and for every $a^{\prime \prime} \geq a^{\prime}$ we have $d\left(p_{a_{0} a^{\prime \prime}} p_{a^{\prime \prime}}, p_{a_{0}}\right) \leq \eta / 2$. Now set $V_{j}=$ $p_{a_{0} a^{\prime \prime}}^{-1}\left(N\left(F_{j}, \eta / 2\right)\right)$. We claim that the collection $v=\left(V_{1}, \ldots, V_{m}\right)$ satisfies the conclusion.

It is clear that v is an open cover of $X_{a^{\prime \prime}}$. We now must show that for all $j=1, \ldots, m, p_{a^{\prime \prime}}^{-1}\left(V_{j}\right) \subseteq U_{j}$. Let $x \in p_{a^{\prime \prime}}^{-1}\left(V_{j}\right)$. Then $p_{a^{\prime \prime}}(x) \in V_{j}=$ $p_{a_{0} a^{\prime \prime}}^{-1}\left(N\left(F_{j}, \eta / 2\right)\right)$. This gives us that $p_{a_{0} a^{\prime \prime}} p_{a^{\prime \prime}}(x) \in N\left(F_{j}, \eta / 2\right)$. Choose a $y \in F_{j}$ such that

$$
d\left(p_{a_{0} a^{\prime \prime}} p_{a^{\prime \prime}}(x), y\right)<\eta / 2
$$

We also know that

$$
d\left(p_{a_{0} a^{\prime \prime}} p_{a^{\prime \prime}}(x), p_{a_{0}}(x)\right) \leq \eta / 2
$$

And so by the triangle inequality,

$$
d\left(p_{a_{0}}(x), y\right)<\eta
$$

This gives us that $p_{a_{0}}(x) \in N\left(F_{j}, \eta\right) \subseteq W_{j}$, and thus $x \in p_{a_{0}}^{-1}\left(W_{j}\right) \subseteq U_{j}$. We have shown that for all $j=1, \ldots, m, p_{a^{\prime \prime}}^{-1}\left(V_{j}\right) \subseteq U_{j}$; hence the collection $v=\left(V_{1}, \ldots, V_{m}\right)$ satisfies the conclusion of the proposition.

Lemma 4.5. If $\Phi=\left(F_{1}, \ldots, F_{m}\right)$ is a collection of closed subsets of X with $\operatorname{ord}(\Phi) \leq 1$, then there exists an $a \in A$ such that for all $b \geq a, \operatorname{ord}\left(p_{b}(\Phi)\right) \leq 1$.

Proof. For each $j=1, \ldots, m$, choose a neighborhood U_{j} of F_{j} so that for $i \neq j$, if $F_{i}=F_{j}$, then $U_{i}=U_{j}$, but if $F_{i} \neq F_{j}$, then $U_{i} \cap U_{j}=\emptyset$. Using Proposition 3.4, for each $j=1, \ldots, m$, choose an $a_{j} \in A$ such that for all $a^{\prime} \geq a_{j}$ we have $p_{a^{\prime}}^{-1}\left(p_{a^{\prime}}\left(F_{j}\right)\right) \subseteq U_{j}$.

Pick an $a \in A$ so that $a \geq a_{j}$ for all $j=1, \ldots, m$, and let $b \geq a$. Then $p_{b}^{-1}\left(p_{b}\left(F_{j}\right)\right) \subseteq U_{j}$ for all $j=1, \ldots, m$. This implies that if $i \neq j$ and $F_{i} \neq F_{j}$, then $p_{b}^{-1}\left(p_{b}\left(F_{i}\right)\right) \cap p_{b}^{-1}\left(p_{b}\left(F_{j}\right)\right) \subseteq U_{i} \cap U_{j}=\emptyset$. We claim that
$p_{b}\left(F_{i}\right) \cap p_{b}\left(F_{j}\right)=\emptyset$. For suppose the contrary, that $p_{b}\left(F_{i}\right) \cap p_{b}\left(F_{j}\right) \neq \emptyset$. One can find $q_{i} \in F_{i}, q_{j} \in F_{j}$, and $x \in p_{b}\left(F_{i}\right) \cap p_{b}\left(F_{j}\right)$ such that $p_{b}\left(q_{i}\right)=x=p_{b}\left(q_{j}\right)$. But then $\emptyset \neq\left\{q_{i}, q_{j}\right\} \subseteq p_{b}^{-1}(x)=p_{b}^{-1}\left(p_{b}\left(q_{i}\right)\right)=p_{b}^{-1}\left(p_{b}\left(q_{j}\right)\right) \subseteq p_{b}^{-1}\left(p_{b}\left(F_{i}\right)\right) \cap$ $p_{b}^{-1}\left(p_{b}\left(F_{j}\right)\right)=\emptyset$, a contradiction. Thus ord $\left(p_{b}(\Phi)\right) \leq 1$.

Lemma 4.6. If (u, Φ) is an m-pair in X, where $u=\left(U_{1}, \ldots, U_{m}\right)$ and $\Phi=$ $\left(F_{1}, \ldots, F_{m}\right)$, then there exist $a \in A$ and a finite open cover $v=\left(V_{1}, \ldots, V_{m}\right)$ of X_{a} such that $\left(v, p_{a}(\Phi)\right)$ is an m-pair in X_{a} (and hence $\left.\operatorname{ord}\left(p_{a}(\Phi)\right) \leq 1\right)$, and for $j=1, \ldots, m$, a closed neighborhood G_{j} of $p_{a}\left(F_{j}\right)$ in X_{a} and an open subset W_{j} of X_{a} such that,

1. $p_{a}^{-1}\left(V_{j}\right) \subseteq U_{j}$, and
2. $p_{a}\left(F_{j}\right) \subseteq \operatorname{int}\left(G_{j}\right) \subseteq G_{j} \subseteq W_{j} \subseteq \bar{W}_{j} \subseteq V_{j}$.

Moreover, we may make the above choices such that if we define

$$
w=\left(W_{1}, \ldots, W_{m}\right), g=\left(G_{1}, \ldots, G_{m}\right)
$$

then w covers X_{a}, ord $(g) \leq 1\left(s o(w, g)\right.$ is an m-pair in $\left.X_{a}\right)$, and so that for all $b \geq a$, ord $\left(p_{b}(\Phi)\right) \leq 1$.

Proof. Using Lemmas 4.4 and 4.5, choose an $a \in A$ and a finite open cover $t=\left(T_{1}, \ldots, T_{m}\right)$ of X_{a} such that $p_{a}^{-1}\left(T_{j}\right) \subseteq U_{j}, j=1, \ldots, m$, and for all $b \geq a, \operatorname{ord}\left(p_{b}(\Phi)\right) \leq 1$. Since p_{a} is a closed map and $F_{j} \subseteq U_{j}$, there exists a neighborhood W_{j} of $p_{a}\left(F_{j}\right)$ such that $p_{a}^{-1}\left(W_{j}\right) \subseteq U_{j}$. Set $V_{j}=T_{j} \cup W_{j}$. Then, of course, $p_{a}\left(F_{j}\right) \subseteq V_{j}$, the open collection $v=\left(V_{1}, \ldots, V_{m}\right)$ covers X_{a}, and $p_{a}^{-1}\left(V_{j}\right) \subseteq U_{j}$. We leave the remaining details to the reader.

Lemma 4.7. For every sequence $\left(u_{i}, \Phi_{i}\right), i=1, \ldots, k+1$, of m-pairs in X, where $u_{i}=\left(U_{1}^{i}, \ldots, U_{m}^{i}\right)$ and $\Phi_{i}=\left(F_{1}^{i}, \ldots, F_{m}^{i}\right)$, and every $a \in A$, there exists $b_{0} \geq a$ such that for all $b \geq b_{0}$, there is a corresponding sequence $\left(y_{i}, p_{b}\left(\Phi_{i}\right)\right), i=1, \ldots, k+1$, of m-pairs in X_{b}, where $y_{i}=\left(Y_{1}^{i}, \ldots, Y_{m}^{i}\right)$, and for all $i=1, \ldots, k+1$ and $j=1, \ldots, m$,

$$
F_{j}^{i} \subseteq p_{b}^{-1}\left(p_{b}\left(F_{j}^{i}\right)\right) \subseteq p_{b}^{-1}\left(Y_{j}^{i}\right) \subseteq U_{j}^{i}
$$

Proof. Let $\left(u_{i}, \Phi_{i}\right), i=1, \ldots, k+1$, be as above, and let $a \in A$. Using Lemma 4.6, for each i we can find an index $a_{i} \in A$ and a finite open cover $v_{i}=\left(V_{i}^{i}, \ldots, V_{m}^{i}\right)$ of $X_{a_{i}}$ so that $\left(v_{i}, p_{a_{i}}\left(\Phi_{i}\right)\right)$ is an m-pair of $X_{a_{i}}$, and for each $j=1, \ldots, m$, a closed neighborhood G_{j}^{i} of $p_{a_{i}}\left(F_{j}^{i}\right)$ and an open subset W_{j}^{i} of $X_{a_{i}}$ such that,

$$
\begin{gather*}
p_{a_{i}}^{-1}\left(V_{j}^{i}\right) \subseteq U_{j}^{i}, \text { and } \tag{4.1}\\
p_{a_{i}}\left(F_{j}^{i}\right) \subseteq \operatorname{int}\left(G_{j}^{i}\right) \subseteq G_{j}^{i} \subseteq W_{j}^{i} \subseteq \overline{W_{j}^{i}} \subseteq V_{j}^{i} . \tag{4.2}
\end{gather*}
$$

Moreover, if we define $w_{i}=\left(W_{1}^{i}, \ldots, W_{m}^{i}\right)$ and $g_{i}=\left(G_{1}^{i}, \ldots, G_{m}^{i}\right)$, then $\left(w_{i}, g_{i}\right)$ is an m-pair in $X_{a_{i}}$, and for all $b \geq a_{i}$, ord $\left(p_{b}\left(\Phi_{i}\right)\right) \leq 1$. There exists
$\delta>0$ such that for all i and j,

$$
\begin{equation*}
N\left(p_{a_{i}}\left(F_{j}^{i}\right), \delta\right) \subseteq G_{j}^{i} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
N\left(\overline{W_{j}^{i}}, \delta\right) \subseteq V_{j}^{i} \tag{4.4}
\end{equation*}
$$

Using Theorem 3.3(4.), pick $b_{0} \in A$ so that $b_{0} \geq a$ and $b_{0} \geq a_{i}$ for all $i=1, \ldots, k+1$, and for all $b \geq b_{0}$,

$$
\begin{equation*}
d\left(p_{a_{i}}, p_{a_{i} b} p_{b}\right)<\delta \tag{4.5}
\end{equation*}
$$

Fix $b \geq b_{0}$. For each $i=1, \ldots, k+1$ and $j=1, \ldots, m$, set $Y_{j}^{i}=p_{a_{i} b}^{-1}\left(W_{j}^{i}\right)$. Put $y_{i}=\left(Y_{1}^{i}, \ldots, Y_{m}^{i}\right)$. Then y_{i} is an open cover of X_{b}.

We claim that for each $i,\left(y_{i}, p_{b}\left(\Phi_{i}\right)\right)$ is an m-pair in X_{b}. Since we have chosen a_{i} as in Lemma 4.6, and $b \geq a_{i}$, then $\operatorname{ord}\left(p_{b}\left(\Phi_{i}\right)\right) \leq 1$. We will now show that for each $j, p_{b}\left(F_{j}^{i}\right) \subseteq Y_{j}^{i}$. Let $x \in p_{b}\left(F_{j}^{i}\right)$. Choose $z \in F_{j}^{i}$ such that $p_{b}(z)=x$. We have that $p_{a_{i}}(z) \in p_{a_{i}}\left(F_{j}^{i}\right)$. By (4.5), $d\left(p_{a_{i}}(z), p_{a_{i} b} p_{b}(z)\right)<\delta$. So (4.3) and (4.2) show that $p_{a_{i} b} p_{b}(z) \in G_{j}^{i} \subseteq W_{j}^{i}$. Finally we have, $x=$ $p_{b}(z) \in p_{a_{i} b}^{-1}\left(W_{j}^{i}\right)=Y_{j}^{i}$. Thus, $p_{b}\left(F_{j}^{i}\right) \subseteq Y_{j}^{i}$. Therefore, $\left(y_{i}, p_{b}\left(\Phi_{i}\right)\right)$ is an m-pair in X_{b}.

We next demonstrate that for each i and j,

$$
F_{j}^{i} \subseteq p_{b}^{-1}\left(p_{b}\left(F_{j}^{i}\right)\right) \subseteq p_{b}^{-1}\left(Y_{j}^{i}\right) \subseteq U_{j}^{i}
$$

The left inclusion is obvious, and the middle inclusion follows from the fact that $\left(y_{i}, p_{b}\left(\Phi_{i}\right)\right)$ is an m-pair in X_{b}. To show the right inclusion, let $x \in p_{b}^{-1}\left(Y_{j}^{i}\right)=p_{b}^{-1}\left(p_{a_{i} b}^{-1}\left(W_{j}^{i}\right)\right)$. Then $p_{a_{i} b} p_{b}(x) \in W_{j}^{i}$. By (4.5), $d\left(p_{a_{i}}(x), p_{a_{i} b} p_{b}(x)\right)<\delta$, so by (4.4), $p_{a_{i}}(x) \in V_{j}^{i}$. Using (4.1), $x \in p_{a_{i}}^{-1}\left(V_{j}^{i}\right) \subseteq$ U_{j}^{i}, as needed.

5. Characterization

DEfinition 5.1. Let X be a space, $B \subseteq X$, and (u, Φ) an m-pair in X with $u=\left(U_{1}, \ldots, U_{m}\right)$ and $\Phi=\left(F_{1}, \ldots, F_{m}\right)$. Then by $(u \cap B, \Phi \cap B)$ or $(u, \Phi) \cap B$, we shall mean the m-pair in B given by $u \cap B=\left(U_{1} \cap B, \ldots, U_{m} \cap B\right)$ and $\Phi \cap B=\left(F_{1} \cap B, \ldots, F_{m} \cap B\right)$.

Here is our main result.
Theorem 5.2. Let $\mathbf{X}=\left\{X_{a}, \epsilon_{a}, p_{a a^{\prime}}, A\right\}$ be an approximate system, $X=$ $\lim \mathbf{X},\{m, n\} \subset \mathbb{N}$, and $k \geq 0$. Then $(m, n)-\operatorname{dim} X \leq k$ if and only if for each $a \in A$ and sequence $\left(w_{i}, \Phi_{i}\right), i=1, \ldots, k+1$, of m-pairs in X_{a}, there exists $b_{0} \geq a$ such that for all $b \geq b_{0}$, the sequence $\left(p_{a b}^{-1}\left(w_{i}\right), p_{a b}^{-1}\left(\Phi_{i}\right)\right) \cap p_{b}(X)$, $i=1, \ldots, k+1$, of m-pairs in $p_{b}(X)$ is n-inessential in $p_{b}(X)$.

Proof. (\Leftarrow) Let $\left(u_{i}, \Phi_{i}\right), i=1, \ldots, k+1$, be a sequence of m-pairs in X. We wish to show that this sequence is n-inessential in X. For each i, let $u_{i}=\left(U_{1}^{i}, \ldots, U_{m}^{i}\right)$ and $\Phi_{i}=\left(F_{1}^{i}, \ldots, F_{m}^{i}\right)$. Using Lemma 4.6, we can find an index $a_{i} \in A$ and a finite open cover $v_{i}=\left(V_{1}^{i}, \ldots, V_{m}^{i}\right)$ of $X_{a_{i}}$ such that $\left(v_{i}, p_{a_{i}}\left(\Phi_{i}\right)\right)$ is an m-pair in $X_{a_{i}}$ along with sequences $w_{i}=\left(W_{1}^{i}, \ldots, W_{m}^{i}\right)$ and $g_{i}=\left(G_{1}^{i}, \ldots, G_{m}^{i}\right)$ where for each $j=1, \ldots, m, G_{j}^{i}$ is a closed neighborhood of $p_{a_{i}}\left(F_{j}^{i}\right)$ in $X_{a_{i}}$ and W_{j}^{i} is an open subset of $X_{a_{i}}$, so that,

$$
\begin{gather*}
p_{a_{i}}^{-1}\left(V_{j}^{i}\right) \subseteq U_{j}^{i} \tag{5.1}\\
p_{a_{i}}\left(F_{j}^{i}\right) \subseteq \operatorname{int} G_{j}^{i} \subseteq G_{j}^{i} \subseteq W_{j}^{i} \subseteq \overline{W_{j}^{i}} \subseteq V_{j}^{i} \tag{5.2}\\
\left(w_{i}, g_{i}\right) \text { is an } m \text {-pair of } X_{a_{i}} \tag{5.3}
\end{gather*}
$$

There exists $\delta>0$ such that for all $i=1, \ldots, k+1$ and for all $j=1, \ldots, m$,

$$
\begin{gather*}
N\left(p_{a_{i}}\left(F_{j}^{i}\right), \delta\right) \subseteq G_{j}^{i}, \text { and } \tag{5.4}\\
N\left(\overline{W_{j}^{i}}, \delta\right) \subseteq V_{j}^{i} \tag{5.5}
\end{gather*}
$$

Using Theorem 3.3(4.) and Definition 3.1(A2), pick $a \in A$ so that $a \geq a_{i}$ for all $i=1, \ldots, k+1$, and for all $a^{\prime} \geq a$ we have,

$$
\begin{gather*}
d\left(p_{a_{i}}, p_{a_{i} a^{\prime}} p_{a^{\prime}}\right)<\delta / 2, \text { and } \tag{5.6}\\
d\left(p_{a_{i} a^{\prime}}, p_{a_{i} a} p_{a a^{\prime}}\right)<\delta / 2 \tag{5.7}
\end{gather*}
$$

For each $i=1, \ldots, k+1$, set

$$
\begin{aligned}
w_{i}^{0} & =p_{a_{i} a}^{-1}\left(w_{i}\right)=\left(p_{a_{i} a}^{-1}\left(W_{1}^{i}\right), \ldots, p_{a_{i} a}^{-1}\left(W_{m}^{i}\right)\right), \text { and } \\
g_{i}^{0} & =p_{a_{i} a}^{-1}\left(g_{i}\right)=\left(p_{a_{i} a}^{-1}\left(G_{1}^{i}\right), \ldots, p_{a_{i} a}^{-1} a\left(G_{m}^{i}\right)\right)
\end{aligned}
$$

It readily follows from (5.3), that for each $i=1, \ldots, k+1,\left(w_{i}^{0}, g_{i}^{0}\right)$ is an m-pair in X_{a}. Now use the assumption in (\Leftarrow) to choose $b \geq a$ such that the sequence of m-pairs, $\left(p_{a b}^{-1}\left(w_{i}^{0}\right), p_{a b}^{-1}\left(g_{i}^{0}\right)\right) \cap p_{b}(X), i=1, \ldots, k+1$, in $p_{b}(X)$ is n-inessential in $p_{b}(X)$. It follows from Proposition 2.6, that the sequence of m-pairs in X,

$$
\left(p_{b}^{-1}\left(p_{a b}^{-1}\left(w_{i}^{0}\right) \cap p_{b}(X)\right), p_{b}^{-1}\left(p_{a b}^{-1}\left(g_{i}^{0}\right) \cap p_{b}(X)\right)\right), i=1, \ldots, k+1
$$

which equals $\left(p_{b}^{-1}\left(p_{a b}^{-1}\left(w_{i}^{0}\right)\right), p_{b}^{-1}\left(p_{a b}^{-1}\left(g_{i}^{0}\right)\right)\right), i=1, \ldots, k+1$, is n-inessential in X.

We will now show that for each $i=1, \ldots, k+1$ and $j=1, \ldots, m, F_{j}^{i} \subseteq$ $p_{b}^{-1}\left(p_{a b}^{-1}\left(p_{a_{i} a}^{-1}\left(G_{j}^{i}\right)\right)\right) \subseteq p_{b}^{-1}\left(p_{a b}^{-1}\left(p_{a_{i} a}^{-1}\left(W_{j}^{i}\right)\right)\right) \subseteq U_{j}^{i}$. Fix i and j.

To show the left inclusion, let $x \in F_{j}^{i}$. Then $p_{a_{i}}(x) \in p_{a_{i}}\left(F_{j}^{i}\right)$. By (5.6) we have

$$
d\left(p_{a_{i}}(x), p_{a_{i} b} p_{b}(x)\right)<\delta / 2
$$

and by (5.7) we have

$$
d\left(p_{a_{i} b} p_{b}(x), p_{a_{i} a} p_{a b} p_{b}(x)\right)<\delta / 2
$$

And so by the triangle inequality,

$$
d\left(p_{a_{i}}(x), p_{a_{i} a} p_{a b} p_{b}(x)\right)<\delta
$$

By (5.4) we have $p_{a_{i} a} p_{a b} p_{b}(x) \in G_{j}^{i}$. Thus, $x \in p_{b}^{-1}\left(p_{a b}^{-1}\left(p_{a_{i} a}^{-1}\left(G_{j}^{i}\right)\right)\right)$ which implies that,

$$
F_{j}^{i} \subseteq p_{b}^{-1}\left(p_{a b}^{-1}\left(p_{a_{i} a}^{-1}\left(G_{j}^{i}\right)\right)\right)
$$

The middle inclusion follows from (5.2).
To show the right inclusion, let $x \in p_{b}^{-1}\left(p_{a b}^{-1}\left(p_{a_{i} a}^{-1}\left(W_{j}^{i}\right)\right)\right)$. Then

$$
p_{a_{i} a} p_{a b} p_{b}(x) \in W_{j}^{i}
$$

Using (5.7) and (5.6), one has that

$$
d\left(p_{a_{i} b} p_{b}(x), p_{a_{i} a} p_{a b} p_{b}(x)\right)<\delta / 2
$$

and

$$
d\left(p_{a_{i}}(x), p_{a_{i} b} p_{b}(x)\right)<\delta / 2 .
$$

By the triangle inequality,

$$
d\left(p_{a_{i}}(x), p_{a_{i} a} p_{a b} p_{b}(x)\right)<\delta
$$

So by (5.5) we have $p_{a_{i}}(x) \in V_{j}^{i}$. Thus, using (5.1), $x \in p_{a_{i}}^{-1}\left(V_{j}^{i}\right) \subseteq U_{j}^{i}$, and so

$$
p_{b}^{-1}\left(p_{a b}^{-1}\left(p_{a_{i} a}^{-1}\left(W_{j}^{i}\right)\right)\right) \subseteq U_{j}^{i}
$$

By Proposition 2.7, the sequence $\left(u_{i}, \Phi_{i}\right), i=1, \ldots, k+1$, is n-inessential in X, and so $(m, n)-\operatorname{dim} X \leq k$.
(\Rightarrow) We will now assume that $(m, n)-\operatorname{dim} X \leq k$. Let $a \in A$, and $\left(w_{i}, \Phi_{i}\right)$, $i=1, \ldots, k+1$, be a sequence of m-pairs in X_{a}, where we denote $w_{i}=$ $\left(W_{1}^{i}, \ldots, W_{m}^{i}\right)$ and $\Phi_{i}=\left(F_{1}^{i}, \ldots, F_{m}^{i}\right)$. Recall that for each $i=1, \ldots, k+1$, w_{i} is an open cover of X_{a}, $\operatorname{ord}\left(\Phi_{i}\right) \leq 1$, and for each $j=1, \ldots, m, F_{j}^{i} \subseteq W_{j}^{i}$.

For each $i=1, \ldots, k+1$ and $j=1, \ldots, m$, choose a closed neighborhood \widehat{F}_{j}^{i} of F_{j}^{i} in X_{a} and an open set \widehat{W}_{j}^{i} in X_{a} such that

$$
\begin{gathered}
F_{j}^{i} \subseteq \operatorname{int} \widehat{F}_{j}^{i} \subseteq \widehat{F}_{j}^{i} \subseteq \widehat{W}_{j}^{i} \subseteq \widehat{\widehat{W}}_{j}^{i} \subseteq W_{j}^{i} \\
\hat{w}_{i}=\left(\widehat{W}_{1}^{i}, \ldots, \widehat{W}_{m}^{i}\right) \text { covers } X_{a}, \text { and } \\
\operatorname{ord}\left(\widehat{\Phi}_{i}\right) \leq 1 \text { where } \widehat{\Phi}_{i}=\left(\widehat{F}_{1}^{i}, \ldots, \widehat{F}_{m}^{i}\right)
\end{gathered}
$$

Then $\left(\hat{w}_{i}, \widehat{\Phi}_{i}\right)$ is an m-pair in X_{a}.
There exists $\delta>0$ such that for all $i=1, \ldots, k+1$ and $j=1, \ldots, m$, we have that in X_{a},

$$
\begin{gathered}
N\left(F_{j}^{i}, \delta\right) \subseteq \widehat{F}_{j}^{i}, \text { and } \\
N\left(\widehat{W}_{j}^{i}, \delta\right) \subseteq W_{j}^{i}
\end{gathered}
$$

Since $(m, n)-\operatorname{dim} X \leq k$, the sequence $\left(p_{a}^{-1}\left(\hat{w}_{i}\right), p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)\right), i=1, \ldots, k+1$, of m-pairs in X is n-inessential in X. So, for each $i=1, \ldots, k+1$, there exists an n-partition P_{i} of the m-pair $\left(p_{a}^{-1}\left(\hat{w}_{i}\right), p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)\right)$ such that

$$
P_{1} \cap \cdots \cap P_{k+1}=\emptyset
$$

By the definition of n-partition, for each $i=1, \ldots, k+1$, we have a collection of open sets in $X, v_{i}=\left(V_{1}^{i}, \ldots, V_{m}^{i}\right)$, such that

$$
\begin{gather*}
p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right) \subseteq V_{j}^{i} \subseteq p_{a}^{-1}\left(\widehat{W}_{j}^{i}\right) \text { for } j=1, \ldots, m \tag{5.8}\\
\operatorname{ord}\left(v_{i}\right) \leq n ; \text { and } \\
X \backslash P_{i}=\bigcup v_{i} \tag{5.9}
\end{gather*}
$$

By (5.8) and (5.9) we have for each $i=1, \ldots, k+1$ and $j=1, \ldots, m$,

$$
p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right) \subseteq V_{j}^{i} \subseteq \bigcup v_{i}=X \backslash P_{i}
$$

Thus, for each $i=1, \ldots, k+1$,

$$
\bigcup p_{a}^{-1}\left(\widehat{\Phi}_{i}\right) \subseteq X \backslash P_{i}
$$

and so,

$$
P_{i} \subseteq X \backslash \bigcup p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)
$$

For each $i=1, \ldots, k+1$, we choose an open set Q_{i} in X with the following properties:

$$
\begin{gather*}
P_{i} \subseteq Q_{i} \tag{5.10}\\
Q_{1} \cap \cdots \cap Q_{k+1}=\emptyset, \text { and } \\
Q_{i} \subseteq X \backslash \bigcup p_{a}^{-1}\left(\widehat{\Phi}_{i}\right) . \tag{5.11}
\end{gather*}
$$

Consider the closed set $X \backslash Q_{i}$. Then by (5.9) and (5.10) the collection of open sets in $X \backslash Q_{i}$,

$$
\left(V_{1}^{i} \cap\left(X \backslash Q_{i}\right), \ldots, V_{m}^{i} \cap\left(X \backslash Q_{i}\right)\right)
$$

covers $X \backslash Q_{i}$. By (5.8) we have that $p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right) \subseteq V_{j}^{i}$, and by definition, $p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right) \subseteq \bigcup p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)$. This and (5.11) imply that $p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right) \subseteq \bigcup p_{a}^{-1}\left(\widehat{\Phi}_{i}\right) \subseteq$ $X \backslash Q_{i}$. And so, $p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right) \subseteq V_{j}^{i} \cap\left(X \backslash Q_{i}\right)$. This shows that there exist closed sets $G_{1}^{i}, \ldots, G_{m}^{i}$ in X such that for $j=1, \ldots, m$ and $i=1, \ldots, k+1$, we have,

$$
\begin{equation*}
p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right) \subseteq G_{j}^{i} \subseteq V_{j}^{i} \cap\left(X \backslash Q_{i}\right), \text { and } \tag{5.12}
\end{equation*}
$$

the collection $\left(G_{1}^{i}, \ldots, G_{m}^{i}\right)$ covers $X \backslash Q_{i}$.

We will now choose $b_{0} \geq a$ using Proposition 3.4, Theorem 3.3(4.), and Lemma 4.7. First choose $b_{1} \geq a$ so that by Proposition 3.4 we have that for all $b \geq b_{1}$,

$$
\begin{equation*}
p_{b}^{-1}\left(p_{b}\left(G_{j}^{i}\right)\right) \subseteq V_{j}^{i} \text { for all } j=1, \ldots, m \text { and } i=1, \ldots, k+1 \tag{5.14}
\end{equation*}
$$

Next, using Theorem 3.3(4.), choose $b_{2} \geq b_{1}$ such that for all $b \geq b_{2}$ we have that

$$
d\left(p_{a b} p_{b}, p_{a}\right)<\delta
$$

Apply Lemma 4.7 to the sequence $\left(p_{a}^{-1}\left(\hat{w}_{i}\right), p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)\right), i=1, \ldots, k+1$, of m pairs in X (note that here we substitute $p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right)$ for the F_{j}^{i} and $p_{a}^{-1}\left(\widehat{W}_{j}^{i}\right)$ for the U_{j}^{i} of the lemma) to get an index $b_{0} \geq b_{2}$ so that for all $b \geq b_{0}$, there exists a corresponding sequence

$$
\left(y_{i}, p_{b}\left(p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)\right)\right), i=1, \ldots, k+1
$$

of m-pairs in X_{b}. Moreover, for all $j=1, \ldots, m$ and $i=1, \ldots, k+1$, we have,

$$
\begin{gathered}
y_{i}=\left(Y_{1}^{i}, \ldots, Y_{m}^{i}\right) \\
p_{b}\left(p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)\right)=\left(p_{b}\left(p_{a}^{-1}\left(\widehat{F}_{1}^{i}\right)\right), \ldots, p_{b}\left(p_{a}^{-1}\left(\widehat{F}_{m}^{i}\right)\right)\right)
\end{gathered}
$$

and

$$
\begin{equation*}
p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right) \subseteq p_{b}^{-1}\left(p_{b}\left(p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right)\right)\right) \subseteq p_{b}^{-1}\left(Y_{j}^{i}\right) \subseteq p_{a}^{-1}\left(\widehat{W}_{j}^{i}\right) \tag{5.15}
\end{equation*}
$$

We now use (5.8), (5.14) and the fact that p_{b} is a closed map to choose, for each $j=1, \ldots, m$ and $i=1, \ldots, k+1$, an open neighborhood T_{j}^{i} in $p_{b}(X)$ of $p_{b}\left(G_{j}^{i}\right)$ such that

$$
\begin{equation*}
p_{b}^{-1}\left(p_{b}\left(G_{j}^{i}\right)\right) \subseteq p_{b}^{-1}\left(T_{j}^{i}\right) \subseteq V_{j}^{i} \subseteq p_{a}^{-1}\left(\widehat{W}_{j}^{i}\right) \tag{5.16}
\end{equation*}
$$

Let $t_{i}=\left(T_{1}^{i}, \ldots, T_{m}^{i}\right)$. Then since $\operatorname{ord}\left(v_{i}\right) \leq n$ and $T_{j}^{i} \subseteq p_{b}(X)$ we have that $\operatorname{ord}\left(t_{i}\right) \leq n$.

For each $j=1, \ldots, m$ and $i=1, \ldots, k+1$, let $\widehat{Y}_{j}^{i}=\left(Y_{j}^{i} \cup T_{j}^{i}\right) \cap p_{b}(X)$, and $\hat{y}_{i}=\left(\widehat{Y}_{1}^{i}, \ldots, \widehat{Y}_{m}^{i}\right)$. Then $\left(\hat{y}_{i}, p_{b}\left(p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)\right), i=1, \ldots, k+1\right.$, is a sequence of m-pairs in $p_{b}(X)$, and using (5.15) and (5.16) we have for all $i=1, \ldots, m$ and $j=1, \ldots, k+1$,

$$
\begin{equation*}
p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right) \subseteq p_{b}^{-1}\left(p_{b}\left(p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right)\right)\right) \subseteq p_{b}^{-1}\left(\widehat{Y}_{j}^{i}\right) \subseteq p_{a}^{-1}\left(\widehat{W}_{j}^{i}\right) \tag{5.17}
\end{equation*}
$$

We claim that the sequence $\left(\hat{y}_{i}, p_{b}\left(p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)\right)\right) \cap p_{b}(X), i=1, \ldots, k+1$, which is the same as $\left(\hat{y}_{i}, p_{b}\left(p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)\right)\right), i=1, \ldots, k+1$, is n-inessential in $p_{b}(X)$.

For each $i=1, \ldots, k+1$, let $R_{i}=p_{b}(X) \backslash \bigcup_{j=1}^{m} T_{j}^{i}$. Using (5.12) and the fact that T_{j}^{i} is an open neighborhood of $p_{b}\left(G_{j}^{i}\right)$ in $p_{b}(X)$, we have that $p_{b}\left(p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right)\right) \subseteq T_{j}^{i} \subseteq \widehat{Y}_{j}^{i}$ for $j=1, \ldots, m$. Since t_{i} is a family of open
sets in $p_{b}(X)$ such that $p_{b}\left(p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right)\right) \subseteq T_{j}^{i} \subseteq \widehat{Y}_{j}^{i}$, and ord $\left(t_{i}\right) \leq n$, then R_{i} is an n-partition of $\left(\hat{y}_{i}, p_{b}\left(p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)\right)\right)$ in $p_{b}(X)$. We will now show that $R_{1} \cap \cdots \cap R_{k+1}=\emptyset$.

We first note that by (5.13) and (5.16) we have for each $i=1, \ldots, k+1$,

$$
X \backslash Q_{i} \subseteq \bigcup_{j=1}^{m} G_{j}^{i} \subseteq \bigcup_{j=1}^{m} p_{b}^{-1}\left(p_{b}\left(G_{j}^{i}\right)\right) \subseteq \bigcup_{j=1}^{m} p_{b}^{-1}\left(T_{j}^{i}\right)
$$

It follows that

$$
p_{b}^{-1}\left(R_{i}\right)=p_{b}^{-1}\left(p_{b}(X) \backslash \bigcup_{j=1}^{m} T_{j}^{i}\right)=X \backslash\left(\bigcup_{j=1}^{m} p_{b}^{-1}\left(T_{j}^{i}\right)\right) \subseteq Q_{i} .
$$

Since

$$
Q_{1} \cap \cdots \cap Q_{k+1}=\emptyset,
$$

we have that

$$
p_{b}^{-1}\left(R_{1}\right) \cap \cdots \cap p_{b}^{-1}\left(R_{k+1}\right)=\emptyset,
$$

and so, since $R_{i} \subseteq p_{b}(X)$ for each $i=1, \ldots, k+1$,

$$
R_{1} \cap \cdots \cap R_{k+1}=\emptyset .
$$

Thus, as stated above, the sequence $\left(\hat{y}_{i}, p_{b}\left(p_{a}^{-1}\left(\widehat{\Phi}_{i}\right)\right)\right) \cap p_{b}(X), i=1, \ldots, k+1$, is n-inessential in $p_{b}(X)$.

To conclude the proof we will show that for all $i=1, \ldots, k+1$ and $j=1, \ldots, m$, we have

$$
p_{a b}^{-1}\left(F_{j}^{i}\right) \cap p_{b}(X) \subseteq p_{b}\left(p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right)\right) \subseteq \widehat{Y}_{j}^{i} \subseteq p_{a b}^{-1}\left(W_{j}^{i}\right) \cap p_{b}(X),
$$

and apply Proposition 2.7 (this means that in terms of Proposition 2.7, F_{j}^{i} corresponds to $p_{a b}^{-1}\left(F_{j}^{i}\right) \cap p_{b}(X), G_{j}^{i}$ to $p_{b}\left(p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right)\right), W_{j}^{i}$ to \widehat{Y}_{j}^{i}, and U_{j}^{i} to $\left.p_{a b}^{-1}\left(W_{j}^{i}\right) \cap p_{b}(X)\right)$. Fix i and j.

To show the left inclusion, let $x \in p_{a b}^{-1}\left(F_{j}^{i}\right) \cap p_{b}(X)$, and choose $y \in p_{b}^{-1}(x)$. Then we have that,

$$
d\left(p_{a b}(x), p_{a}(y)\right)=d\left(p_{a b}\left(p_{b}(y)\right), p_{a}(y)\right)<\delta .
$$

Thus, $p_{a}(y) \in N\left(F_{j}^{i}, \delta\right)$. It follows that $p_{a}(y) \in \widehat{F}_{j}^{i}$, and so $y \in p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right)$. Finally,

$$
x=p_{b}(y) \in p_{b}\left(p_{a}^{-1}\left(\widehat{F}_{j}^{i}\right)\right),
$$

proving the left inclusion. The middle inclusion follows from (5.17).
To show the right inclusion, we first note that by (5.17), $\widehat{Y}_{j}^{i} \subseteq$ $p_{b}\left(p_{a}^{-1}\left(\widehat{W}_{j}^{i}\right)\right)$. We now let $x \in \widehat{Y}_{j}^{i} \subseteq p_{b}\left(p_{a}^{-1}\left(\widehat{W}_{j}^{i}\right)\right)$. We have that $p_{a}\left(p_{b}^{-1}(x)\right) \subseteq$ \widehat{W}_{j}^{i}. Choose $y \in p_{b}^{-1}(x)$. Then $p_{a}(y) \in \widehat{W}_{j}^{i}$. So,

$$
d\left(p_{a b}(x), p_{a}(y)\right)=d\left(p_{a b}\left(p_{b}(y)\right), p_{a}(y)\right)<\delta .
$$

Thus, $p_{a b}(x) \in N\left(\widehat{W}_{j}^{i}, \delta\right)$, so $p_{a b}(x) \in W_{j}^{i}$. It follows that $x \in p_{a b}^{-1}\left(W_{j}^{i}\right)$. Since $x \in p_{b}\left(p_{a}^{-1}\left(\widehat{W}_{j}^{i}\right)\right) \subseteq p_{b}(X)$, we have that $x \in p_{a b}^{-1}\left(W_{j}^{i}\right) \cap p_{b}(X)$, proving the right inclusion.

6. Corollaries

It is shown in [2] that (m, n)-dim $\leq k$ is preserved by inverse limits of inverse systems of compact Hausdorff spaces whose coordinate spaces have $(m, n)-\operatorname{dim} \leq k$.

Theorem 6.1 ([2, Theorem 2.21]). Let $\mathbf{X}=\left\{X_{a}, p_{a b}, A\right\}$ be an inverse system of compact Hausdorff spaces X_{a} with $(m, n)-\operatorname{dim} X_{a} \leq k$ for all $a \in A$, and let $X=\lim \mathbf{X}$. Then $(m, n)-\operatorname{dim} X \leq k$.

The following corollary of Theorem 5.2 is parallel to Theorem 6.1. It shows that (m, n)-dim $\leq k$ is preserved by limits of approximate systems whose coordinate spaces have (m, n)-dim $\leq k$. First we need to recall Proposition 2.10 from [2] which shows that (m, n)-dimension is weakly hereditary.

Proposition 6.2. Suppose that X is a space with $(m, n)-\operatorname{dim} X \leq k$. Then for each closed subspace A of $X,(m, n)-\operatorname{dim} A \leq k$.

Corollary 6.3. Let $\mathbf{X}=\left\{X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right\}$ be an approximate system such that for all $a \in A$, $(m, n)-\operatorname{dim} X_{a} \leq k$, and let $X=\lim \mathbf{X}$. Then $(m, n)-\operatorname{dim} X \leq k$.

Using the next fact, which is Proposition 2 of [8], we can strengthen Corollary 6.3.

Proposition 6.4. Let $\mathbf{X}=\left\{X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right\}$ be an approximate system and $X=\lim \mathbf{X}$. Suppose that $B \subseteq A$ is a cofinal subset of A. Then $\mathbf{Y}=$ $\left\{X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, B\right\}$ is an approximate system. Let Y be the limit of \mathbf{Y}. Then the restriction $p=\pi \mid X$ of the projection $\pi: \prod\left\{X_{a} \mid a \in A\right\} \rightarrow \prod\left\{X_{a} \mid a \in B\right\}$ is a homeomorphism $p: X \rightarrow Y$.

Corollary 6.5. Let $\mathbf{X}=\left\{X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right\}$ be an approximate system and $X=\lim \mathbf{X}$. If there exists a cofinal subset $B \subseteq A$ such that for all $a \in B$, $(m, n)-\operatorname{dim} X_{a} \leq k$, then $(m, n)-\operatorname{dim} X \leq k$.

Corollary 6.6. Let $\mathbf{X}=\left\{X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right\}$ be an approximate system and $X=\lim \mathbf{X}$. If there exists an $a \in A$ such that $(m, n)-\operatorname{dim} X_{a^{\prime}} \leq k$ for all $a^{\prime} \geq a$, Then $(m, n)-\operatorname{dim} X \leq k$.

References

[1] R. Engelking, Theory of dimensions finite and infinite, Heldermann Verlag, Lemgo, 1995.
[2] V. V. Fedorchuk, Finite dimensions defined by means of m-coverings, Mat. Vesnik 64 (2012), 347-360.
[3] V. V. Fedorchuk, Estimates of the dimension (m,n)-dim, Mosc. Univ. Math. Bull. 68 (2013), 177-181.
[4] V. V. Fedorchuk, Inductive (m, n)-dimensions, Topology Appl. 169 (2014), 120-135.
[5] V. Fedorchuk, Valuations for dimension (m, n)-dim, Matem. Vestnik, MUS (2013) (in Russian), in press.
[6] M. Lynam and L. R. Rubin, Extensional maps and approximate inverse limits, Topology Appl. 239 (2018), 324-336.
[7] S. Mardešić and L. R. Rubin, Approximate inverse systems of compacta and covering dimension, Pacific J. Math. 138 (1989), no. 1, 129-144.
[8] S. Mardessić and J. Segal, \mathcal{P}-like continua and approximate inverse limits, Math. Japon. 33 (1988), no. 6, 895-908.
[9] N. Martynchuk, Factorization theorem for the dimension (m, n)-dim, Mosc. Univ. Math. Bull. 68 (2013), 188-191.
[10] N. Martynchuk, Transfinite extension of dimension function (m, n)-dim, Topology Appl. 160 (2013), 2514-2522.
[11] N. Martynchuk, Several remarks concerning (m,n)-dimensions, Topology Appl. 178 (2014), 219-229.
[12] N. Martynchuk, Theorem on universal spaces for dimension function (m, n)-dim, Mat. Zametki (2013), in press.
M. Lynam

Department of Mathematics
East Central University
Ada, Oklahoma 74820
USA
E-mail: mlynam@ecok.edu
L. R. Rubin

Department of Mathematics
University of Oklahoma
Norman, Oklahoma 73019
USA
E-mail: lrubin@ou.edu
Received: 8.3.2019.
Revised: 22.4.2019. \& 13.11.2019.

[^0]: 2020 Mathematics Subject Classification. 54F45.
 Key words and phrases. Dimension, (m, n)-dim, approximate inverse system.

