
GLASNIK MATEMATIČKI
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Abstract. In 2012, V. Fedorchuk, using m-pairs and n-partitions,
introduced the notion of the (m, n)-dimension of a space. It generalizes
covering dimension. Here we are going to look at this concept in the
setting of approximate inverse systems of compact metric spaces. We give
a characterization of (m,n)-dimX, where X is the limit of an approximate
inverse system, strictly in terms of the given system.

1. Introduction

In [2], V. Fedorchuk introduced a new generalization of covering dimension
which he called (m,n)-dimension, written (m,n)-dim, and such that for each
normal space X , (2, 1)-dimX = dimX . Fedorchuk’s (m,n)-dim is defined
using m-pairs and n-partitions; in Section 2 we will provide what is needed
to define such pairs and partitions, and with that in hand, we shall give the
definition of the (m,n)-dimension of a space. We shall also cite in that section
a few fundamental facts from this theory that will be used in the sequel.

Since the introduction of (m,n)-dimension, the theory has been developed
in parallel to that of the classical notions of dimension which one can find in [1].
For example, a strong inductive version was presented in [4], a transfinite type
in [10], and for (m,n)-dimension, both a factorization theorem and one about
the existence of universal spaces were given in [9] and [12], respectively. In
[11], Martynchuk proved that for every strongly hereditarily normal space X ,
(m,n)-dimX =

⌊
dimX

n

⌋
; therefore Fedorchuk’s notion of dimension deviates

from that of covering dimension in infinitely many cases. One may also consult
[3] and [5] for additional contributions of Fedorchuk.
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Our main result gives a characterization of the (m,n)-dimension of a
space X where X is the limit of an approximate (inverse) system, strictly in
terms of the given system. One of the consequences of our result, Corollary
6.3, is that (m,n)-dim ≤ k is preserved by limits of approximate inverse
systems of metric compacta. Most readers are familiar with inverse systems
and their limits, but are perhaps not as well-versed with approximate systems.
Approximate systems were introduced in [7] where it was shown that each
compact Hausdorff space X can be written as the limit of an approximate
system of compact polyhedra each having dimension less than or equal to
dimX . In general, this fact is not true of inverse systems.

In Section 3 we will provide the definition of an approximate system and
its limit, as well as some basic results. The reader will see that the coordinate
spaces of an approximate system are compact metric spaces each of which is
assigned a positive number. The limit of such a system is always compact and
Hausdorff. In Section 4 we shall prove several new facts dealing with finite
covers of limits of approximate systems. These will be used in the proof of
our main result, Theorem 5.2, which appears in Section 5. Section 6 gathers
some corollaries to Theorem 5.2.

2. Introduction to (m,n)-dim

Throughout this paper, map will mean continuous function. We will
denote the order of a nonempty finite family Φ of sets by ord(Φ). By order
we mean the largest n ∈ {0} ∪ N such that Φ contains a subset Ψ with
card(Ψ) = n and

⋂
Ψ 6= ∅. By this definition, ord(Φ) = 0 if and only if

Φ = {∅}. On the other hand, ord(Φ) = 1 if and only if Φ is pairwise disjoint
and there exists F ∈ Φ such that F 6= ∅. If B is a subspace of a metric space
X and ρ > 0, then N(B, ρ) will denote the ρ-neighborhood of B in X . In this
section, X will always denote a normal space.

Definition 2.1 ([2, Definition 2.1]). Let u = (U1, . . . , Um) be a finite
open cover of X and Φ = (F1, . . . , Fm) be a family of closed subsets of X such
that

Fj ⊂ Uj, j = 1, . . . ,m;

ord(Φ) ≤ 1.

Then (u,Φ) is said to be an m-pair in X.

Definition 2.2 ([2, Definition 2.5]). Let (u,Φ) be an m-pair in X where
u = (U1, . . . , Um) and Φ = (F1, . . . , Fm). A closed set P ⊆ X is said to be an
n-partition of (u,Φ) if there exists a family of open sets v = (V1, . . . , Vm) of
X such that Fj ⊆ Vj ⊆ Uj, for j = 1, . . . ,m; ord(v) ≤ n; and X \ P =

⋃
v.

Definition 2.3 ([2, Definition 2.7]). For each i = 1, . . . , r, let (ui,Φi) be
an m-pair in X. The sequence (ui,Φi), i = 1, . . . , r, is called n-inessential
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in X if for each i, there exists an n-partition Pi of (ui,Φi) such that P1 ∩
· · · ∩ Pr = ∅.

Definition 2.4 ([2, Definition 2.8]). Let m,n ∈ N with n ≤ m. To every
space X one assigns the (m,n)-dimension (m,n)-dimX, which is an element
of {−1} ∪ {0} ∪ N ∪ {∞} in the following way.

(1) (m,n)-dimX = −1 if and only if X = ∅.

In case X 6= ∅, then:

(2.1) (m,n)-dimX = ∞, if for each k ∈ {0}∪N, there is a sequence (ui,Φi),
i = 1, . . . , k + 1, of m-pairs in X, that is not n-inessential in X;

(2.2) (m,n)-dimX = r, where r ∈ {0} ∪ N, if (m,n)-dimX 6= ∞ and r is
the minimum of those k ∈ {0} ∪ N such that every sequence (ui,Φi),
i = 1, . . . , k + 1, of m-pairs in X, is n-inessential in X.

Theorem 2.5 ([2, Theorem 2.9]). One has that (2, 1)-dimX = dimX.

Of course Theorem 2.5 follows from Martynchuk’s result mentioned in the
Introduction. Moreover, from that very same expression, one can get values
for (m,n)-dimX that are different from m. For example, if X = [0, 1]3, then
dimX = 3, but (3, 2)-dimX =

⌊
3
2

⌋
= 1.

Proposition 2.6 ([2, Proposition 2.19]). Let Y be a space, f : X → Y
be a map, and let a sequence (ui,Φi), i = 1, . . . , r, of m-pairs in Y be n-
inessential in Y . Then (f−1(ui), f

−1(Φi)), i = 1, . . . , r, is an n-inessential
sequence of m-pairs in X.

Proposition 2.7 ([2, Proposition 2.20]). Let (ui,Φi) and (wi,Ψi), i =
1, . . . , r, be sequences of m-pairs in X where ui = (U i

1, . . . , U
i
m), Φi =

(F i
1 , . . . , F

i
m), wi = (W i

1 , . . . ,W
i
m), and Ψi = (Gi

1, . . . , G
i
m). Assume that

F i
j ⊆ Gi

j ⊆ W i
j ⊆ U i

j , i = 1, . . . , r, j = 1, . . . ,m.

If the sequence (wi,Ψi), i = 1, . . . , r, is n-inessential in X, then the sequence
(ui,Φi), i = 1, . . . , r, is n-inessential in X.

3. Approximate Inverse Systems

The following definition is from [7].

Definition 3.1. An approximate inverse system, X = {Xa, εa, paa′ , A},
of metric compacta consists of the following: a partially ordered set (A,≤)
which is directed and has no maximal element; for each a ∈ A, a compact
metric space Xa with metric d and a real number εa > 0; for each pair a ≤ a′

from A, a map paa′ : Xa′ → Xa. Moreover, the following three conditions
must be satisfied:

(A1) d(pa1a2
pa2a3

, pa1a3
) ≤ εa1

, a1 ≤ a2 ≤ a3, paa = id.
(A2) For all a ∈ A and η > 0 there exists an a′ ≥ a such that for all

a2 ≥ a1 ≥ a′ we have that d(paa1
pa1a2

, paa2
) ≤ η.
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(A3) For all a ∈ A and η > 0 there exists an a′ ≥ a such that for
all a′′ ≥ a′ and x, x′ ∈ Xa′′ we have that if d(x, x′) ≤ εa′′ then
d(paa′′(x), paa′′(x′)) ≤ η.

Definition 3.2. A point x = (pa(x)) ∈
∏

a∈AXa belongs to X = limX

provided the following condition is satisfied.

(L) For all a ∈ A and η > 0 there exists a′ ≥ a such that for all a′′ ≥ a′

we have that d(pa(x), paa′′pa′′(x)) ≤ η.

In the sequel we shall shorten the expression “approximate inverse system
of metric compacta” to “approximate system.”

The following theorem has several facts about approximate systems. The
proofs can be found in [7].

Theorem 3.3. Given an approximate system X = {Xa, εa, paa′ , A} with
X = limX,

1. X 6= ∅ if and only if for all a ∈ A, Xa 6= ∅;
2. X is a compact Hausdorff space;
3. the collection of all sets of the form p−1

a (Va), where a ∈ A and Va ⊆ Xa

is open, is a basis for the topology of X;
4. for every a ∈ A and η > 0 there is an a′ ≥ a such that for every

a′′ ≥ a′ one has d(paa′′pa′′ , pa) ≤ η.

Proposition 3.4 (Proposition 5.2 of [6]). Given an approximate system
X = {Xa, εa, paa′ , A} with X = limX, if F is closed in X, then for any
neighborhood U of F in X, there exists an a ∈ A such that for all a′ ≥ a,
p−1
a′ (pa′(F )) ⊆ U .

4. New Results About Approximate Systems

We shall establish several facts concerning approximate systems. In this
section, X = {Xa, εa, paa′ , A} will denote an approximate system, and X will
be its limit.

Definition 4.1. In case a ∈ A and u = (U1, . . . , Um) is a sequence of
subsets of X, then by pa(u) we mean (pa(U1), . . . , pa(Um)).

The following is Theorem 3 of [7].

Theorem 4.2. If U is an open cover of X, then there exist a ∈ A and an
open cover V of Xa such that p−1

a (V) refines U .

Corollary 4.3. For each finite open cover u = (U1, . . . , Um) of X, there
exist a ∈ A and an open cover (V1, . . . , Vm) of Xa such that p−1

a (Vj) ⊆ Uj,
for j = 1, . . . ,m.
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Proof. Use Theorem 4.2 to choose an index a ∈ A and an open cover V
of Xa such that p−1

a (V) refines u. For each j = 1, . . . ,m, set

Vj =
⋃

{V ∈ V | p−1
a (V ) ⊆ Uj}.

Then the collection (V1, . . . , Vm) is an open cover of Xa, and p−1
a (Vj) ⊆ Uj

for all j = 1, . . . ,m.

Lemma 4.4. For each finite open cover u = (U1, . . . , Um) of X and each
index a ∈ A, there exists an index a′ ≥ a such that for all a′′ ≥ a′, there is
an open cover (V1, . . . , Vm) of Xa′′ with p−1

a′′ (Vj) ⊆ Uj, for j = 1, . . . ,m.

Proof. Using Corollary 4.3, choose an index a0 ∈ A and an open cover
(W1, . . . ,Wm) of Xa0

such that p−1
a0

(Wj) ⊆ Uj for all j = 1, . . . ,m.
Choose a collection (F1, . . . , Fm) of closed subsets of Xa0

that covers Xa0

and Fj ⊆ Wi for all j = 1, . . . ,m. There exists an η > 0 such that for all j,
N(Fj , η) ⊆ Wj .

Using Theorem 3.3(4.), choose an a′ ∈ A so that a′ ≥ a, a′ ≥ a0,
and for every a′′ ≥ a′ we have d(pa0a′′pa′′ , pa0

) ≤ η/2. Now set Vj =

p−1
a0a′′(N(Fj , η/2)). We claim that the collection v = (V1, . . . , Vm) satisfies

the conclusion.
It is clear that v is an open cover of Xa′′ . We now must show that for

all j = 1, . . . ,m, p−1
a′′ (Vj) ⊆ Uj . Let x ∈ p−1

a′′ (Vj). Then pa′′(x) ∈ Vj =

p−1
a0a′′(N(Fj , η/2)). This gives us that pa0a′′pa′′(x) ∈ N(Fj , η/2). Choose a

y ∈ Fj such that
d(pa0a′′pa′′(x), y) < η/2.

We also know that

d(pa0a′′pa′′(x), pa0
(x)) ≤ η/2.

And so by the triangle inequality,

d(pa0
(x), y) < η.

This gives us that pa0
(x) ∈ N(Fj , η) ⊆ Wj , and thus x ∈ p−1

a0
(Wj) ⊆ Uj.

We have shown that for all j = 1, . . . ,m, p−1
a′′ (Vj) ⊆ Uj; hence the collection

v = (V1, . . . , Vm) satisfies the conclusion of the proposition.

Lemma 4.5. If Φ = (F1, . . . , Fm) is a collection of closed subsets of X with
ord(Φ) ≤ 1, then there exists an a ∈ A such that for all b ≥ a, ord(pb(Φ)) ≤ 1.

Proof. For each j = 1, . . . ,m, choose a neighborhood Uj of Fj so that
for i 6= j, if Fi = Fj , then Ui = Uj , but if Fi 6= Fj , then Ui ∩ Uj = ∅. Using
Proposition 3.4, for each j = 1, . . . ,m, choose an aj ∈ A such that for all

a′ ≥ aj we have p−1
a′ (pa′(Fj)) ⊆ Uj .

Pick an a ∈ A so that a ≥ aj for all j = 1, . . . ,m, and let b ≥ a.

Then p−1
b (pb(Fj)) ⊆ Uj for all j = 1, . . . ,m. This implies that if i 6= j and

Fi 6= Fj , then p−1
b (pb(Fi)) ∩ p−1

b (pb(Fj)) ⊆ Ui ∩ Uj = ∅. We claim that
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pb(Fi) ∩ pb(Fj) = ∅. For suppose the contrary, that pb(Fi) ∩ pb(Fj) 6= ∅. One
can find qi ∈ Fi, qj ∈ Fj , and x ∈ pb(Fi)∩pb(Fj) such that pb(qi) = x = pb(qj).

But then ∅ 6= {qi, qj} ⊆ p−1
b (x) = p−1

b (pb(qi)) = p−1
b (pb(qj)) ⊆ p−1

b (pb(Fi)) ∩
p−1
b (pb(Fj)) = ∅, a contradiction. Thus ord(pb(Φ)) ≤ 1.

Lemma 4.6. If (u,Φ) is an m-pair in X, where u = (U1, . . . , Um) and Φ =
(F1, . . . , Fm), then there exist a ∈ A and a finite open cover v = (V1, . . . , Vm)
of Xa such that (v, pa(Φ)) is an m-pair in Xa (and hence ord(pa(Φ)) ≤ 1),
and for j = 1, . . . ,m, a closed neighborhood Gj of pa(Fj) in Xa and an open
subset Wj of Xa such that,

1. p−1
a (Vj) ⊆ Uj, and

2. pa(Fj) ⊆ int(Gj) ⊆ Gj ⊆ Wj ⊆ W j ⊆ Vj .

Moreover, we may make the above choices such that if we define

w = (W1, . . . ,Wm), g = (G1, . . . , Gm),

then w covers Xa, ord(g) ≤ 1 (so (w, g) is an m-pair in Xa), and so that for
all b ≥ a, ord(pb(Φ)) ≤ 1.

Proof. Using Lemmas 4.4 and 4.5, choose an a ∈ A and a finite open
cover t = (T1, . . . , Tm) of Xa such that p−1

a (Tj) ⊆ Uj , j = 1, . . . ,m, and for
all b ≥ a, ord(pb(Φ)) ≤ 1. Since pa is a closed map and Fj ⊆ Uj , there exists
a neighborhood Wj of pa(Fj) such that p−1

a (Wj) ⊆ Uj . Set Vj = Tj ∪ Wj .
Then, of course, pa(Fj) ⊆ Vj , the open collection v = (V1, . . . , Vm) covers Xa,
and p−1

a (Vj) ⊆ Uj . We leave the remaining details to the reader.

Lemma 4.7. For every sequence (ui,Φi), i = 1, . . . , k + 1, of m-pairs
in X, where ui = (U i

1, . . . , U
i
m) and Φi = (F i

1 , . . . , F
i
m), and every a ∈ A,

there exists b0 ≥ a such that for all b ≥ b0, there is a corresponding sequence
(yi, pb(Φi)), i = 1, . . . , k + 1, of m-pairs in Xb, where yi = (Y i

1 , . . . , Y
i
m), and

for all i = 1, . . . , k + 1 and j = 1, . . . ,m,

F i
j ⊆ p−1

b (pb(F
i
j )) ⊆ p−1

b (Y i
j ) ⊆ U i

j .

Proof. Let (ui,Φi), i = 1, . . . , k + 1, be as above, and let a ∈ A. Using
Lemma 4.6, for each i we can find an index ai ∈ A and a finite open cover
vi = (V i

i , . . . , V
i
m) of Xai

so that (vi, pai
(Φi)) is an m-pair of Xai

, and for
each j = 1, . . . ,m, a closed neighborhood Gi

j of pai
(F i

j ) and an open subset

W i
j of Xai

such that,

(4.1) p−1
ai

(V i
j ) ⊆ U i

j , and

(4.2) pai
(F i

j ) ⊆ int(Gi
j) ⊆ Gi

j ⊆ W i
j ⊆ W i

j ⊆ V i
j .

Moreover, if we define wi = (W i
1 , . . . ,W

i
m) and gi =

(
Gi

1, . . . , G
i
m

)
, then

(wi, gi) is an m-pair in Xai
, and for all b ≥ ai, ord(pb(Φi)) ≤ 1. There exists
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δ > 0 such that for all i and j,

(4.3) N(pai
(F i

j ), δ) ⊆ Gi
j ,

and

(4.4) N(W i
j , δ) ⊆ V i

j .

Using Theorem 3.3(4.), pick b0 ∈ A so that b0 ≥ a and b0 ≥ ai for all
i = 1, . . . , k + 1, and for all b ≥ b0,

(4.5) d(pai
, paibpb) < δ.

Fix b ≥ b0. For each i = 1, . . . , k + 1 and j = 1, . . . ,m, set Y i
j = p−1

aib
(W i

j ).

Put yi =
(
Y i
1 , . . . , Y

i
m

)
. Then yi is an open cover of Xb.

We claim that for each i, (yi, pb (Φi)) is an m-pair in Xb. Since we have
chosen ai as in Lemma 4.6, and b ≥ ai, then ord(pb (Φi)) ≤ 1. We will now
show that for each j, pb(F

i
j ) ⊆ Y i

j . Let x ∈ pb(F
i
j ). Choose z ∈ F i

j such that

pb(z) = x. We have that pai
(z) ∈ pai

(F i
j ). By (4.5), d (pai

(z), paibpb(z)) < δ.

So (4.3) and (4.2) show that paibpb(z) ∈ Gi
j ⊆ W i

j . Finally we have, x =

pb(z) ∈ p−1
aib

(W i
j ) = Y i

j . Thus, pb(F
i
j ) ⊆ Y i

j . Therefore, (yi, pb (Φi)) is an
m-pair in Xb.

We next demonstrate that for each i and j,

F i
j ⊆ p−1

b (pb(F
i
j )) ⊆ p−1

b (Y i
j ) ⊆ U i

j .

The left inclusion is obvious, and the middle inclusion follows from
the fact that (yi, pb (Φi)) is an m-pair in Xb. To show the right inclu-
sion, let x ∈ p−1

b (Y i
j ) = p−1

b (p−1
aib

(W i
j )). Then paibpb(x) ∈ W i

j . By (4.5),

d(pai
(x), paibpb(x)) < δ, so by (4.4), pai

(x) ∈ V i
j . Using (4.1), x ∈ p−1

ai
(V i

j ) ⊆

U i
j , as needed.

5. Characterization

Definition 5.1. Let X be a space, B ⊆ X, and (u,Φ) an m-pair in
X with u = (U1, . . . , Um) and Φ = (F1, . . . , Fm). Then by (u ∩ B,Φ ∩ B) or
(u,Φ)∩B, we shall mean the m-pair in B given by u∩B = (U1∩B, . . . , Um∩B)
and Φ ∩B = (F1 ∩B, . . . , Fm ∩B).

Here is our main result.

Theorem 5.2. Let X = {Xa, ǫa, paa′ , A} be an approximate system, X =
limX, {m,n} ⊂ N, and k ≥ 0. Then (m,n)-dimX ≤ k if and only if for
each a ∈ A and sequence (wi,Φi), i = 1, . . . , k + 1, of m-pairs in Xa, there
exists b0 ≥ a such that for all b ≥ b0, the sequence

(
p−1
ab (wi), p

−1
ab (Φi)

)
∩pb(X),

i = 1, . . . , k + 1, of m-pairs in pb(X) is n-inessential in pb(X).
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Proof. (⇐) Let (ui,Φi), i = 1, . . . , k + 1, be a sequence of m-pairs in
X . We wish to show that this sequence is n-inessential in X . For each i, let
ui = (U i

1, . . . , U
i
m) and Φi = (F i

1 , . . . , F
i
m). Using Lemma 4.6, we can find

an index ai ∈ A and a finite open cover vi = (V i
1 , . . . , V

i
m) of Xai

such that
(vi, pai

(Φi)) is an m-pair in Xai
along with sequences wi = (W i

1 , . . . ,W
i
m) and

gi = (Gi
1, . . . , G

i
m) where for each j = 1, . . . ,m, Gi

j is a closed neighborhood

of pai
(F i

j ) in Xai
and W i

j is an open subset of Xai
, so that,

(5.1) p−1
ai

(V i
j ) ⊆ U i

j ,

(5.2) pai
(F i

j ) ⊆ intGi
j ⊆ Gi

j ⊆ W i
j ⊆ W i

j ⊆ V i
j ,

(5.3) (wi, gi) is an m-pair ofXai
.

There exists δ > 0 such that for all i = 1, . . . , k+1 and for all j = 1, . . . ,m,

(5.4) N(pai
(F i

j ), δ) ⊆ Gi
j , and

(5.5) N(W i
j , δ) ⊆ V i

j .

Using Theorem 3.3(4.) and Definition 3.1(A2), pick a ∈ A so that a ≥ ai
for all i = 1, . . . , k + 1, and for all a′ ≥ a we have,

(5.6) d(pai
, paia′pa′) < δ/2, and

(5.7) d(paia′ , paiapaa′) < δ/2.

For each i = 1, . . . , k + 1, set

w0
i = p−1

aia
(wi) = (p−1

aia
(W i

1), . . . , p
−1
aia

(W i
m)), and

g0i = p−1
aia

(gi) = (p−1
aia

(Gi
1), . . . , p

−1
aia

(Gi
m)).

It readily follows from (5.3), that for each i = 1, . . . , k + 1, (w0
i , g

0
i ) is an

m-pair in Xa. Now use the assumption in (⇐) to choose b ≥ a such that the
sequence of m-pairs,

(
p−1
ab

(
w0

i

)
, p−1

ab

(
g0i
))

∩ pb(X), i = 1, . . . , k + 1, in pb(X)
is n-inessential in pb(X). It follows from Proposition 2.6, that the sequence
of m-pairs in X ,

(
p−1
b

(
p−1
ab

(
w0

i

)
∩ pb(X)

)
, p−1

b

(
p−1
ab

(
g0i
)
∩ pb(X)

))
, i = 1, . . . , k + 1

which equals
(
p−1
b

(
p−1
ab

(
w0

i

))
, p−1

b

(
p−1
ab

(
g0i
)))

, i = 1, . . . , k + 1, is n-inessen-
tial in X .

We will now show that for each i = 1, . . . , k + 1 and j = 1, . . . ,m, F i
j ⊆

p−1
b (p−1

ab (p
−1
aia

(Gi
j))) ⊆ p−1

b (p−1
ab (p

−1
aia

(W i
j ))) ⊆ U i

j . Fix i and j.

To show the left inclusion, let x ∈ F i
j . Then pai

(x) ∈ pai
(F i

j ). By (5.6)
we have

d(pai
(x), paibpb(x)) < δ/2,
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and by (5.7) we have

d(paibpb(x), paiapabpb(x)) < δ/2.

And so by the triangle inequality,

d(pai
(x), paiapabpb(x)) < δ.

By (5.4) we have paiapabpb(x) ∈ Gi
j . Thus, x ∈ p−1

b (p−1
ab (p

−1
aia

(Gi
j))) which

implies that,

F i
j ⊆ p−1

b (p−1
ab (p

−1
aia

(Gi
j))).

The middle inclusion follows from (5.2).
To show the right inclusion, let x ∈ p−1

b (p−1
ab (p

−1
aia

(W i
j ))). Then

paiapabpb(x) ∈ W i
j .

Using (5.7) and (5.6), one has that

d(paibpb(x), paiapabpb(x)) < δ/2

and

d(pai
(x), paibpb(x)) < δ/2.

By the triangle inequality,

d(pai
(x), paiapabpb(x)) < δ.

So by (5.5) we have pai
(x) ∈ V i

j . Thus, using (5.1), x ∈ p−1
ai

(V i
j ) ⊆ U i

j , and
so

p−1
b (p−1

ab (p
−1
aia

(W i
j ))) ⊆ U i

j .

By Proposition 2.7, the sequence (ui,Φi), i = 1, . . . , k+1, is n-inessential
in X , and so (m,n)-dimX ≤ k.

(⇒) We will now assume that (m,n)-dimX ≤ k. Let a ∈ A, and (wi,Φi),
i = 1, . . . , k + 1, be a sequence of m-pairs in Xa, where we denote wi =
(W i

1 , . . . ,W
i
m) and Φi = (F i

1 , . . . , F
i
m). Recall that for each i = 1, . . . , k + 1,

wi is an open cover of Xa, ord(Φi) ≤ 1, and for each j = 1, . . . ,m, F i
j ⊆ W i

j .
For each i = 1, . . . , k+ 1 and j = 1, . . . ,m, choose a closed neighborhood

F̂ i
j of F i

j in Xa and an open set Ŵ i
j in Xa such that

F i
j ⊆ int F̂ i

j ⊆ F̂ i
j ⊆ Ŵ i

j ⊆ Ŵ i
j ⊆ W i

j ,

ŵi = (Ŵ i
1 , . . . , Ŵ

i
m) covers Xa , and

ord(Φ̂i) ≤ 1 where Φ̂i = (F̂ i
1 , . . . , F̂

i
m).

Then (ŵi, Φ̂i) is an m-pair in Xa.
There exists δ > 0 such that for all i = 1, . . . , k + 1 and j = 1, . . . ,m, we

have that in Xa,

N(F i
j , δ) ⊆ F̂ i

j , and

N(Ŵ i
j , δ) ⊆ W i

j .
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Since (m,n)-dimX ≤ k, the sequence (p−1
a (ŵi), p

−1
a (Φ̂i)), i = 1, . . . , k+1,

of m-pairs in X is n-inessential in X . So, for each i = 1, . . . , k+1, there exists

an n-partition Pi of the m-pair (p−1
a (ŵi), p

−1
a (Φ̂i)) such that

P1 ∩ · · · ∩ Pk+1 = ∅.

By the definition of n-partition, for each i = 1, . . . , k+1, we have a collection
of open sets in X , vi = (V i

1 , . . . , V
i
m), such that

(5.8) p−1
a

(
F̂ i
j

)
⊆ V i

j ⊆ p−1
a

(
Ŵ i

j

)
for j = 1, . . . ,m;

ord(vi) ≤ n; and

(5.9) X \ Pi =
⋃

vi.

By (5.8) and (5.9) we have for each i = 1, . . . , k + 1 and j = 1, . . . ,m,

p−1
a

(
F̂ i
j

)
⊆ V i

j ⊆
⋃

vi = X \ Pi.

Thus, for each i = 1, . . . , k + 1,
⋃

p−1
a

(
Φ̂i

)
⊆ X \ Pi,

and so,

Pi ⊆ X \
⋃

p−1
a

(
Φ̂i

)
.

For each i = 1, . . . , k+1, we choose an open set Qi in X with the following
properties:

(5.10) Pi ⊆ Qi,

Q1 ∩ · · · ∩Qk+1 = ∅, and

(5.11) Qi ⊆ X \
⋃

p−1
a

(
Φ̂i

)
.

Consider the closed set X \ Qi. Then by (5.9) and (5.10) the collection
of open sets in X \Qi,

(
V i
1 ∩ (X \Qi), . . . , V

i
m ∩ (X \Qi)

)

covers X \ Qi. By (5.8) we have that p−1
a

(
F̂ i
j

)
⊆ V i

j , and by definition,

p−1
a (F̂ i

j ) ⊆
⋃
p−1
a (Φ̂i). This and (5.11) imply that p−1

a

(
F̂ i
j

)
⊆

⋃
p−1
a

(
Φ̂i

)
⊆

X \Qi. And so, p−1
a

(
F̂ i
j

)
⊆ V i

j ∩ (X \Qi). This shows that there exist closed

sets Gi
1, . . . , G

i
m in X such that for j = 1, . . . ,m and i = 1, . . . , k+1, we have,

(5.12) p−1
a

(
F̂ i
j

)
⊆ Gi

j ⊆ V i
j ∩ (X \Qi), and

(5.13) the collection (Gi
1, . . . , G

i
m) covers X \Qi.
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We will now choose b0 ≥ a using Proposition 3.4, Theorem 3.3(4.), and
Lemma 4.7. First choose b1 ≥ a so that by Proposition 3.4 we have that for
all b ≥ b1,

(5.14) p−1
b (pb(G

i
j)) ⊆ V i

j for all j = 1, . . . ,m and i = 1, . . . , k + 1.

Next, using Theorem 3.3(4.), choose b2 ≥ b1 such that for all b ≥ b2 we have
that

d(pabpb, pa) < δ.

Apply Lemma 4.7 to the sequence (p−1
a (ŵi), p

−1
a (Φ̂i)), i = 1, . . . , k + 1, of m-

pairs in X (note that here we substitute p−1
a

(
F̂ i
j

)
for the F i

j and p−1
a

(
Ŵ i

j

)

for the U i
j of the lemma) to get an index b0 ≥ b2 so that for all b ≥ b0, there

exists a corresponding sequence

(yi, pb(p
−1
a (Φ̂i))), i = 1, . . . , k + 1

of m-pairs in Xb. Moreover, for all j = 1, . . . ,m and i = 1, . . . , k+1, we have,

yi = (Y i
1 , . . . , Y

i
m),

pb

(
p−1
a

(
Φ̂i

))
=

(
pb

(
p−1
a

(
F̂ i
1

))
, . . . , pb

(
p−1
a

(
F̂ i
m

)))
,

and

(5.15) p−1
a

(
F̂ i
j

)
⊆ p−1

b

(
pb

(
p−1
a

(
F̂ i
j

)))
⊆ p−1

b (Y i
j ) ⊆ p−1

a

(
Ŵ i

j

)
.

We now use (5.8), (5.14) and the fact that pb is a closed map to choose,
for each j = 1, . . . ,m and i = 1, . . . , k+1, an open neighborhood T i

j in pb(X)

of pb(G
i
j) such that

(5.16) p−1
b (pb(G

i
j)) ⊆ p−1

b (T i
j ) ⊆ V i

j ⊆ p−1
a

(
Ŵ i

j

)
.

Let ti = (T i
1, . . . , T

i
m). Then since ord(vi) ≤ n and T i

j ⊆ pb(X) we have that

ord(ti) ≤ n.

For each j = 1, . . . ,m and i = 1, . . . , k + 1, let Ŷ i
j =

(
Y i
j ∪ T i

j

)
∩ pb(X),

and ŷi = (Ŷ i
1 , . . . , Ŷ

i
m). Then (ŷi, pb(p

−1
a (Φ̂i)), i = 1, . . . , k + 1, is a sequence

of m-pairs in pb(X), and using (5.15) and (5.16) we have for all i = 1, . . . ,m
and j = 1, . . . , k + 1,

(5.17) p−1
a

(
F̂ i
j

)
⊆ p−1

b

(
pb

(
p−1
a

(
F̂ i
j

)))
⊆ p−1

b

(
Ŷ i
j

)
⊆ p−1

a

(
Ŵ i

j

)
.

We claim that the sequence (ŷi, pb(p
−1
a (Φ̂i))) ∩ pb(X), i = 1, . . . , k + 1, which

is the same as (ŷi, pb(p
−1
a (Φ̂i))), i = 1, . . . , k + 1, is n-inessential in pb(X).

For each i = 1, . . . , k + 1, let Ri = pb(X) \
⋃m

j=1 T
i
j . Using (5.12) and

the fact that T i
j is an open neighborhood of pb(G

i
j) in pb(X), we have that

pb

(
p−1
a

(
F̂ i
j

))
⊆ T i

j ⊆ Ŷ i
j for j = 1, . . . ,m. Since ti is a family of open
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sets in pb(X) such that pb

(
p−1
a

(
F̂ i
j

))
⊆ T i

j ⊆ Ŷ i
j , and ord(ti) ≤ n, then

Ri is an n-partition of
(
ŷi, pb

(
p−1
a

(
Φ̂i

)))
in pb(X). We will now show that

R1 ∩ · · · ∩Rk+1 = ∅.
We first note that by (5.13) and (5.16) we have for each i = 1, . . . , k + 1,

X \Qi ⊆
m⋃

j=1

Gi
j ⊆

m⋃

j=1

p−1
b (pb(G

i
j)) ⊆

m⋃

j=1

p−1
b (T i

j ).

It follows that

p−1
b (Ri) = p−1

b

(
pb(X) \

m⋃

j=1

T i
j

)
= X \

( m⋃

j=1

p−1
b (T i

j )

)
⊆ Qi.

Since

Q1 ∩ · · · ∩Qk+1 = ∅,

we have that

p−1
b (R1) ∩ · · · ∩ p−1

b (Rk+1) = ∅,

and so, since Ri ⊆ pb(X) for each i = 1, . . . , k + 1,

R1 ∩ · · · ∩Rk+1 = ∅.

Thus, as stated above, the sequence (ŷi, pb(p
−1
a (Φ̂i)))∩pb(X), i = 1, . . . , k+1,

is n-inessential in pb(X).
To conclude the proof we will show that for all i = 1, . . . , k + 1 and

j = 1, . . . ,m, we have

p−1
ab (F

i
j ) ∩ pb(X) ⊆ pb(p

−1
a (F̂ i

j )) ⊆ Ŷ i
j ⊆ p−1

ab (W
i
j ) ∩ pb(X),

and apply Proposition 2.7 (this means that in terms of Proposition 2.7, F i
j

corresponds to p−1
ab (F

i
j ) ∩ pb(X), Gi

j to pb(p
−1
a (F̂ i

j )), W i
j to Ŷ i

j , and U i
j to

p−1
ab (W

i
j ) ∩ pb(X)). Fix i and j.

To show the left inclusion, let x ∈ p−1
ab (F

i
j )∩pb(X), and choose y ∈ p−1

b (x).
Then we have that,

d(pab(x), pa(y)) = d(pab(pb(y)), pa(y)) < δ.

Thus, pa(y) ∈ N(F i
j , δ). It follows that pa(y) ∈ F̂ i

j , and so y ∈ p−1
a (F̂ i

j ).
Finally,

x = pb(y) ∈ pb(p
−1
a (F̂ i

j )),

proving the left inclusion. The middle inclusion follows from (5.17).

To show the right inclusion, we first note that by (5.17), Ŷ i
j ⊆

pb(p
−1
a (Ŵ i

j )). We now let x ∈ Ŷ i
j ⊆ pb(p

−1
a (Ŵ i

j )). We have that pa(p
−1
b (x)) ⊆

Ŵ i
j . Choose y ∈ p−1

b (x). Then pa(y) ∈ Ŵ i
j . So,

d(pab(x), pa(y)) = d(pab(pb(y)), pa(y)) < δ.
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Thus, pab(x) ∈ N(Ŵ i
j , δ), so pab(x) ∈ W i

j . It follows that x ∈ p−1
ab (W

i
j ). Since

x ∈ pb(p
−1
a (Ŵ i

j )) ⊆ pb(X), we have that x ∈ p−1
ab (W

i
j ) ∩ pb(X), proving the

right inclusion.

6. Corollaries

It is shown in [2] that (m,n)-dim ≤ k is preserved by inverse limits of
inverse systems of compact Hausdorff spaces whose coordinate spaces have
(m,n)-dim ≤ k.

Theorem 6.1 ([2, Theorem 2.21]). Let X = {Xa, pab, A} be an inverse
system of compact Hausdorff spaces Xa with (m,n)-dimXa ≤ k for all a ∈ A,
and let X = limX. Then (m,n)-dimX ≤ k.

The following corollary of Theorem 5.2 is parallel to Theorem 6.1. It shows
that (m,n)-dim ≤ k is preserved by limits of approximate systems whose
coordinate spaces have (m,n)-dim ≤ k. First we need to recall Proposition
2.10 from [2] which shows that (m,n)-dimension is weakly hereditary.

Proposition 6.2. Suppose that X is a space with (m,n)-dimX ≤ k.
Then for each closed subspace A of X, (m,n)-dimA ≤ k.

Corollary 6.3. Let X = {Xa, εa, paa′ , A} be an approximate system
such that for all a ∈ A, (m,n)-dimXa ≤ k, and let X = limX. Then
(m,n)-dimX ≤ k.

Using the next fact, which is Proposition 2 of [8], we can strengthen
Corollary 6.3.

Proposition 6.4. Let X = {Xa, εa, paa′ , A} be an approximate system
and X = limX. Suppose that B ⊆ A is a cofinal subset of A. Then Y =
{Xa, εa, paa′ , B} is an approximate system. Let Y be the limit of Y. Then
the restriction p = π|X of the projection π :

∏
{Xa | a ∈ A} →

∏
{Xa | a ∈ B}

is a homeomorphism p : X → Y .

Corollary 6.5. Let X = {Xa, εa, paa′ , A} be an approximate system and
X = limX. If there exists a cofinal subset B ⊆ A such that for all a ∈ B,
(m,n)-dimXa ≤ k, then (m,n)-dimX ≤ k.

Corollary 6.6. Let X = {Xa, εa, paa′ , A} be an approximate system
and X = limX. If there exists an a ∈ A such that (m,n)-dimXa′ ≤ k for all
a′ ≥ a, Then (m,n)-dimX ≤ k.
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