
Tehnički vjesnik 27, 3(2020), 687-696 687

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20180713101347
Original scientific paper

An Empirical Investigation of Software Testing Methods and Techniques in the Province of
Vojvodina

Vuk VUKOVIC, Jovica DJURKOVIC, Marton SAKAL, Lazar RAKOVIC

Abstract: A high-quality test design is a conditio sine qua non of successful software testing process, and its effectiveness depends, among other things, on the choice and
proper use of appropriate methods and relevant software testing techniques. The main goal of this study was to provide insight into the use of current methods and relevant
software testing techniques used in the test design phase of software testing process in software companies in the Province of Vojvodina. The empirical study was conducted
by a survey research strategy in twenty-four software organisations. Eighty-three respondents took part in the survey. Descriptive analysis, correlation analysis, hierarchical
cluster analysis, the multidimensional scaling, binomial test and Cohran's Q test were used for analyzing gathered quantitative data. The survey results have shown that
respondents use to a significant extent the techniques belonging to ISO/IEC/IEEE 29119 testing standard. Comparison of the gathered data with individual results of similar
studies conducted in Canada, Australia and Turkey has shown similarities between them and companies in the Province of Vojvodina. The findings of this study present
empirically verified recommendations for testing design phase realization in the form of least and most used software testing methods and techniques, their benefits,
limitations and details in application, similarities between software testing techniques, software testing techniques clusters and the probability of use of individual techniques.

Keywords: software testing; survey; test design; testing methods and techniques

1 INTRODUCTION

Living in the era of pervasive computing, we become
conscious of ubiquitous significance of software products
not only in the case of its total absence, as foreseen by
Beluzzo two decades ago [1], but also when software fails
in "making life and business more comfortable and
efficient" due to defects [1].

For a considerable amount of time, software defects
have not been the exclusive topic of highly specialized,
professional IT journals and web portals; their being
practically daily phenomenon is (also) testified to in
general daily press and portals of general subject area,
writing about this phenomenon from the viewpoint of
everyman customer.

The above claim can be supported by several
illustrative, randomly picked examples of globally known
cases of software defects occurring in the past few years:
an online retailer offered items at the price of 1 penny [2],
and an airline even offered free tickets [3]. A financial
services company lost 440 million dollars within 30
minutes due to a software defect [4]. ATMs were out of
order, leaving clients unable to withdraw their own money
[5], whereas in other cases they allowed cash withdrawals
at amounts higher than that available on the account [6].
Divorced couples were brought into a situation to
"renegotiate the terms of their separation" [7]. Emergency
services were unavailable to more than 11 million people
for 6 hours [8], more than 600 suspected cases of child
abuse were not reported to the police for a year and a half
[9], about 3200 inmates were released from prisons earlier,
etc. [10]. One can also deem as usual the news that
software defects caused delay in the release of operative
systems and software products [11], recall of cars [12],
problems with consumer electronics [13], and issues with
social networks [14].

Moreover, repercussions of software defects are not
negligible, when viewed quantified, globally, as shown by
the results of Cambridge University research [15]:
developers spend a half of programming time on locating
and correcting bugs, which, taking into consideration
wages and overhead costs, results in a global cost of
debugging software at the amount of $312bn per year. As

stated in the above mentioned research, the stated amount
is not finite; it should be increased by the amount of the
arising opportunity costs. Software defects are a common
cause of brand damage [16], with potentially detrimental
impact not only on the reputation of the software producing
organisations, but also those who use them.

The above stated data clearly point to the imperative of
efficient integration of a modern testing process into
software development. It is a life-cycle approach which
includes different phases. An analysis identified four
phases of the software testing lifecycle: test planning, test
design, test execution and test evaluation [17]. These
phases (sub-processes) of the testing process are also
present in referent software testing models such as
ISO/IEC/IEEE 29119, TMMi and TMap Next [18-20].

The subject of interest of this study is the test design
sub-process. It presents the act of creating and writing test
suites (collection of test cases) [19], requiring knowledge
of testing techniques. A high-quality test design is a
condition sine qua non of successful software testing
process [21], and its effectiveness depends, among other
things, on the choice and proper use of appropriate methods
and relevant testing techniques.

The purpose of the study was to identify the most
frequently used software testing methods and techniques in
software organisations on the territory of the Province of
Vojvodina, to note their specific features in
implementation, and compare the research results with the
results of similar studies conducted in other countries.

The paper is structured as follows: after a summary
review of related work in Section 2, the objectives, design
and realization of the empirical research are described in
Section 3. The results are presented in Section 4, and the
discussion in Section 5. Conclusions and directions of
future research are given in the final, 6th section of the
paper.

2 RELATED WORK

This study was substantially influenced by the research

results which, among others, included software testing
methods and techniques [22-26]. Their summary overview
is given in the section below.

Vuk VUKOVIC et al.: An Empirical Investigation of Software Testing Methods and Techniques in the Province of Vojvodina

688 Technical Gazette 27, 3(2020), 687-696

Ng et al. [22] conducted a survey in 65 organisations
in Australia, encompassing five aspects of software testing,
including the aspect of testing methodologies and
techniques. The survey results point to the fact that 64.4%
of organisation used at least one structural testing
methodology in three years. As regards test case selection,
black box testing techniques (especially boundary value
analysis and random testing) hold sway over white box.
Only three organisations use the mutation analysis testing
technique. Static analysis (document and code inspection)
in comparison with dynamic analysis (code walkthroughs)
has a slight advantage (29 organisations compared to 22).
38.5% of organisations generate 80% of test cases based on
specification, whereas 26.2% organisations generate
between 60% and 79% of test cases based on specification.
33.8% organisations found that between 40% and 59% of
software defects are related to errors in specification.

Starting from and slightly expanding the questionnaire
of Geras et al. [23], which was used in a research conducted
in the Province of Alberta, in their survey that
encompassed a broader geographic area, Garousi & Varma
[24] pointed to changes in the domain of software testing
over a period of five years. The study indicated that the
largest number of organisations (with a minor decrease of
5% in relation to 2004) still relies solely on software testers'
skills and intuition. In relation to 2004, an increasing use is
recorded for Boundary Values Analysis, States,
Equivalence Classes Partitioning, Control Flow Graphs
and Cause Effect Graphs. The most used testing techniques
for prevention of defects in software are Reuse and
Informal Inspection, although their use records a fall in
relation to 2004.

Garousi & Zhi [25] devised a survey with the aim to
identify software testing trends, and also to provide a view
of testing techniques, tools and metrics used by
professional software testers. When it comes to results
about the use of testing techniques in the conducted study,
a worrying fact is that most respondents do not use any of
the testing techniques for generating test cases (black box
or white box). Testing techniques belonging to black box
testing method are more popular among respondents than
testing techniques belonging to white box testing method.
Boundary Value Analysis singled itself out as the most
used testing technique, while somewhat fewer respondents
opted for Equivalence Class Partitioning. The positive
result of this survey is that a significant number of
respondents use model-based testing (based on UML
models). The respondents also use random testing and
user-story based acceptance testing. Another surprising
result of the study is a very modest use of explorative
testing by respondents which is represented in agile
software development processes. Mutation testing is also
used very modestly.

Garousi et al. [26] conducted a survey aimed at
providing a view of software engineering in Turkish
software industry. Consequently, testing was included in
this research, and testing techniques within it. According
to survey results, the use of four testing techniques -
Boundary Value Analysis, Equivalence Class Partitioning,
Model Based Testing, and Source Code Analysis - is
dominant in relation to other testing techniques, ranging
between 22% and 33%.

3 RESEARCH DESIGN

The research goal and research questions were defined
in section 3.1. The following section, 3.2, presents research
strategies and data gathering instruments (questionnaire
and interview scheme). Relevant data about the sample is
detailed in Section 3.3, while Section 3.4 describes how the
research was realized and what procedures were used for
data analysis.

3.1 Research Goal and Research Questions

The goal of this study was to provide the latest insight
into the use of current software testing methods and
techniques in software organisations. In relation to the set
goal, the following research questions (RQ) were defined:
- RQ1. What are the most and least used software testing

methods?
- RQ2. What are the most and least used software testing

techniques?
- RQ3. Are software testing techniques defined by a

model or testing standard used by the organisation?
- RQ4. What are the specific features (details) of the

application of identified most used software testing
techniques?

Each of the research questions defined the content of

questionnaire questions and interview schemes presented
in the following section.

3.2 Research Strategies and Data Gathering Instruments

Empirical research consists of two components,
quantitative (survey) and qualitative (interview). To
provide preconditions for survey that should enable an
insight into the use of actual software testing techniques in
practice, we consulted studies whose results are presented
in the Related work section [22-26]. Having overviewed
the questions found in the questionnaires of the above
mentioned studies and study results, we developed a
questionnaire that we used in our survey. In addition to
these studies, when developing the questionnaire, we also
consulted the ISO/IEC/IEEE 29119 testing standard,
whose fourth section contains recommended testing
techniques for generating test cases [27]. It is one of the
leading software testing standards, whose development
included 27 countries, and was identified in the results of
the systematic literature review conducted by Garcia et al.
[28]. Most of the testing techniques from ISO/IEC/IEEE
29119 were included in the questionnaire, but we
deliberately omitted a number of testing techniques from
the questionnaire. In this manner, we wanted to encourage
respondents to state the testing techniques that they use in
practice, which are, however, not stated in the
questionnaire. The content of the final version of the
questionnaire was tested by two test managers with rich
experience so as to remove dilemmas, and harmonize the
wording of the questionnaire with the terminology used in
practice. The questionnaire had the structure shown in Tab.
1. It also links the questionnaire questions with the
previously listed research questions.

Having identified the most used software testing
techniques, the qualitative component of research was

Vuk VUKOVIC et al.: An Empirical Investigation of Software Testing Methods and Techniques in the Province of Vojvodina

Tehnički vjesnik 27, 3(2020), 687-696 689

performed, with the intent of answering the RQ4. This
implied conducting interviews with experts in the domain

of software testing according to the scheme shown in Tab.
2.

Table 1 Questionnaire structure

Aspect (RQ) Questions (Metrics)

Organisations and respodents
1. Designation and number of employees in organisation
2. Occupation (diploma)
3. Position

What are the most and least used software testing
methods? (RQ1)

4. Which testing methods do you use in the software product testing process: black box, white box
or both methods?

What are the most and least used software testing
techniques? (RQ2)

5. Which testing techniques do you use in the software product testing process (Peer reviews,
Equivalence Class Partitioning, Boundary Value Analysis, Combinatorial Test Techniques,
Cause-Effect Graphing (with Decision Table Testing), Statement Coverage, Branch Coverage,
Condition Coverage, Loop Coverage, Control Flow Graphs, Code Complexity Analysis)?

6. Please state the testing techniques that you use, but are not listed above
7. Software product testing in our organisation is performed during the exploratory testing.

Are software testing techniques defined by a model
or testing standard used by the organisation? (RQ3)

8. Are software testing methods and techniques used in your organisation's software projects
defined by a model or testing standard used by your organisation?

Table 2 Interview scheme

Aspect (RQ) Questions

What are the specific features (details) of the
application of identified most used software testing

techniques? (RQ4)

1. What are the benefits of identified most used testing techniques (this question referred to the 7
identified testing techniques from RQ2)?

2. What are the limitations of identified most used testing techniques (this question referred to the
7 identified testing techniques from RQ2)?

3. Details of application of the most used testing techniques (this question referred to the 7 identified
testing techniques from RQ2)?

4. In which cases is a particular testing technique better than another?
5. Is the application of identified software testing techniques conditioned by the type of software

product?

3.3 Respondent Population and Sample Size

The survey research strategy was applied on a
convenience sample of 24 organisations (83 respondents)
of the basic set of organisations producing software in
Province of Vojvodina. The required sample sizes for the
survey were calculated by a priori analysis based on the
type of procedure, set-size effects, probability α and the set
power of the statistical test (1 − β) [29, 30]. Two-tailed
hypothesis testing in the correlation analysis: ρ H0 = 0; ρ
H1 = 0.3; α = 0.05; power of test (1 − β) = 0.80 [30];
required sample size (in number of items) n = 84.

Due to incomplete response in the e-survey, the actual
sample size was n = 83. Post hoc analysis was used to
calculate that for the two-tailed hypothesis testing in the
correlation analysis ρ H0 = 0; ρ H1 = 0.3; α = 0.05; where
the actual sample size n = 83 and the power of test (1 − β)
= 0.795, therefore, slightly less than the originally required
value (1 − β) = 0.80. The sample size n = 83 was sufficient
for applying other statistical tests in the quantitative
analysis of data obtained by this survey.

The qualitative component of research was conducted
on a convenience sample of 12 experts possessing the
required types of knowledge, skill, and information from
the problem domain.

3.4 Research Execution and Data Analysis Procedures

The research instrument applied on the convenience
sample of organisations was the questionnaire which was
distributed to the selected organisations through the web
form created in Google forms. Having completed this
research component, the respondents' answers were taken
over in the Google spreadsheet format and subjected to the
analysis of quantitative data. The following procedures
were used for analyzing quantitative data: descriptive
analysis data, correlation analysis, hierarchical cluster

analysis, the multidimensional scaling, binomial test and
Cochran's Q test. All these procedures were executed in
MS Excel and SPSS Statistics program packages.

Having completed the analysis of the quantitative data,
the most used software testing techniques were identified,
whose specific features in application (benefits,
limitations, details about the usage) were the subject of the
qualitative research component. By means of recorded face
to face interviews, data were gathered whose transcripts
were made in text processor, after which they were sent to
experts for verification and confirmation. The transcribed
data were then inserted into NVivo software, where the
thematic analysis of their content was performed.

4 RESULTS AND FINDINGS

This section presents the results of the empirical
research. Survey results are presented in the same order as
in Tab. 1, in sections 4.1 through 4.4, while the results of
the qualitative research are presented in section 4.5.

4.1 Results on Organisations and Respondents

The number of employees in organisations included in
the survey sample is presented in Fig. 1. The organisation
sample is heterogeneous by the criterion of organisation
size. The parameter of number of employees was used for
determining the size of organisation, whereas the annual
capital turnover was omitted due to data confidentiality.
With the exception of one, the sample comprises
organisations which, according to European Commission
[31], belong to categories of micro, small, and medium-
sized organisations.

To establish the respondents' level of education, data
was collected on the highest academic degree (occupation)
that they possess. As Fig. 2 shows, the largest number of
respondents have a MSc degree (65.07%), where as

Vuk VUKOVIC et al.: An Empirical Investigation of Software Testing Methods and Techniques in the Province of Vojvodina

690 Technical Gazette 27, 3(2020), 687-696

33.73% respondents have a BSc degree and one respondent
PhD degree.

Figure 1 Number of employees in organisations comprising the sample

Figure 2 The highest degrees of respondents in organisations

The organisational positions of respondents who
participated in this research are presented in Fig. 3.

Figure 3 Respondents' positions in organisations

When distributing the questionnaire, we asked the HR
departments of the surveyed organisations to forward the
questionnaires to persons who are currently working, or
were working on software testing in the past, so as to
provide high-quality and relevant data. Fig. 3 shows that
the highest percentage of respondents are employed as
software developers (46.98%), a total of 21.68% on the
positions of QA lead, test developer and test manager, a
total of 16.86% on the position of Project Manager and
Higher level management, whilst 14.45% respondents
work on the position of Business.

4.2 Use of Software Testing Methods

The data on distribution of the frequency of application
of software testing methods are shown in Fig. 4.

The highest percentage of respondents, 65.1%, use
both tests methods (black box and white box) when
performing the software product testing process, while

21.7% respondents use only the black box method, and
13.3% only the white box method.

Figure 4 Frequency of the application of software testing methods

The data on distribution of the frequency of application
of software testing methods according to organisation size
are shown in Fig. 5.

Figure 5 Frequency of the application of software testing methods in different
organisation sizes

4.3 Use of Software Testing Techniques

Data on the frequency of the use of individual software
testing techniques in the surveyed software organisations
are shown in Fig. 6. The respondents were able to use the
questionnaire to select the offered testing techniques that
they use when testing software product (question 5), and
list the testing techniques that they use, but which were not
defined in the questionnaire (question 6).

Figure 6 Frequency of the use of individual testing techniques

Boundary Value Analysis (BVA) with 60.2% and
Condition Coverage (CC) with 61.4% singled themselves
out as the most used testing techniques. Also, a significant
percentage of the frequency of use is found with the
techniques Combinatorial Test Techniques (CTT), Peer
Reviews (PR), Statement Coverage (SC), Branch
Coverage (BC) and Loop Coverage (LC). The techniques
of Equivalence Class Partitioning (ECP), Cause-Effect
Graphing (CEG), Control Flow Graphs (CFG) and Code

Vuk VUKOVIC et al.: An Empirical Investigation of Software Testing Methods and Techniques in the Province of Vojvodina

Tehnički vjesnik 27, 3(2020), 687-696 691

Complexity Analysis (CCA) have a lower percentage of
use frequency in surveyed organisations.

Due to minor use and unfamiliarity of testing
terminology found in some respondents, the testing types
and techniques Ambiguity Review (AR), Compatibility
Testing (CT), Mutation Testing (MT), Regression Testing
(RT) and Security Testing (ST) were excluded from further
quantitative analyses. Actually, compatibility and security
testing represent the types of software testing that are not
the subject of research in this study.

Data on the frequency of the application of testing
techniques without five omitted testing types and
techniques are shown in Tab. 3.

Table 3 Data on the application of testing techniques

Technique name Responses % of cases N %
Equivalence Class Partitioning 18 4.3% 21.7%
Boundary Value Analysis 50 12.0% 60.2%
Combinatorial Test
Techniques 41 9.8% 49.4%

Cause-Effect Graphing 20 4.8% 24.1%
Peer Reviews 40 9.6% 48.2%
Statement Coverage 40 9.6% 48.2%
Branch Coverage 44 10.6% 53.0%
Condition Coverage 51 12.2% 61.4%
Loop Coverage 46 11.0% 55.4%
Control Flow Graphs 37 8.9% 44.6%
Code Complexity Analysis 30 7.2% 36.1%
Total 417 100.0% 502.4%

The following section of the paper gives a tabular

overview of the distribution of frequency of use of
individual software testing techniques. Data with the
highest and lowest frequency of technique application for
testing methods, both black box and white box, are shown.

Table 4 Distribution of use frequency of Boundary Value Analysis
 Frequency Percent Cumulative percent

No 33 39.8 39.8
Yes 50 60.2 100.0

Total 83 100.0

Table 5 Distribution of use frequency of Equivalence Class Partitioning
 Frequency Percent Cumulative percent

No 65 78.3 78.3
Yes 18 21.7 100.0

Total 83 100.0

Out of the testing techniques belonging to the black
box method, the highest frequency of use is present in the

Boundary Value Analysis (Tab. 4), while the lowest is in
the Equivalence Class Partitioning (Tab. 5).

Out of the testing techniques belonging to the white
box method, the highest frequency of use is present in the
Condition Coverage (Tab. 6), and the lowest in the Code
Complexity Analysis (Tab. 7).

Table 6 Distribution of use frequency of Condition Coverage
 Frequency Percent Cumulative percent

No 32 38.6 38.6
Yes 51 61.4 100.0

Total 83 100.0

Table 7 Distribution of use frequency of Code Complexity Analysis
 Frequency Percent Cumulative percent

No 53 63.9 63.9
Yes 30 36.1 100.0

Total 83 100.0

Data on the frequency of the use of individual software
testing techniques in different sizes of surveyed
organisations are shown in Fig. 7.

Figure 7 Frequency of the use of individual testing techniques in different

organisation sizes

4.3.1 Similarities in Software Testing Techniques

The values of Jaccard index [32] between testing
techniques are shown in Tab. 8. The values of this
coefficient point to similarity between different software
testing techniques. The highest index value (0.750) is
present in Statement Coverage and Branch Coverage
techniques.

Table 8 Testing technique similarity matrix (Jaccard index)

 ECP BVA CTT CEG PR SC BC CC LC CFG CCA
ECP 1.000 .333 .372 .226 .234 .261 .292 .232 .255 .250 .200
BVA .333 1.000 .542 .321 .429 .500 .541 .603 .548 .450 .311
CTT .372 .542 1.000 .452 .373 .500 .574 .484 .426 .418 .268
CEG .226 .321 .452 1.000 .304 .333 .333 .268 .294 .357 .250
PR .234 .429 .373 .304 1.000 .311 .355 .338 .365 .540 .273
SC .261 .500 .500 .333 .311 1.000 .750 .685 .654 .351 .273
BC .292 .541 .574 .333 .355 .750 1.000 .696 .636 .421 .276
CC .232 .603 .484 .268 .338 .685 .696 1.000 .644 .354 .266
LC .255 .548 .426 .294 .365 .654 .636 .644 1.000 .361 .288
CFG .250 .450 .418 .357 .540 .351 .421 .354 .361 1.000 .340
CAA .200 .311 .268 .250 .273 .273 .276 .266 .288 .340 1.000

Also, a high index value (0.696) is present in Branch
Coverage and Condition Coverage techniques. Statement
Coverage and Condition Coverage are techniques for

which the index value amounts to 0.685. The Loop
Coverage technique also has index value more than 0.65 in

Vuk VUKOVIC et al.: An Empirical Investigation of Software Testing Methods and Techniques in the Province of Vojvodina

692 Technical Gazette 27, 3(2020), 687-696

relation to the Statement Coverage, Branch Coverage and
Condition Coverage techniques.

On the other hand, when it comes to the black box
testing method, the only noteworthy similarity between
testing techniques was identified between the Boundary
Value Analysis and Combinatorial Test techniques with
the index value of 0.542. However, what must be
emphasized is the low index value of 0.333 between
Equivalence Class Partitioning and Boundary Value
Analysis techniques, which points to insufficient similarity
of these techniques in surveyed organisations, although
they are applied together almost as a rule at the theoretical
level.

4.3.2 Results of the Cluster Analysis of Software Testing

 Techniques

How many homogeneous subsets are present in a set
of software testing techniques was established by the use
of hierarchical cluster analysis [33] (method: Average
linkage, Euclidean distances for binary variables).

At the lowest linkage level, the cluster of Statement
Coverage and Branch Coverage was formed. At
subsequent linkage levels, they are extended by Condition
Coverage, Loop Coverage, and Boundary Value Analysis,
so that the first cluster at the highest level comprises a total
of five testing techniques.

The second cluster at the lowest linkage level is formed
by two pairs of techniques: Peer Reviews and Control Flow
Graphs as one and Combinatorial Test and Cause-Effect
Graphing as the other. At the subsequent level, it is
extended by the Equivalence Class Partitioning, and the
cluster is finally formed at the highest linkage level by
adding the Code Complexity Analysis.

Figure 8 Software testing techniques dendrogram

It is interesting that the first cluster is possessed of high
homogeneity in terms of belonging to the testing methods.
Actually, four out of five testing techniques belong to the
white box method (SC, BC, CC and LC), whereas the fifth
technique, despite initially belonging to the black box
testing method, can also be effectively used when testing
software by white box testing method. Thus, a set of testing
techniques is formed which are complementary, and
significantly different from the testing techniques from the
second cluster. The second cluster is possessed of a certain
degree of heterogeneity in terms of type of testing methods
to which the techniques belong (Fig. 8).

4.3.3 Results of MDS Software Testing Techniques

The multidimensional scaling method [34] was applied
in order to present the similarities and differences between
software testing techniques graphically, that is, to see what
constellation is formed by testing techniques. The diagram
shown in Fig. 9 shows the obtained layout of testing
techniques in a two-dimensional space after the applied
method. Closer points in the two-dimensional space testify
to similarity between individual testing techniques, so that
conditional groups of testing techniques can be formed,
which are mutually similar.

Figure 9 Configuration of testing techniques

The result of the multidimensional scaling method in
Fig. 9 has confirmed the existence of the previously formed
cluster comprising five software testing techniques:
Condition Coverage, Loop Coverage, Branch Coverage,
Statement Coverage and Boundary Value Analysis.
Combinatorial testing represents a technique that could,
after the application of this method, be appended to the
previously formed cluster.

4.3.4 Probabilities of Application of Software Testing

 Techniques

A binomial test [35] has been applied in order to find
out whether probabilities that an individual technique will
be applied or not are equal or different. For Equivalence
Class Partitioning, Cause-Effect Graphing, Condition
Coverage and Code Complexity, whose value of
asymptotic significance is equal to or less than 0.05,
(0.000, 0.000, 0.048 and 0.015 respectively) it can be
concluded that probability that an individual testing
technique will be applied (1) or will not be applied (0) is
not the same. On the other hand, for Boundary Value
Analysis, Combinatorial Test Techniques, Peer Reviews,
Statement Coverage, Branch Coverage, Loop Coverage
and Control Flow Graphs, where the asymptotic
significance value is higher than 0.05 (0.078, 1.000, 0.826,
0.826, 0.661, 0.380 and 0.380 respectively), it can be
concluded that an individual testing technique will be
applied (1) or will not be applied (0) is the same.

Cochran's Q test [36], whose results are shown in Tab.
9, was applied in order to find out whether the probabilities
of application of eleven testing techniques (from Tab. 3)
are equal or different.

Vuk VUKOVIC et al.: An Empirical Investigation of Software Testing Methods and Techniques in the Province of Vojvodina

Tehnički vjesnik 27, 3(2020), 687-696 693

Table 9 Cochran's Q test for eleven testing techniques
N 83

Cochran's Q 74.98882
df 10

p < .000000

Null hypothesis "The probabilities of application of
eleven software testing techniques are equal" was verified.
Given that the value Q = 74.98882 > X2 (df = 10, p <
.000000), the null hypothesis was rejected, which points to
the conclusion that the probabilities of application of the
eleven listed software testing techniques are not equal.

Cochran's Q test, whose results are shown in Tab. 10,
was also applied in order to find out whether the
probabilities of application of five most frequently used
software testing techniques (Boundary Value Analysis,
Combinatorial Test Techniques, Statement Coverage,
Branch Coverage and Loop Coverage) are equal or
different.

Table 10 Cochran's Q test for five most frequently applied testing techniques
N 83

Cochran's Q 5.406250
df 4

p < .248097

Null hypothesis "The probabilities of application of
five most frequently applied software testing techniques
are not different" was verified. Given that the value Q = 5.
406250 < X2 (df = 4, p < .248097), the null hypothesis was
accepted, which points to the conclusion that the
probabilities of application of the five most frequently
applied software testing techniques are not different, that
is, that the expectation that any of the five most frequent
techniques will be applied is equal.

4.3.5 Exploratory Testing

To which extent respondents use the exploratory
testing approach when conducting the testing process in
organisations was checked by question 7 of the
questionnaire. The scale frequencies are shown in Fig. 10.

Figure 10 Scale frequencies for question 7

The largest number of respondents, 32.5%, expressed

medium agreement with the statement that they use the
exploratory testing approach when testing software
products in organisations, whereas high and full agreement
was expressed by 25.3% and 16.9% respondents
respectively.

4.4 Formalization of Testing Methods and Techniques in

Testing Models (Standards)

Whether the software testing methods and techniques
are defined by testing model, i.e. standard used by software

organisations, was established by question 8. A lower
percentage of respondents (48.2%) in organisations do not
have, while a slightly higher percentage of them (51.8%)
have defined testing methods and techniques in the testing
model or standard.

4.5 Results of the Qualitative Research Component

The qualitative research component provided input for
thematic analysis of the content of respondents' replies for
previously identified seven most frequently used software
testing techniques identified in the realized survey. The
results for each technique are shown in the following text.

Boundary Value Analysis generates a smaller number
of test cases, enables reduction in software testing time,
increases its efficiency and directly impacts the savings of
financial resources in the testing process. It provides clear
guidelines for generating test cases detecting potential
defects in software, related to the defined limitations when
data are entered by users. Also, it is necessary in order to
shorten the time when testing equivalent classes. On the
other hand, the defects do not necessarily have to be in the
boundary values of variables, so that does not detect errors
in algorithm logic. Furthermore, it is not suitable for testing
different combinations of mutually dependent variables. In
certain cases, the boundary value is hard to identify.

Combinatorial Test Techniques are mandatory due to
tight deadlines and feature as the most used technique in
medium-sized software organisations. Furthermore, it is
used very successfully in non-functional platform testing
for generating platform combinations (operative system
and device) on which the software product will be tested,
providing coverage of the target market. However, in
complex software solutions the number of input
combinations is fairly large even after its use, so that its
application declines proportionally with the growth in
software complexity. An exception is situations where it is
profitable to initiate the automatization of test cases
generated by this technique.

Peer Reviews provides higher reliability in the
correctness and coverage of testing. It is the most effective
in complex systems and systems where documentation is
scarce. Owing to the inclusion of different perspectives,
incomplete and unclear specification is quickly noticed and
potentially immediately corrected. If it is realized
informally, it can be carried out without much preparation.
On the other hand, over formalization can be burdening and
make the endeavour less productive. A very frequent
occurrence when applying this technique is conflicts
between team members due to different opinions.

Condition coverage enables detecting defects related
to specific conditions in the program code, Statement
Coverage ensures coverage of all statements in the program
code, Loop Coverage enables identification of redundant
loops, whereas Branch Coverage is most used for securing
the execution of happy flow program scenario. They are
simple both for adoption and for application. On the other
hand, to be used efficiently, it is necessary to understand
the program code, which is why it is most desirable for
their implementation to be performed by developers. Also,
it is not possible to ensure coverage of the program code
and correctness of system functioning by using a single

Vuk VUKOVIC et al.: An Empirical Investigation of Software Testing Methods and Techniques in the Province of Vojvodina

694 Technical Gazette 27, 3(2020), 687-696

white box testing technique, because many defects then
remain undetected.

5 DISCUSSIONS

Results of both qualitative and quantitative parts of the
research are discussed in this section. Section 5.1
encompasses discussion on the results related to research
questions RQ1, RQ2, and RQ4, i.e. the most frequently
used software testing methods and techniques. Section 5.2
is a discussion on the results related to RQ3, formalization
of testing techniques within an organisation, while section
5.3 points to the limitations of the empirical research.

5.1 The Most and Least Used Software Testing Methods

and Techniques

Based on the data on frequency of use of software
testing methods (Section 4.2.), a conclusion can be drawn
that black box is slightly more dominantly used than white
box testing method in software organisations in the
Province of Vojvodina, which is an answer to RQ1. This
result is similar to the results of similar surveys conducted
in Australia and Canada [22, 25, 37]. A positive result of
the survey is the information that the largest number of
respondents in the Province of Vojvodina use both testing
methods both in micro and in small, medium-sized and
large software organisations, which increases the
probability of identifying defects in software products.

As regards testing techniques (Section 4.3), two
techniques have singled themselves out – Boundary Value
Analysis and Condition Coverage, which are, each
individually, used by more than 60% respondents in
surveyed software organisations. Boundary Value
Analysis is individually most used in large, whereas
Condition Coverage is used in small software
organisations. Such a result is not surprising, as these are
"old", proven and widely known testing techniques.
Actually, according to Myers [38], a large number of
problems appear on the boundaries of linear variables,
which was also the motive for the emergence of these
techniques. According to the results of the latest survey
[25], Boundary Value Analysis is also the most used testing
technique in Canada whereas in Turkey this testing
technique is second by use rate [26].

Combinatorial Test Techniques, Peer Reviews,
Statement Coverage, Branch Coverage and Loop Coverage
are techniques used, each individually by about 50%
respondents in organisations. Together with the previously
mentioned two, a set of seven most used software product
testing techniques was formed which is an answer to RQ2.

Combinatorial Test Techniques provide a good
cost/benefit ratio, because it requires a relatively small
number of test cases (in relation to the total number) to
provide a good coverage of the program code and
identification of software defects, which is also stated in
the results of studies appearing in publications [39, 40, 41].

In addition to being used as the golden standard for
reviewing the program code and enabling improvement of
its quality, peer reviews are also very suitable for reviewing
the specification of the software product [42].

White box software testing techniques (SC, BC, CC
and LC) are mutually complementary, which was
confirmed by the result of hierarchical cluster and MDS
analysis of quantitative data (Section 4.3.3), and they are

therefore mostly used together in creating unit tests by
developers.

After the application of Cochran's Q test to five most
used testing techniques - BVA, CTT, BC, CC and LC
(Section 4.3.4) - it was established that the probability of
their use is not different, i.e., that there is equal expectation
that any of these testing techniques will be applied.

However, sole application of one of the seven most
used software-testing techniques identified by the research
is very rare. Multiple techniques are most frequently used
in parallel, as to ensure adequate code coverage (both in
black box and white box testing techniques).

Since software development today predominantly
follows agile methods, software testers decide on the best
suited technique ad-hoc. This depends not only on
technical features of the software, but also on indirect
conditions. Often a technique best suited for a particular
kind of software, cannot be applied for different factors,
such as limited resources.

Although the remaining testing techniques
(Equivalence Class Partitioning, Cause-Effect Graphing,
Control Flow Graphs and Code Complexity Analysis) do
not have the same frequency of use by the respondents as
the seven most used testing techniques, it would be wrong
to neglect them in the software testing process. The reason
should be sought in the fact that certain testing techniques
are efficient for the detection of certain software defects,
but they are at the same time "blind" for detection of some
other, more subtle software defects [43]. In comparison
with Canada and Turkey [25, 26], the Equivalence Class
Partitioning technique is less used, but it must be pointed
out that this technique is used almost as a rule together with
the complementary Boundary Value Analysis technique
[38].

Testing techniques listed by respondents outside the
offered ones are Ambiguity Review and Mutation Testing.
Ambiguity Review is a technique used for testing
requirements. Bearing in mind the results of study of
Martin [44] that the largest number of software defects
stem from poorly defined requirements, and that the
process of correcting software defects is cheaper in the
early phases of software development [45], this testing
technique is recommended for use in the software product
testing process. Mutation Testing (or fault injection), on the
other hand, is a white box testing technique which is really
insufficiently used in the Province of Vojvodina, which is
also characteristic of software organisations in Canada and
Australia [22, 25].

A positive result of survey research component is
significant representation of the exploratory testing
approach in software organisations in the Province of
Vojvodina (Section 4.3.5). Compared to software
organisations in Canada [25], exploratory testing is used
more in the Province of Vojvodina. All the findings on the
use of individual software testing techniques presented in
the previous text constitute the answer to RQ4.

5.2 Formalization of Software Testing Techniques in

Testing Model or Standard Used by the Organisation

The results of studies from 2004 and 2009 show that
software organisations in Canada mostly rely on software
testers' skills and intuition when conducting the testing
process [23, 24]. One of the ways to avoid such a situation
is to formalize testing techniques in testing models or

Vuk VUKOVIC et al.: An Empirical Investigation of Software Testing Methods and Techniques in the Province of Vojvodina

Tehnički vjesnik 27, 3(2020), 687-696 695

standards in organisations, the way it was done in
ISO/IEC/IEEE 29119 and TMap Next, which have these
testing techniques and directions for use in their segments
[18, 19]. Formalization should provide prerequisites for the
application of all appropriate software testing techniques in
conducting the testing process. Bearing this in mind, we
wanted to find out what percentage of respondents in the
Province of Vojvodina have formalized testing techniques
in testing models or standards. The survey results are
positive, as more than half of the respondents have
formalized testing techniques which is an answer to RQ3,
which creates prerequisites for the application of a larger
number of appropriate and contemporary testing
techniques when conducting the testing design sub-
process. It is, however, very important to emphasize that
the choice and application of testing techniques in the
software testing process depends to a great extent on
multiple factors, such as the nature of the software product,
deadlines, human resources and the demanded test
coverage.

5.3 Threats to Validity

The survey research strategy was conducted on a
purposive sample of organisations in the Province of
Vojvodina, accepting the risks entailed in this type of
sampling. Also, the number of respondents in the sample
of respondents was smaller by one than the a priori
calculated number. In order to mitigate the risk pertaining
to the organisation size, we included software
organisations of different sizes into the sample. The sample
of organisations included micro, small, medium sized and
large software organisations. To ensure quality of data, we
insisted on respondents who are currently or have at some
time been employed on software product testing activities
in the organisation. The fact that most persons involved in
testing activities do not have a formal testing role (tester,
test manager, test developer etc.) may, but does not have to
be a limiting factor for data quality.

6 CONCLUSIONS AND FURTHER WORK

The survey results that we reached lead to a conclusion

that respondents in software organisations in the Province
of Vojvodina use to a significant extent most of the
techniques belonging to ISO/IEC/IEEE 29119 testing
standard when conducting the software testing process. Up
to an extent, this can provide a satisfactory quality of
realization of the testing design sub-process. The identified
group of most used testing techniques (BVA, CC, LC,
CTT, BC, PR and SC) together with the discussion on their
specific features of application in the testing process,
represents a practical recommendation for effective
realization of the testing design sub-process. It is, however,
important to emphasize that testing techniques that are less
used must not be omitted from the testing design sub-
process. It is therefore important to provide the
formalization of all software testing techniques that need
to be used when testing software products in organisations.
Exploratory testing as an alternative approach to formal
testing has a significant representation in surveyed
software organisations.

Future research should move towards extending the
area of surveyed organisations on the whole territory of the
Republic of Serbia, as well as other countries in the region,
so that the results of this research can be compared with
other regions in the country, and later on, the results of the
Republic of Serbia with the results of the countries of the
region. We are also planning to extend the research subject,
which will cover the complete testing process, so that we
can compare these results with the results of similar
studies.

Acknowledgements

We are indebted to the ICT Cluster Vojvodina for their
support in establishing contact with the organisations
included in the survey.

7 REFERENCES

[1] Wieczorek, M., Vos, D., & Bons, H. (2014). Systems and

Software Quality, The next step for industrialization. Berlin
Heidelberg: Springer-Verlag.
https://doi.org/10.1007/978-3-642-39971-8

[2] Origo (2014). Szoftverhiba miatt 1 pennyért adta termékeit
az Amazon. Retrieved from http://www.origo.hu/
techbazis/20141215-szoftverhiba-miatt-lehetett-1-pennyert-
vasarolni-az-amazonnal.html

[3] Focus (2012). Alitalia verschenkt aus Versehen Tausende
Gratis-Tickets. Retrieved from http://www.focus.de/
reisen/flug/wegen-softwarefehler-alitalia-verschenkt-aus-
versehen-tausende-gratis-tickets_aid_844004.html

[4] Heusser, M. (2012). Software Testing Lessons Learned
From Knight Capital Fiasco. Retrieved from
http://www.cio.com/article/713628/Software_Testing_Less
ons_Learned_From_Knight_Capital_Fiasco

[5] Zeti (2015). Sparkassen-Automaten funktionieren wieder.
Retrieved from http://www.zeit.de/wirtschaft/2015-09/
sparkasse-geldautomaten-ausfall

[6] News (2011). Two men arrested over Commonwealth Bank's
ATM free-for-all. Retrieved from http://www.news.com.au/
finance/money/computer-glitch-hits-cba-customers/story-
e6frfmcr-1226014261756

[7] BBC (2015). Divorce form error 'could have led to unfair
settlements'. Retrieved from http://www.bbc.com/news/uk-
35128010

[8] Fung, B. (2014). How a dumb software glitch kept thousands
from reaching 911. Retrieved from
https://www.washingtonpost.com/news/the-switch/wp/
2014/10/20/how-a-dumb-software-glitch-kept-6600-calls-
from-getting-to-911/

[9] Tsvirko, N. (2015). Department of Education blames an IT
glitch for over 600 child abuse reports not reaching
Queensland police. Retrieved from
http://www.dailymail.co.uk/news/article-3180864/
Department-Education-blames-glitch-600-child-abuse-
reports-not-reaching-Queensland-police.html

[10] Index (2015). Szoftverhiba miatt korábban engedtek ki 3200
elítéltet. Retrieved from http://index.hu/tech/2015/12/23/
szoftverhiba_miatt_korabban_engedtek_ki_3200_eliteltet/

[11] Williams, R. (2015). Apple's watchOS2 software delayed
due to bug. Retrieved from http://www.telegraph.co.uk/
technology/apple/watch/11869281/Apples-watchOS-2-
software-delayed-due-to-bug.html

[12] Stern (2014). Audi ruft 850.000 A4 wegen Softwarefehler
zurück. Retrieved from http://www.stern.de/auto/news/
airbag-probleme--audi-ruft-850-000-a4-in-die-
werkstaetten-zurueck-3843722.html

Vuk VUKOVIC et al.: An Empirical Investigation of Software Testing Methods and Techniques in the Province of Vojvodina

696 Technical Gazette 27, 3(2020), 687-696

[13] Guardian (2016). Error 53' fury mounts as Apple software
update threatens to kill your iPhone 6. Retrieved from
http://www.theguardian.com/money/2016/feb/05/error-53-
apple-iphone-software-update-handset-worthless-third-
party-repair

[14] Baraniuk, C. (2016). Twitter network down for many users
after technical fault. Retrieved from
http://www.bbc.com/news/technology-35351154

[15] Britton, T., Jeng, L., Graham, C., Cheak, P., &
Katyenellenbogen, T. (2015). Reversible Debugging
Software, University of Cambridge. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3
70.9611&rep=rep1&type=pdf

[16] Tricentis (2016). Software Fail Watch: 2015 in Review.
Retrieved from http://d1n3e8fpzha6ub.cloudfront.net/wp-
content/uploads/2016/01/19135532/Tricentis_Software_Fai
l_Watch_20151.pdf

[17] Afzal, W. & Torkar, R. (2008).Incorporating Metrics in an
Organisational Test Strategy. Software Testing Verification
and Validation Workshop, ICSTW '08 (pp. 304-315).
Washington: IEEE Computer Society.
https://doi.org/10.1109/ICSTW.2008.23

[18] ISO/IEC/IEEE 29119:2013. Software Testing. Retrieved
from http://www.softwaretestingstandard.org

[19] Koomen, T., van der Aalst, L., Broekman, B., & Vroon, M.
(2006). TMap Next.Hertogenbosch: UTN Publishers.

[20] TMMi Foundation (2010). Test Maturity Model integration
(TMMi) v3.1. Dublin: TMMi Foundation.

[21] Geetha Devasena, M. S., Gopu, G., & Valarmathi, M. L.
(2016). International Journal of Software Engineering and
Knowledge Engineering, 26(1), 1-13.

 https://doi.org/10.1142/S0218194016500017
[22] Ng S. P., Murnane, T., Reed, K., Grant, D., & Chen, T. Y.

(2004). A Preliminary Survey on Software Testing Practices
in Australia. Proceedings of the 2004 Australian Software
Engineering Conference (ASWEC'04). London: IEEE
Computer Society.

 https://doi.org/10.1109/ASWEC.2004.1290464
[23] Geras, A. M., Smith, M. R., & Miller, J. (2004). A survey of

software testing practices in Alberta. Canadian Journal of
Electrical and Computer Engineering, 29(3), 183-191.

 https://doi.org/10.1109/CJECE.2004.1532522
[24] Garousi, V. & Varma, T. (2010). A replicated survey of

software testing practices in the Canadian Province of
Alberta: what has changed from 2004 to 2009? Journal of
Systems and Software, 83(11), 2251-2262.

 https://doi.org/10.1016/j.jss.2010.07.012
[25] Garousi, V. & Zhi, J. (2013). A survey of software testing

practices in Canada. Journal of Systems and Software,
83(11), 1354-1376. https://doi.org/10.1016/j.jss.2012.12.051

[26] Gaorousi, V., Coskuncay, A., Betin-Can, A., & Demirors, O.
(2014). A Survey of Software Engineering Practices in
Turkey. Retrieved from http://arxiv.org/ftp/arxiv/papers/
1412/1412.4648.pdf

[27] ISO/IEC/IEEE 29119-4:2013. Test Techniques. Retrieved
from http://www.softwaretestingstandard.org/part4.php

[28] Garcia, C., Dávila, A., & Pessoa, M, (2014). Test Process
Models: Systematic Literature Review. 14th International
Conference, SPICE 2014, (pp. 84-93). Berlin Heidelberg:
Springer International Publishing.

 https://doi.org/10.1007/978-3-319-13036-1_8
[29] Cohen, J. A. (1992).Power Primer. Psychological Bulletin,

112(1), 55-159. https://doi.org/10.1037/0033-2909.112.1.155
[30] Dattalo, P. (2008). Determining Sample Size: Balancing

Power, Precision, and Practicality. Oxford: Oxford
University Press, Inc.

 https://doi.org/10.1093/acprof:oso/9780195315493.001.0001
[31] European Commission (2003). The New SME Definition -

User guide and model declaration. Retrieved from

http://www.eusmecentre.org.cn/sites/default/files/files/news
/SME%20Definition.pdf

[32] Gordon, A. D. (1981). Classification: Methods for the
exploratory analysis of multivariate data. London: Chapman
& Hall/CRC Monographs on Statistics & Applied
Probability.

[33] Everitt, B. (2011). Cluster Analysis (5th ed.).Chichester: John
Wiley & Sons, Ltd. https://doi.org/10.1002/9780470977811

[34] Borg, I. & Groenen, P. J. F. (2005). Modern
Multidimensional Scaling: Theory and Applications (2nd
ed.). New York: Springer Science + Business Media, Inc.

[35] Gibbons, J. D. (1976). Nonparametric Methods for
Quantitative Analysis. New York: Holt, Rinehart and
Winston.

[36] Israel, D. (2008). Data Analysis in Business Research: A
Step-by-Step Nonparametric Approach. Thousand Oaks, Ca:
SAGE Publications Inc.

[37] Taipale, O., Smolander, K., & Kälviäinen, H. (2005).
Finding and ranking research directions for software testing.
European Conference on Software Process Improvement
(pp. 39-48). Berlin Heidelberg: Springer-Verlag.

 https://doi.org/10.1007/11586012_5
[38] Myers, G. (2004). The Art of Software Testing (2nd ed.). New

Jersey: John Wiley & Sons.
[39] Grindal, M., Lindström, B., Offutt, J., & Andler, S. F. (2006).

An evaluation of combination strategies for test case
selection. Empirical Software Engineering, 11(4), 583-611.

 https://doi.org/10.1007/s10664-006-9024-2
[40] Copeland, L. (2004). A Practitioner's Guide to Software Test

Design. Boston, London: Artech House Publishers.
[41] Page, A., Johnston, K., & Rollison, B. (2009). How We Test

Software at Microsoft. Washington: Microsoft Press.
[42] Graham, D. (2002). Requirements and Testing: Seven

Missing-Link Myths. IEEE Software, 19(5), 15-17.
 https://doi.org/10.1109/MS.2002.1032845
[43] Beizer, B. (1995). Black-Box Testing: Techniques for

Functional Testing of Software and Systems. New York:
John Wiley. https://doi.org/10.1109/MS.1996.536464

[44] Martin, J. (1984). An Information Systems Manifesto. New
Jersey: Prentice-Hall.

[45] Boehm, B. & Basili, V. (2001). Software Defect Reduction
Top 10 List. IEEE Computer, 34(1), 135-137.

 https://doi.org/10.1109/2.962984

Contact information:

Vuk VUKOVIC, PhD, Assistant Professor
University of Novi Sad, Faculty of Economics in Subotica,
Segedinski put 9-11, 24000 Subotica, Serbia
E-mail: vuk.vukovic@ef.uns.ac.rs

Jovica DJURKOVIC, PhD, Full Professor
University of Novi Sad, Faculty of Economics in Subotica,
Segedinski put 9-11, 24000 Subotica, Serbia
E-mail: djovica@ef.uns.ac.rs

Marton SAKAL, PhD, Full Professor
University of Novi Sad, Faculty of Economics in Subotica,
Segedinski put 9-11, 24000 Subotica, Serbia
E-mail: marton@ef.uns.ac.rs

Lazar RAKOVIC, PhD, Assistant Professor
(Corresponding author)
University of Novi Sad, Faculty of Economics in Subotica,
Segedinski put 9-11, 24000 Subotica, Serbia
E-mail: lazar.rakovic@ef.uns.ac.rs

	1 INTRODUCTION
	2 RELATED WORK

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

