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Aim To test the hypothesis that valproic acid treatment 
positively affects brain-derived neurotrophic factor (BDNF) 
expression and DNA methylation in the hippocampus and 
brain cortex of rats simultaneously treated with aldoster-
one.

Methods Male Sprague-Dawley rats (N = 40) were treat-
ed for two weeks with valproic acid (100 mg/1 kg body 
weight/d) in drinking water and aldosterone (2 μg/100 g 
body weight/d) or placebo via subcutaneous osmotic mi-
nipumps.

Results Treatment with valproic acid did not modify BDNF 
gene expression in the hippocampus but reduced BDNF 
mRNA levels in the brain cortex. Valproic acid treatment 
marginally enhanced global DNA methylation in the fron-
tal cortex. BDNF expression negatively correlated with 
DNA methylation in the hippocampus of valproic acid-
treated rats. An unexpected finding was that aldosterone 
treatment significantly decreased global DNA methylation 
in the hippocampus.

Conclusion The effect of valproic acid on BDNF expres-
sion in the brain may depend on the extent of pathologi-
cal changes present at the time of treatment onset. The 
observed negative correlation between BDNF expression 
and DNA methylation in the hippocampus of valproic ac-
id-treated rats encourages further studies.
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Valproic acid has been clinically used for a long time, main-
ly as an antiepileptic drug and a mood stabilizer. However, 
we still have not discovered the whole spectrum of its ef-
fects and we do not know its exact mechanism of action. 
There is a clear overlap between epilepsy and psychiatric 
disorders, and several antiepileptic drugs exert positive ef-
fects on mood and anxiety (1). This also applies to valproic 
acid. The antidepressant effects of valproic acid have been 
attributed to its ability to inhibit histone-deacetylase and 
thus induce important epigenetic modulations (2). Neuro-
protective action of valproic acid was reported also in ani-
mal models of Parkinson’s disease (3), other neurodegen-
erative diseases (4), and brain ischemia (5).

Neurobiological mechanisms involved in brain plastic-
ity, neuroprotection, and memory processes involve brain 
growth factors and epigenetic modifications. Growth 
factors in general, and brain derived neurotrophic factor 
(BDNF) in particular, play critical roles in the brain by regu-
lating neuronal differentiation and survival, as well as com-
ponents of synaptic plasticity, such as synaptogenesis or 
long-term potentiation (6). Cultured rat cortical neurons 
showed a higher gene expression of BDNF when treated 
with valproic acid (7). Most of the animal studies showed 
positive effects of valproic acid on brain plasticity and cog-
nition (8), although some suggested negative effects. Inter-
estingly, valproate also had negative effects on cognition, 
which was attributed to its histone-deacetylase inhibito-
ry activity. However, the full mechanisms involved are far 
from being understood (9,10). Memory deficits observed 
in rats treated with valproic acid were accompanied by de-
creased cell proliferation and reduced BDNF expression in 
the hippocampus (9,11).

Though valproic acid is a well known modulator of epige-
netic mechanisms via inhibition of histone-deacetylase (10), 
only scarce data point to its action on DNA methylation in 
neuroblastoma cell lines, rodents, and patients with epilep-
sy (12-15). In general, the role of DNA methylation as a tar-
get of psychotropic drug actions is little understood (16).

So far, no study has simultaneously assessed the effects of 
valproic acid on BDNF expression, DNA methylation, and 
their potential relationship in an animal model of depres-
sion. The aim of the present study is to test the hypothesis 
that the subchronic treatment with valproic acid positive-
ly affects BDNF expression and DNA methylation in the 
hippocampus and brain cortex of rats simultaneously 

treated with aldosterone, which was shown to be de-
pressogenic (17).

MATERIAL AND METHODS

Animals

The experiments involved 40 male Sprague-Dawley rats 
(Velaz, Prague, Czech Republic) weighing 250-275 g at 
the beginning of the experiment. The rats were allowed 
to habituate to the housing facility for 2 weeks. They were 
kept under standard housing conditions with a constant 
12:12 h light/dark cycle (lights on at 06.00 h), temperature 
(22 ± 2°C), and humidity (55 ± 10%). Animals were housed 
individually in standard cages with free access to rat chow 
and water. All experimental procedures were approved by 
the Animal Health and Animal Welfare Division of the State 
Veterinary and Food Administration of the Slovak Repub-
lic (Permission No. Ro 2582/14-221). The studies were con-
ducted in 2017.

Study design

Animals were assigned into the following groups (n = 10 
rats/group): 1) vehicle-placebo group; 2) vehicle-valpro-
ic acid group; 3) aldosterone-placebo group; and 4) al-
dosterone-valproic acid group. Aldosterone (d-aldoster-
one, A9477, Sigma Aldrich, St. Louis, MO, USA) or vehicle 
were continuously administered via osmotic minipumps 
for 14 days (Model 2002, Alzet, Alza Corp., Cupertino, CA, 
USA). The number of animals was determined based on 
our previous studies, in which the number of 10 animals 
per group was adequate to show the effects of aldoster-
one treatment on hippocampal gene expression (17). 
Osmotic minipumps were subcutaneously implanted 
under isoflurane anesthesia (Forane, Abbott, v.z, Prague, 
Czech Republic). The aldosterone concentration used to 
fill the pumps was calculated based on the mean pump 
infusion rate provided by the manufacturer (0.5 μL/h), 
animals’ body weight, and the intended dose. The mi-
nipumps delivered aldosterone at the dose of 2 μg/100 g 
body weight/d. The aldosterone dose was chosen based 
on our previous studies demonstrating anxiogenic and 
depressogenic effects (17,18). Control animals received 
minipumps that contained vehicle (1% ethanol solution) 
only. Aldosterone solubilization and implantation of os-
motic minipumps was described previously (18). Valproic 
acid sodium salt (Sigma Aldrich) was dissolved in distilled 
water and was administered in drinking water at the dose 
of 100 mg/1 kg body weight/d continuously for 14 days. 
Drinking water was renewed every 2 days. Animals from 
the placebo groups received tap water without valproic 
acid.
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Tissue collection

Rats were decapitated immediately after they performed 
the forced swim test. The brain was quickly removed from 
the skull. The frontal cortexes and hippocampi were quick-
ly removed, frozen in liquid nitrogen, and stored at -80°C 
until analysis.

Global DNA methylation analysis

DNA was extracted from the right frontal cortex and the 
right hippocampus by TRIzol® Reagent (Life Technologies, 
Carlsbad, CA, USA) following the manufacturer´s instruc-
tions. Global DNA methylation was measured using the 
MethylFlashTM Methylated DNA Quantification Kit (Fluo-
rometric, Epigentek Group Inc., Farmingdale, NY, USA). In 
this assay, DNA is bound to strip wells that are specifically 
treated to have a high DNA affinity. The methylated frac-
tion of DNA is detected using capture and detection anti-
bodies and quantified colorimetrically by reading the ab-
sorbance in a microplate spectrophotometer. The amount 
of methylated DNA is proportional to the optic density in-
tensity measured. The total methylation level was assessed 
by generating a standard curve from Epigentek´s methy-
lated DNA standard.

BDNF gene expression analysis

BDNF gene expression was measured by real-time poly-
merase chain reaction (PCR) in the samples of the left frontal 
cortex and left hippocampus. The total mRNA was isolated 
by TRIzol® Reagent according to manufacturer’s protocol. 
The concentration and purity of mRNA preparations was 
measured by absorption spectroscopy (Nanodrop 2000, 
Thermo Fisher Scientific Inc., Waltham, MA, USA). One mi-
crogram of total RNA was transcribed using oligo (dT) nu-
cleotids by M-MuLV reverse transcription system (Proto-
Script, First Strand cDNA Synthesis Kit NewEngland Biolabs, 
USA). BDNF mRNA concentrations were analyzed by real-
time qPCR performed on a Fast Real-Time PCR System 7900 
HT (Applied Biosystems, Foster City, CA, USA) using GoTaq 
Master Mix (Promega, Madison, WI, USA). A specific prim-
er (exon 9) was designed by Primer BLAST NCBI program 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Table 
1). Quantitative PCR reaction was performed using reaction 
buffer GoTaq qPCR Sybr Green Master Mix (Promega). Prim-
ers (Table 1) were used at the concentration of 0.25 pmol/
μL. Further analysis steps were performed as described 
previously (19,20). All data obtained by qPCR analysis were 
evaluated as nanograms of mRNA (cDNA) according to a 
standard curve and were normalized to gene expression of 
peptidyl prolyl isomerase A (PPIA) and TATA-Box Binding Pro-
tein gene (TBP) as reference genes. This was calculated as a 
ratio between the quantity of measured gene and the geo-
metric mean of the quantities of reference genes (21).

Statistical analysis

All data sets were normally distributed (as revealed by the 
Shapiro-Wilk’s test) and had homogenous variances (as re-
vealed by the Levene’s test). Therefore, the assumptions 
for parametric factorial ANOVA were met. Data were ana-
lyzed by two-way analysis of variance (ANOVA) with val-
proic acid (valproic acid and placebo groups) and aldos-
terone (aldosterone and vehicle groups) as factors. Results 
are expressed as mean ± standard deviations. Values were 
winsorized when necessary. The Pearson correlation was 
used to assess the relationships between the parameters. 
The level of significance was set at P < 0.05. The analyses 
were performed using Statistica 10 software (StatSoft Inc., 
Tulsa, OK, USA).

RESULTS

Valproic acid treatment had a significant main effect on 
BDNF expression in the brain cortex (F

(1,34) = 4.39, P = 0.044). 
BDNF mRNA levels in the brain cortex were significantly 
decreased in animals treated with valproic acid compared 
with those treated with placebo. No significant main ef-
fect of aldosterone treatment or interaction between fac-
tors was observed (Figure 1). In the hippocampus, neither 
valproic acid nor aldosterone significantly affected BDNF 
expression (data not shown).

There was a tendency toward an increase in global DNA 
methylation in the brain cortex of animals treated with val-

Table 1. Nucleotide sequence of primers used for quantitative polymerase chain reaction

Gene Forward primer 5’- 3’ Reverse primer 5’- 3’

Brain-derived Neurotrophic Factor ACCATAAGGACGCGGACTTG AGCAGAGGCTCCAAAGG
Peptidyl prolyl Isomerase A AAGCATACAGGTCCTGGCATCT CATTCAGTCTTGGCAGTGCAG
TATA-Box Binding Protein TTCGTGCCAGAAATGCTGAA GTTCGTGGCTCTCTTATTCTCATG

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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proic acid compared with those treated with placebo. How-
ever, the difference did not reach significance (two-way 
ANOVA F(1,32) = 3.97, P = 0.055). No significant main effect of 
aldosterone treatment or interaction between factors was 
found (Figure 2). In the hippocampus, aldosterone treatment 
significantly influenced global DNA methylation (F(1,34) = 4.42, 
P = 0.004), but valproic acid treatment did not. DNA methy-
lation in the hippocampus was significantly reduced in ani-
mals treated with aldosterone compared with those treated 
with vehicle. No interaction between factors was observed.

Pearson correlation analysis showed a significant negative 
correlation between BDNF expression and global methy-
lation in the hippocampus in the group of vehicle-valp-
roic acid treated animals (r = - 0.73, P = 0.042), but not in 

other groups (vehicle-placebo group: r = 0.37, P = 0.412; 
aldosterone-placebo group: r = - 0.43, P = 0.216; aldoster-
one-valproic acid group: r = - 0.61, P = 0.149). The negative 
correlation between the expression of BDNF and global 
methylation in the hippocampus was significant also in 
the whole sample (Figure 3). In the brain cortex, no signifi-
cant correlations between the BDNF expression and global 
methylation were found (vehicle-placebo group: r = -0.55, 
P = 0.181; vehicle-valproic acid: r = -0.12, P = 0.785; aldoster-
one-placebo group: r = - 0.18, P = 0.614; aldosterone-valp-
roic acid group: r = - 0.11, P = 0.786).

DISCUSSION

In contrast to our hypothesis, two-week treatment with 
valproic acid had no impact on BDNF gene expression in 

Figure 1. Effects of valproic acid (VPA) and aldosterone 
treatments on the brain-derived neurotrophic factor (BDNF) 
expression in the brain cortex and hippocampus. Each value 
represents the mean ± standard deviation (n = 10 rats/group). 
Statistical significance as tested by two-way ANOVA with the 
main factors of VPA treatment and aldosterone treatment. 
Presented results represent a relative value, namely a ratio 
between the quantity of measured gene and geometric mean 
of the quantities of reference genes (21).

Figure 2. Effects of valproic acid (VPA) and aldosterone treat-
ments on the global DNA methylation in the brain cortex and 
hippocampus. Each value represents the mean ± standard de-
viation (n = 10 rats/group). Statistical significance as tested by 
two-way ANOVA with main factors of valproic treatment and 
aldosterone treatment. 5-mC % – percentage of methylated 
DNA (5-methylcytosine).
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the hippocampus but reduced BDNF mRNA levels in the 
brain cortex. Valproic acid treatment also marginally en-
hanced global DNA methylation in the brain cortex. An un-
expected finding was a significant decrease in global DNA 
methylation in the hippocampus induced by aldosterone 
treatment.

Two-week treatment with valproic acid in the present 
model failed to modify BDNF mRNA levels in the hip-
pocampus. Similarly to our findings, three-day valproic 
acid treatment also had no effect on BDNF mRNA levels 
in the hippocampus (22). However, the majority of other 
studies observed that valproic acid enhanced hippocam-
pal BDNF expression (23-25). In these studies, treatment 
with valproic acid reversed an impairment of BDNF ex-
pression induced in animal models of bipolar disorder, 
Alzheimer’s disease, or facial nerve transection. Though 
single, acute stimulation of mineralocorticoid receptors 
affected BDNF expression in several brain regions (26), no 
changes in BDNF expression were induced in the present 
animal model of hyperaldosteronism. Other authors who 
also treated rats with valproic acid without previous im-
pairment of cognitive functions or BDNF expression even 
observed a decrease in hippocampal BDNF protein levels 
(9,11). Thus, the action of valproic acid may depend on 
the extent of pathological changes at the time of treat-
ment onset. Interestingly, a new anticonvulsant drug la-
cosamide, which has some mechanisms of action in 
common with valproic acid, induced dose-dependent re-

duction of the hippocampal expression of BDNF and its 
receptor (27).

In the present study, valproic acid treatment even de-
creased the gene expression of BDNF in the frontal cortex. 
The results of the few studies describing BDNF expression in 
this brain region are equivocal, reporting no changes (28) or 
reversal of previous impairment (23,25). A decrease in BDNF 
expression, as observed in the present study, was previous-
ly described only when valproic acid was injected directly 
into the specific region of the frontal cortex associated with 
enhancement of stress-related memory formation (29).

In the present study, valproic acid treatment did not 
change global DNA methylation in the hippocampus, and 
the slight increase in the frontal cortex failed to be signifi-
cant. Studies on cell cultures demonstrated that valproic 
acid triggered active DNA demethylation (30,31). However, 
the information on the influence of valproic acid on DNA 
methylation in studies dealing with brain psychopatholo-
gy is scarce (12). We found a significant negative correla-
tion between BDNF mRNA levels and the percentage of 
methylated DNA in the hippocampus of valproate-treated 
control rats. This finding is in agreement with the results 
of experiments suggesting that pharmacological inhibi-
tion of DNA methylation is associated with increased hip-
pocampal BDNF expression (32).

An original finding of the present study is a decrease in the 
global DNA methylation in the hippocampus induced by 
the aldosterone treatment. To our knowledge, there are no 
data on the effects of aldosterone on DNA methylation in 
the brain. Available are only studies on adrenocortical ad-
enoma producing aldosterone in humans, in which the 
majority of genes were demethylated (33). Interestingly, al-
dosterone had a significant impact on global DNA methy-
lation in the hippocampus and almost none in the brain 
cortex, which is consistent with high mineralocorticoid 
receptor densities in the neurons of the hippocampal for-
mation (34). In contrast, valproic acid had a larger impact 
on global DNA methylation and BDNF mRNA expression in 
the brain cortex than in the hippocampus.

A limitation of the present study is that the experiments 
were performed in one sex only. Another limitation is pos-
sible variability in valproic acid dosing as the treatment 
was performed via drinking water.

Based on the results obtained and literature data, the ef-
fect of valproic acid on BDNF expression in the stud-

Figure 3. The negative correlation between the expres-
sion of brain-derived neurotrophic factor (BDNF) and global 
methylation in the hippocampus in the whole sample (r = - 
0.41, P = 0.014). 5-mC % – percentage of methylated DNA 
(5-methylcytosine).
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ied brain structures may depend on the extent of patho-
logical changes present at the time of treatment onset. The 
negative correlation between BDNF expression and DNA 
methylation in the hippocampus of valproic acid-treated 
rats encourages further studies.
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