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Aim To propose potential mechanisms of action of elec-
tromagnetic fields (EMF) on astrocytes and microglia and 
to elucidate the role of heat shock proteins (HSP), adenos-
ine triphosphate (ATP), calcium ions (Ca2+), and hypoxia-in-
ducible factor 1α (HIF1α) in neurorestoration following the 
application of EMF.

Methods We reviewed the existing studies within the 
public domain and cross-evaluated their results in order 
to conclude on the molecular mechanisms of microglia-
astrocyte crosstalk at work during EMF treatment.

Results The existing studies suggest that EMF induces 
the increase of HSP70 expression and inhibition of HIF1α, 
thus decreasing inflammation and allowing the microglia-
astrocyte crosstalk to initiate the formation of a glial scar 
within the central nervous system. Furthermore, by poten-
tially up-regulating A2A and A3 adenosine receptors, EMF 
increases cAMP accumulation from astrocytes and reduces 
the expression of inflammatory cytokines TNF α and IL-8, 
thus initiating neurorestoration.

Conclusion The microglia-astrocyte crosstalk during EMF 
treatment is crucial for the initiation of neurorestoration. 
Elucidating the exact mechanisms of EMF actions upon 
microglia and astrocytes, and its role in neurorestoration 
could be a key step in further research of the therapeutic 
potential of EMFs in various neurological disorders.
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INTRODUCTION

Neurodegeneration, neuroinflammation and 
electromagnetic fields

Neurodegeneration is an umbrella term used to describe 
various processes that lead to a loss of structure or func-
tion of neurons, including their death. Considerable efforts 
have been directed at demystifying the role of inflamma-
tory processes in neurodegeneration, and such expanded 
understanding could be helpful in devising novel thera-
peutic approaches targeting the neuroimmune system to 
initiate neurorestoration.

Neuroinflammation is a biological response of body tissues 
to harmful stimuli involving immune cells, blood vessels, 
and molecular mediators within the central nervous sys-
tem (CNS). It includes attraction, migration, and accumu-
lation of cells, which support a cascade of events partici-
pating in tissue damage and regeneration. In various CNS 
pathologies, the inflammatory response includes the acti-
vation of microglia and astrocytes.

Since it has been shown that electromagnetic fields (EMFs) 
are effective in reducing the pain of various etiologies 
through modification of innate immunity (1-4), it has been 
hypothesized that application of EMFs may either slow 
down neurodegeneration or decrease the neuroinflamma-
tory processes within the central or peripheral nervous sys-
tem (PNS) (5,6). This approach could help to initiate neu-
rorestoration. Not only does this new method appear to 
be non-invasive, but it is also more cost-effective and safer 
than drugs and surgical procedures. Although multiple re-
views aim to elucidate the molecular mechanisms behind 
the action of EMFs within the CNS (4,7-11), very little is still 
known about the cause of neurorestoration occurring after 
application of EMF treatment.

Treatment of autoimmune diseases, as well as gener-
al boosting of the immune system, has so far been per-
formed by using drugs (12-16) or nanotechnology (17-21). 
The most recent trend in medical research aims to use 
EMFs to fine-tune the immune response through modula-
tion of cell membrane charges, ion flow, and cell mobility, 
be it in the innate immune response within the CNS or the 
rest of the body (6,22-28).

Multiple studies have investigated the effects of EMFs 
on innate immunity and various pathogens, aiming 

to delineate the activation of molecular pathways 

that lead to success in EMF therapies (4,29,30). As the most 
abundant cells within the nervous system, astrocytes and 
microglia are the crucial players of the neuroimmune sys-
tem. While microglia function as the first stage of defense 
against foreign pathogens, astrocytes are involved in repair 
and regeneration of the injured tissue. Microglia also reg-
ulate the innate immune function of astrocytes, thus de-
termining their neuroprotective or neurotoxic function. In 
turn, astrocytes secrete molecules that trigger microglial 
activation and regulate microglial phenotypes and func-
tion by impacting their motility and phagocytosis.

Multiple studies investigated the impact of EMF on astro-
cyte and microglia function, yielding contrasting results, 
both in vivo and in vitro (31-38). This article aims to critically 
review the literature within the field, including both in vivo 
and in vitro studies, with the purpose of clarifying the mo-
lecular mechanisms at work, specifically when it comes to 
the crosstalk between astrocytes and microglia. Therefore, 
this review focuses on three main molecular targets – ATP, 
HSP, and HIF1α – which have been shown to be influenced 
by EMF the most in different cell types and tissues. The 
same molecular targets are potential candidates for further 
research on EMF’s influence on astrocytes and microglia 
and their role in assisted neurorestoration (1,31,34,36-38).

EMF in the brain tissue: mechanisms of administration 
and action

Cell membrane potential and ion balance are maintained 
through the exchange of mainly sodium, potassium, and 
calcium ions, and are deranged in different pathological 
conditions. Both external and internal EMFs have the abil-
ity not only to modify charge distribution through direct-
ing the movement of ions within the cells and the extra-
cellular space, but also to impact the opening and closing 
of some voltage gated calcium channels. This is why they 
have recently attracted an increasing interest as a form of 
therapy which may initiate tissue regeneration and resto-
ration – this also includes the innate electromagnetic fields 
generated around neurons discussed in our previous ar-
ticle (6). Thus, the brain has entered the spotlight of EMF 
therapy, which can target either the innate immune cells 
within the CNS, the cells that govern the initiation of the 
immune response (such as microglia and astrocytes), or 
other cell types within the brain.

Currently, EMF therapy is most commonly being adminis-
tered in the form of pulsed electromagnetic fields (PEMF), 
separated into low field magnetic stimulation (LFMS) or ex-
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tremely low frequency magnetic fields (ELF-MF), extreme-
ly low frequency electromagnetic fields (ELF-EMF), tumor 
treating fields (TTF), and deep brain stimulation (DBS). 
Mechanisms of DBS action are well described, and this sur-
gical procedure is successfully used in medical practice for 
treatment of disorders such as Parkinson’s, essential trem-
ors, and epilepsy (39-41). PEMF, on the other hand, is a non-
surgical procedure and has been proved to be useful for 
fracture healing (42). Electroencephalograms (EEG) and 
magnetoencephalograms (MEG), which have only been 
used in diagnostics, could also, in their current or modified 
form, be used as a form of EMF therapy as they influence 
the behavior of the cells within the CNS.

Astrocyte and microglia crosstalk

Molecular mechanisms of communication between astro-
cytes and microglia. By being the primary immune cells 
within the CNS, microglia are involved in various neuro-
pathological conditions and, together with astrocytes, 
help the CNS recover from stress and injury (43). Because 
of their autocrine feedback and bidirectional conversa-
tion during the modulation of CNS injury, the crosstalk 
between microglia and astrocytes has emerged into the 
forefront of glial research and EMF therapy used to initi-
ate neurorestoration. At the center of this reciprocal mod-
ulation is the microglial regulation of the innate immune 
functions of astrocytes, determining their function, which 
can be neuroprotective or neurotoxic (43). Activated earlier 
than astrocytes, microglia secrete NADPH oxidase-derived 
H2O2 (44), interleukin 1 alpha (IL-1α), tumor necrosis factor 
alpha (TNFα), and complement component 1q (C1q)(45) 
to regulate astrocytic activation and initiate A1 reactive as-
trocytosis – the main destructive pathway of astrocytic ac-
tivity. This all makes microglia the primary targets for EMF 
therapy of the CNS.

Although astrocytes have so far only been regarded as 
neuronal supportive cells, assisting with CNS homeosta-
sis regulation (46), various studies indicate astrocytes’ role 
in the regulation of microglial phenotypes and functions, 
as well as the innate immune response within the CNS 
(43,47,48), making them secondary targets for EMF therapy 
of the CNS. One of the main signaling molecules within the 
astrocyte activation cascade is ORM2, which plays a role in 
proinflammatory cytokine release. This, together with their 
ability to restrict the penetration of immune cells through 
the blood brain barrier (BBB), makes astrocytes active play-
ers in neuroinflammation and subsequent neurorestora-
tion (49). Depending on the nature of the stimuli, they can 

promote tissue regeneration and repair (A2 reactive astro-
cytosis) or amplify the immune reaction and cause further 
tissue damage (A1 reactive astrocytosis) (43,50).

Through secretion of ORM2, which blocks CCL4-CCR5 in-
teraction (51), astrocytes can either inhibit microglial acti-
vation and proinflammatory cytokine release or enhance 
microglial activity through up-regulation of LCN2 (52,53), 
MCP-1/CCL2 (54), IP-10/CXCL10 (53), or TGF-β (55). More-
over, by expressing innate immune pattern recognition 
receptors (PRRs), such as Toll-like (TLRs), NOD-like (NLRs), 
complement, mannose, and scavenger receptors, astro-
cytes establish a close crosstalk with the surrounding mi-
croglia within the CNS in order to eliminate pathogens, 
restore the tissue, or initiate scar formation (43,47,56,57). 
Furthermore, recent studies have shown that microglia-as-
trocyte crosstalk is a vital step in the CNS’s innate response 
to inflammation or injury, revealing that the astrocyte’s re-
sponse to TLR2, TLR3, and TLR4 is greatly enhanced by, or 
directly related to, the presence of microglia within the 
surrounding tissue (58,59). This indicates a crucial interac-
tion between astrocytes and microglia in neurorestoration 
and neurorepair and defines them as crucial molecular tar-
gets for EMF therapy and crucial players in potential subse-
quent neurorestoration.

It is only through carefully coordinated interactions of mi-
croglia and astrocytes that inflammatory responses can be 
regulated and resolved. While A1 astrocytes are pro-inflam-
matory, exhibiting the up-regulation of genes potentially 
destructive to synapses, and are induced by microglial se-
cretion of Il-1α, TNFα, and C1q, A2 reactive astrocytes se-
crete proteins that promote CNS synaptogenesis (43). On 
top of this, since they are activated under ischemic con-
ditions, A2 astrocytes possess neuroprotective and neu-
rorestorative functions and show the phenotype needed 
to be evoked for EMF therapy to effectively cause neurore-
generation (50,60,61).

Working together with astrocytes, the most abundant 
cells within the CNS – microglia – usually serve as the as-
trocyte’s “chaperone,” regulating astrocyte’s innate immune 
functions under pathological conditions by releasing fac-
tors impacting intracellular signal transduction through 
STATs and MAPK pathways. In order to further amplify the 
inflammatory reaction, microglia up-regulate the nuclear 
factor-κB (NF-κB) signaling pathway. Once activated, as-
trocytes increase proinflammatory gene expression and 
enhance the production of proinflammatory cytokines, 
chemokines, and growth factors (62).
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In turn, astrocytes modulate microglial functions and phe-
notypes through astrocyte-derived factors, chemokines, 
cytokines, complemented proteins, and, most interesting-
ly, calcium ions, which are greatly prone to the influence 
of the EMF (63).

The role of ATP, intra- and extracellular Ca2+, HSP, and 
HIF1α in astrocytes and microglia and their crosstalk. Un-
derlying causes of damage or degeneration within the 
CNS might differ, but the secondary effects after or dur-
ing the inflammation response exhibit similar patterns. 
Secondary injury due to microvascular or metabolic dys-
function causes a spike in glutamate release and subse-
quent excitotoxicity, mitochondrial dysfunction, overly 
active production of reactive oxygen species (ROS), and 
disbalances in ion concentrations (64). Additional extra-
cellular glutamate then activates the N-methyl-D-aspar-
tate receptors within the neurons and allows calcium in-
flux (63,64). The newly established calcium influx causes 
calcium excitotoxicity, which, in turn, disturbs the mito-
chondrial function and causes excessive ROS production, 
ultimately resulting in acute necrotic cell death or delayed 
apoptotic cell death (65-67).

Another important characteristic of activated astrocytes is 
the elevated intracellular calcium (Ca2+) concentration (67). 
In order to communicate, astrocytes initiate the transfer 
of inositol triphosphate (IP3) through gap junctions and 
extracellular adenosine triphosphate (ATP) signaling. This 
causes a calcium wave, increasing the Ca2+ in all adjacent 
cells (45,68). This increased Ca2+ then contributes to up-reg-
ulation of downstream calcium-dependent phosphatases 
and protein kinases, changing astrocyte’s morphology and 
mobility (69).

Similar to the calcium wave propagating to surrounding 
microglia, ATP released from astrocytes can also mediate 
the astrocyte-microglia crosstalk and activate the local mi-
croglia due to their high expression of purinergic receptors 
(70). Purinergic receptors, appearing in P1, P2X, and P2Y 
classes, play a huge role in cell proliferation, cytokine se-
cretion through mediation of ATP (P2), or adenosine (P1) 
release. While P2Y and P1 receptors are G-protein coupled, 
P2X receptors are ligand-gated ion channels greatly dis-
tributed among neurons and glial cells within the CNS and 
PNS. Because of their overt presence within the nervous 
system, these receptors have been implicated as crucial 
players in mediating the neuron-to-glia and glia-to-vas-

cular-cells communication, and thus regulating neu-
rogenesis, neurodegeneration, neuroinflammation, 

and neurorestoration (71). As they are ligand-gated ion 
channels with high affinity for charged particles, EMFs can, 
indeed, act by modifying their function.

Astrocytes can also inhibit microglial activity through 
down-regulation of expression of molecules essential for 
proinflammatory cytokine production, nitric oxide (NO) 
production, ROS, and TNFα release (68,72-74).

Thus, astrocytes and microglia can play a dual role in neuro-
degeneration and neuroinflammation by either furthering 
the immune response and postponing restoration or de-
creasing the inflammation and initiating neuroprotection. 
This makes them potential targets for electromagnetic field 
therapy of the CNS, enabling initiation of neurorestoration

METHODS

Eligibility criteria

Our systematic review addressed published literature tar-
geting the molecular effect of the EMFs on the brain tissue 
regeneration mediated by the crosstalk of astrocytes and 
microglia. Literature search was reduced to the experiments 
that included application of either magnetic or electromag-
netic fields in vitro or in vivo on the cells typically present in 
the brain tissue and active during neuroregeneration. Stud-
ies performed on other cell types were not included.

Information sources

Our search was designed using key words and Boolean 
operators in congruence with Peer Review of Electronic 
Search Strategies (PRESS) Checklist (75). Final search text 
wording was as follows: (electromagnetic fields) AND (as-
trocyte OR microglia OR microglial OR astrocytic OR regen-
eration OR restoration) AND (brain).

The identical wording was used in search engines of 
PubMed, Scopus, and Web of Science, without publishing 
date or language limit. The reference lists of highly relevant 
studies were hand-searched in order to identify additional 
studies to be included.

Search

Search results from all databases were compared and the 
duplicates removed. Primary screening resulted in classi-
fication of studies as those with relevant, uncertain, and 
irrelevant status. Secondary screening included accessing 
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the abstract in order to definitely confirm the relevance of 
the screened studies and decide on the studies previously 
classified as having uncertain status. All relevant literature 
was thoroughly studied in order to extract the data and 
make conclusions about the research question.

RESULTS

Study selection

We found 82, 114, and 182 studies in PubMed, Scopus, and 
Web of Science, respectively. Our manual search identified 
additional 7 studies that were included in the results list 
during the search. In the next step, 131 duplicates were 

removed from the list, leaving 247 articles for primary and 
secondary screening. The final list of eligible studies con-
sisted of 24 articles addressing our research question in at 
least one complete textual paragraph. All of the remaining 
articles were thoroughly read and used in the final synthe-
sis (Figure 1).

Molecular basis of microglia and astrocyte-mediated neu-
rorestoration upon EMF application. Based on the current 
knowledge and the role of astrocyte-microglia crosstalk in 
neurorestoration, one of the main mechanisms behind the 
regenerative properties of EMF is its regulation of the mi-
croglial and astrocytic activity and, with that, the function 
of the innate immune system (4-6).

Figure 1. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 Flow Diagram delineating our 
study selection process.
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According to Rosado et al (4), the main targets of EMF in in-
nate immunity are HSPs, extracellular ATP, and HIF1α, which 
are all present within the CNS and play an important role in 
glial cell functioning (43,67). Besides acting just upon mac-
rophages, HSP, extracellular ATP, and HIF1α, EMF also plays a 
role in the pathways that activate astrocytes and microglia. 
This implies that EMF might act within the CNS to initiate 
neurorestoration and restore proper functioning (4,43,68). 
Moreover, by investigating the important role of Ca2+ in in-
tracellular signaling and astrocyte and microglial crosstalk, 
EMFs, and microglial and astrocytic activation, a few stud-
ies have specifically explored the molecular mechanisms of 
microglia- and astrocyte-driven neurorestoration (76-78). 
Therefore, some of the mechanisms at work during EMF-
triggered neurorestoration could also be deduced from the 
existing studies on EMF influence on Ca2+ and ATP concen-
tration done on different cell types, and then expanded fur-
ther to suggest molecular mechanisms of EMF action upon 
astrocytes and microglia after EMF treatment.

ATP signaling intra- and extracellular Ca2+ concentration, 
and EMF. Elevated extracellular ATP concentration is a 
damage signal that works as a chemoattractant and in-
duces the release of inflammatory cytokines. Within the 
CNS, ATP is released by both neurons and astrocytes, but 
under pathological conditions, astrocytes serve as the big-
gest source of synaptic adenosine (79). In order to medi-
ate its action, there exist four types of G-protein-coupled 
adenosine receptors (ARs), which can all be found in both 
astrocytes and microglial cells (80). While A1 and A3 ARs 
inhibit adenylate cyclase activity and decrease cAMP, A2A 
and A2B ARs increase cAMP accumulation. Another mech-
anism of ATP recognition within microglial cells is through 
the P2X purinoceptor 7 (P2RX7). The P2RX7 receptors serve 
as PRRs for extracellular ATP-mediated apoptotic cell death 
and inflammation (81-84).

Studies assessing the influence of EMF on ATP signaling 
and intra- and extracellular Ca2+ in astrocytes are scarce, 
have been made with extremely low frequency magnet-
ic fields (ELF-MF) and ELF-EMF, respectively (34,85), and 
look at in vitro astrocyte cultures. However, computational 
models that studied the influence of EEG field on calcium 
waves in the neocortex (39) do suggest potential effects of 
ELF-MF, ELF-EMF, and EEG on ATP signaling and extracellu-
lar Ca2+ concentration in astrocytes.

While Clarke et al (85) have shown that ELF-MFs increase 
intracellular calcium levels within the cytoplasm of 

the cultured astrocytes, Golfert et al (34), by study-

ing microvesicle motility of astrocytes in in vitro cultures, 
have also suggested that ELF-EMFs change calcium lev-
els by increasing calcium influx. Increased Ca2+ ion influx 
is usually a product of astrocytic induction of diffusion of 
IP3 through gap junctions and extracellular ATP signal-
ing and, in normal conditions, it activates the surrounding 
microglial cells and changes astrocytes’ morphology and 
mobility. This is why it presents one of the main molecular 
targets for EMF therapy of neurodegenerative and neu-
roimmune disorders.

On the other hand, the computational model by Ingber 
et al (39) also suggests that macrocolumnar EEG fields can 
significantly influence Ca2+ momentum waves, increasing 
their frequency and occurrence. Although EEG has not 
so far been considered a method of EMF therapy for neu-
rorestoration, this computational model suggests that, in 
its altered form, it could potentially be used as a method 
for initiation of neurorestoration.

HIF1α and EMF. HIF1α is a transcription factor that plays a 
role in activating microglia in ischemic stroke and tissue 
damage. It is involved in microvascular dysfunction by re-
cruitment of T-lymphocytes and in tissue damage by ac-
tivation of innate inflammation. Within the CNS, HIF1α is 
mainly expressed by glial cells and neurons (86) and its 
overexpression contributes to tissue damage in the ner-
vous system. Multiple studies have shown that localized 
application of EMF inhibits HIF1α through decreased re-
lease of interleukin (IL-1β), TNF-α, IL-6, IL-8, and human 
monocyte chemoattractant protein-1 (MCP-1/CCL2). As IL-
1β, TNF-α, IL-6, IL-8, and MCP-1/CCL2 serve as major pro-
inflammatory signals, their down-regulation significantly 
reduces the inflammatory response, cell death, and apop-
tosis (31,87). As the inflammatory response plays a huge 
role in tissue damage, down-regulation of HIF1α through 
EMF activity might be one of the mechanisms behind the 
neurorestorative processes within the CNS.

An in vitro study by Huang et al (88) has shown that over-
expression of HIF1α inactivates microglia during re-ex-
posure to hypoxia and reduces their activity and could, 
therefore, be a novel method of achieving neuroprotec-
tion after ischemic stroke or brain ischemia by diminish-
ing the possibility of occurrence of A1 reactive astrocy-
tosis. Even though this study has not applied EMF, and 
the reported effects of HIF1α are indeed contradictory 
to the accepted role of HIF1α in anti-inflammatory pro-
cesses, it suggests that HIF1α overexpression might have 
neuroprotective effects, especially when it comes to uti-
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lizing intermittent hypoxia for protecting the CNS from 
ischemic damage. This effect should be explored further 
using EMF application. On the other hand, Vincenzi et al 
(31) have shown, in their study of PEMF influence on mi-
croglia, that down-regulation of HIF1α has anti-inflam-
matory effects and that the application of PEMF inhibited 
HIF1α activation. As their results contradict the function 
of HIF1α demonstrated by Huang et al (88), more studies 
need to be done on the activity of HIF1α in microglia af-
ter EMF application in order to further elucidate its role in 
the induction of A1 or A2 reactive astrocytosis and neu-
rorestoration.

HSP and EMF. Heat shock proteins are molecular chaper-
ones involved in protein folding and activation of antigen-
presenting cells (APCs), and induce the adaptive immune 
response by promoting the secretion of inflammatory cy-
tokines in APCs. It has been shown that ELF-MFs rapidly in-
duce the expression of HSP in mouse macrophages and hu-
man leukemia cells (4). This reaction causes ROS expression 
and scavenger inhibition of the free radical production and 
expression of HSP70. When it comes to just the intracellu-
lar HSP70 concentration, multiple studies have been done 
showing that HSP70 can decrease the signaling of proin-
flammatory factors (NFκB, MMPs, and ROS) after EMF appli-
cation in human K562 cells and HL60 cells in vitro (89,90).

Although none of the studies mentioned above looked at 
HSP expression in astrocytes or microglia, Bodega et al and 
Watilliaux et al have shown no changes in HSPs expres-
sion in astrocytes after MF and EMF application, respec-
tively. While Bodega et al (91), in an in vitro study of astro-
cytes, have shown that exposure to a static magnetic field 
does not change the concentration of HSP25, HSP60, and 
HSP70, Watilliaux et al (92) have, in an in vivo study on the 
brain of developing rats, demonstrated that EMF applica-
tion does not change the expression and abundance of 
HSP60, HSP70, and HSP90.

Since none of these studies differentiated between intrac-
ellular and extracellular HSP, and some studies in astrocytes 
have shown no change in HSP expression after EMF appli-
cation, this phenomenon needs to be further researched. 
The effect of EMF upon HSP expression with the purpose of 
initiating neurorestoration needs additional clarification.

DISCUSSION

Due to the microglia-astrocyte crosstalk, application of 
EMF on microglia not only impacts their function and mo-

bility, but it also dictates the behavior of the surrounding 
astrocytes and their response within the tissue.

Although the studies mentioned in our review made many 
valuable conclusions specifically outlined above, here we 
want to additionally stress our interpretation of the ob-
served data and bring forth some further hypotheses. On 
top of working together with astrocytes to initiate the im-
mune response within the CNS, microglia also play a cru-
cial role in determining the fate of astrocytes – inducing 
either A1 or A2 reactive astrocytosis. Once classically acti-
vated, microglia then secrete Il-1α, TNFα, and C1q and in-
duce A1 astrocytic phenotype. These induced astrocytes, 
without their ability to promote growth and survival of 
neurons and synaptogenesis, cause neuronal and oligo-
dendrocyte’s death and further degeneration. In order for 
microglia to have neuroprotective and neuroregenerative 
effects they must induce A2 reactive astrocytosis through 
down-regulation of Il-1α, TNFα, and C1q expression. As Vin-
cenzi et al (31) have shown that EMFs act upon microglia 
by reducing the expression of HIF1α, which is caused by 
the decrease in Il-1α and TNFα concentration, it is plausible 
that this reduction in Il-1α, TNFα, and HIF1α induces A2 re-
active astrocytosis.

As much as astrocytes play an indispensable role in physi-
ological conditions and the immune response within the 
CNS, they also release neurotrophic factors such as trans-
forming growth factor beta (TGF-β) and nerve growth fac-
tor (NGF), which play a role in the formation of the glial 
scar. Even though it was previously thought that the gli-
al scar hinders axonal regeneration, recent studies have 
shown that the ablation of chronic astrocytic scars dis-
abled the spontaneous regrowth of transected axons in 
spinal cord injury (SCI) lesions and increased axonal die-
back (93). Thus, contrary to the accepted dogma, the for-
mation of an astrocytic scar is crucial to axon regrowth 
and is a pivotal step in neurorestoration (93,94). Molecular 
triggers that lead to this scar formation include epidermal 
growth factor, fibroblast growth factor, endothelin-1, and 
ATP. By repairing the BBB, decreasing the rate of neuronal 
degeneration, and reducing the infiltration of inflammato-
ry cells into the CNS, astrocytic scar thus aids the recovery 
of function and prevents further functional deterioration 
(94). Interestingly, in most cases activated microglia will 
drive the astrocytes to the harmful, A1 reactive astrocyto-
sis, but once triggered by the application of EMF, the nor-
mal functioning of microglia is disrupted through Ca2+ 
influxes, subsequent excitotoxicity, oxidative stress, 
and apoptosis. This disrupted functioning decreas-
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es the expression of Il-1α, TNFα, and HIF1α, which changes 
the nature of interaction between astrocytes and micro-
glia, possibly drives astrocytes toward A2 reactive astrocy-
tosis, and initiates neurorestoration. Here, we assume that, 
since overexpression of Il-1α, TNFα, and HIF1α induces A1 
reactive astrocytosis, their decreased expression could in-
duce A2 reactive astrocytosis, which up-regulates many 
neurotrophic factors and should have a protective func-
tion (45).

Thus, one of the key mechanisms used by astrocytes and 
microglial cells for communication is ATP- and glutamate-
mediated calcium signaling evoked by the propagation of 
an action potential. Triggering the axonal release of ATP, 
this mechanism acts as a key player in mediating cell-to-
cell communication within the CNS and enables the re-
cruitment of new cells to the injury site if there is a need for 
an inflammatory response. It is this astrocytic ATP release 
that sets off the intracellular Ca2+ waves and Ca2+ propa-
gation among neighboring cells, triggering microglial Ca2+ 
response as well via P2RX7 receptors. One of the major 
features of astrocytes is that they release ATP upon me-
chanical or electrical stimulation or glutamatergic receptor 
activation (95,96). When stimulated by EMF, astrocytes de-
crease the secretion of the extracellular ATP concentration, 
dampening the pace of the microglial response and pre-
venting further tissue damage (97). The exact mechanism 
behind this action remains to be uncovered.

Looking at ATP concentration and signal processing upon 
EMF application, an in vitro study by Ongaro et al (99) has 
also shown that EMFs up-regulate A2A and A3 ARs in hu-
man osteoarthritic synovial fibroblasts (HOSF), thus de-
creasing extracellular Ca2+ . If this mechanism of action 
were to be detected in astrocytes as well, it would sug-
gest that the decreased Ca2+ diminish the occurrence of 
calcium waves, whose reduced occurrence down-regu-
lates all the phosphatases and protein kinases, changing 
astrocyte’s morphology and mobility (69). Coupled with 
a lower extracellular ATP concentration, this should then 
decrease the extent of the immune reaction. Although 
this study was done on HOSF, based on the properties of 
ARs present in astrocytes, it still presented valuable results 
suggesting a novel potential molecular mechanism be-
hind the action of EMFs on astrocytes and could be re-
peated for astrocytes.

Ongaro et al (98) have also shown that, through their ac-
tion upon A2A and A3ARs, EMFs down-regulate the ex-

pression of TNFα and IL8, which, as in the case with 

the down-regulation of the HSP cascade, reduces inflam-
mation – as it was suggested by Vincenzi et al (31). While 
TNFα functions as a systemic inflammation cytokine and 
regulates the immune cell response, IL-8 is a chemokine 
produced mainly by macrophages within the CNS and 
serves as a chemoattractant, recruiting neutrophils to the 
site of damage or infection. This decrease in the rate of the 
immune reaction enables glial cells to recruit other cell 
types to the injury site and initiate neurorestoration (92). A 
graphical representation of our hypotheses on the molec-
ular mechanisms behind the microglia-astrocyte crosstalk 
post-EMF application can be found in Figure 2.

Looking at further in vitro studies relating EMF application 
with ATP and ROS levels, Feng et al (99) have shown that 
ELF-MF application induced mitochondrial permeability 
transition through increase of intracellular ROS levels in hu-
man amniotic (FL) cells. On the other hand, Destefanis et 
al (100) have shown that the application of EMF increased 
mitochondrial activity through transcriptional modulation 
of mitochondrial respiratory complexes without any no-
ticeable change in ATP levels. As the study by Destefanis et 
al contradicts some of the other research in the field sug-
gesting EMFs role in decreasing extracellular ATP levels, 
more experiments must be done to elucidate this issue.

Finally, when it comes to HSP70 expression after EMF appli-
cation in human leukemia cells and mouse macrophages, 
which show an increase in concentration of HSP70 (4), the 
studies by Bodega et al (91) and Watilliaux et al (92) on in 
vitro and in vivo astrocytes, respectively, show no changes 
in HSP70 expression following EMF treatment. As Bodega 
et al have used an in vitro culture and Watilliaux et al have 
used the brain of developing rats, the results of both stud-
ies could not be reliable or applicable to adult rat brains or 
the human brain, so more studies need to be done on this 
problem to definitely conclude that EMF has no effect on 
HSP70. Acting upon NF-κB, expression of HSP70 causes im-
munosuppression and inhibits apoptosis and, within the 
CNS, could, upon application of EMF, halt the immune re-
sponse long enough for the glial cells to initiate the resto-
ration of the neuron’s structure and function.

Perspectives for future research

Although significant progress has been made in delineat-
ing the molecular mechanisms of action of astrocytes and 
microglia after EMF application, a considerable work still 
lies ahead. In order to pinpoint the exact mechanisms at 
work during proposed EMF-initiated neurorestoration fur-
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ther research is needed on EMF’s influence on Ca2+ levels 
in both astrocytes and microglia, ideally both in vivo and in 
vitro. As the immune response of astrocytes and microglia, 
and their drive to regenerate the tissue or cause further tis-
sue damage, depends highly on their successful crosstalk, 
all the further research, if done in in vitro cultures, should 
be performed in co-cultures of astrocytes and microglia.

Moreover, as opposed to just observing the HSP levels in 
short time spans after EMF, the EMF treatment should be 
applied in variable time intervals and at various intensities. 
As Bodega et al (91) have only looked at the influence of 
static sinusoidal (50 Hz) and combined static/sinusoidal 
magnetic fields on astroglia in culture 24 h after exposure, 
a study with longer exposure times (over 48 h) and with 
additional pulsed magnetic fields, and potentially dynamic 
EMFs, should be performed. As opposed to the field with a 

static flux density, the flux density of pulsed magnetic fields 
changes at various predetermined frequencies could, thus, 
evoke a higher rate of response and a stronger response 
from exposed cells than pure static fields. If the cells were 
exposed to static fields for longer periods of time, the field 
strength would raise the cell’s threshold and it would no 
longer have any influence on the cell’s function, migration, 
or action. This could be one of the reasons why Bodega et 
al (91) have observed no difference in HSP expression af-
ter MF application. On the other hand, Watilliaux et al (91) 
have used a higher frequency, 1800 MHz pulsed EMF for 
576 s on the brain of developing rats at post-neonatal days 
5, 15, or 35. Although their study used PEMF, the limiting 
factors, which were also the factors the authors set to ex-
plore, were the age of the rats and the short EMF applica-
tion time. As this was a study aiming to explore the adverse 
effects of mobile phone use on children, another study 

Figure 2. Hypothesized microglia-astrocyte crosstalk after electromagnetic field (EMF) application and its role in neurorestoration 
(Source: Mind the Graph on https://mindthegraph.com/, used under the CC BY-SA license.

https://mindthegraph.com/
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aiming to specifically observe the effects of PEMF on adult 
brain could be repeated with the same setup on adult rat 
brains, but with longer EMF exposure times, and varying 
field intensities to study whether EMFs, in any form, could 
affect HSP expression.

When it comes to HIF1α’s role in neuroregeneration, Vin-
cenzi et al (31) and Huang et al (88) presented opposite 
results. Therefore, a study similar to that by Vincenzi et al 
looking at pro-inflammatory cytokine expression in mi-
croglia, HIF1α concentrations, and ROS levels needs to be 
done with longer PEMF exposure times (over 48 h of in-
cubation) and alternating PEMF strengths to evaluate the 
optimal strength needed to inhibit HIF1α expression and 
to confirm the beneficiary effects of PEMF on neuroresto-
ration. When it comes to the study by Huang et al (87), as 
instrumental as it is to the recognition of the positive role 
HIF1α in neurorestoration, it should be repeated with the 
same setup but with the addition of PEMF generators.

Finally, looking at the influence of EMF therapy on Ca2+ and 
ATP concentrations in microglia and astrocytes, additional 
studies could be done in co-cultures of astrocytes and mi-
croglia to quantify the EMF influence on HSP levels, and 
with PEMF and ELF-EMF to study the differential effects of 
specific field patterns on Ca2+ and ATP concentrations.

Conclusion

Observing the effects post-EMF therapy, when microglia 
get activated through voltage gated ion channels, mul-
tiple studies have reported a decrease in inflammatory 
response following subsequent astrocyte recruitment, 
which, together with microglia, enable astrocyte scar for-
mation – ultimately aiding neurorestoration and axonal re-
generation (1-8,93).

On the other hand, if the inflammatory response within 
the CNS is weak or lacking, the EMF therapy could play a 
crucial role in its proper activation and regulation though 
immunosuppression and inhibition of apoptosis. When 
it comes to neurorestoratory A2 reactive astrocytes, their 
pathway highly depends upon the microglia-astrocyte in-
teraction involving the down-regulation of astrocytic P2Y1 
purinergic receptors and formation of an astrocytic scar 
(43,93,94) and is, to an extent, prone to the influence of 
EMF (28,31,34,98). When it comes to the influence of EMF 
on the scar-formation, its onset is induced by the change 

in the microglia-astrocyte crosstalk through up-regula-
tion of extracellular ATP, which activates the A2 re-

active astrocytosis pathway, initiates the release of anti-in-
flammatory cytokines, and speeds up its formation.

Having said all this, there is still more to uncover when it 
comes to the impact of EMF on the microglia-astrocyte 
crosstalk and neurorestoration, especially considering that 
some studies regarding EMF’s impact on ATP and HSP con-
centrations are contradicting. However, the field is advanc-
ing in the right direction – suggesting future possible uses 
of EMF in aiding neurorestoration and initiating neuropro-
tection.
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