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An improved adaptive fuzzy backstepping control for nonlinear mechanical
systems with mismatched uncertainties

Wan Min and Qingyou Liu

School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, People’s Republic of China

ABSTRACT
When the nonlinear mechanical system has mismatched uncertainties, it is difficult to design
control algorithm to achieve high precision trajectory tracking control. Traditional backstepping
control is an effective control method for uncertain, mismatched nonlinear systems, but there
is inherent problem of “complexity due to the explosion of terms”. In this paper, based on the
backstepping method, only one fuzzy system is used to approximate the unknown nonlinear
functions, the unknown control gain and the differential of virtual control lawof each subsystem.
Inorder to reduce the influenceof fuzzy approximationerror andexternal interference, the above
control scheme is further improved by designing special adjustable control parameters and first
order low pass filter. The improved control scheme not only improves the control precision of
the system obviously, but also solves the problem of “explosion of terms”, and greatly reduces
the initial control input, and provides the conditions for the practical application. The simulation
results show the effectiveness of the proposed methods.
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1. Introduction

In mechanical system modelling, due to modelling
error, unknown physical phenomena (friction in
mechanical system), load variation and random distur-
bance, system uncertainty is unavoidable. Themechan-
ical system ismainly affected by the following two kinds
of uncertainties, the structured uncertainty, that is, the
parameter uncertainty, and the unstructured uncer-
tainty, such as the modelling error and the external
disturbance. Because of the existence of high nonlinear-
ity and uncertainty of the mechanical system, it is very
difficult for the design of the controller [1–4].

In the past few decades, the adaptive control tech-
nology for feedback linearization for nonlinear systems
has made remarkable progress [4–6]. The feedback lin-
earization requires the uncertainty to satisfy the linear
parameterized condition. However, most of the sys-
tems in practice can’t be linearized. Robust control
strategy has good control effect for structured uncer-
tain systems, but the premise is that the boundary of
uncertainty is known [1–2]. But in actual control, it is
often impossible to know the boundary of its structured
uncertainty.

Wang Li-Xin proposed adaptive fuzzy control by
using the fuzzy system to approximate the unknown
control law or the unknown nonlinear function
[7]. In literatures [8–12], an adaptive neural net-
work controller is designed by using a neural net-
work to approximate uncertain continuous nonlinear

functions. The advantage of sliding mode controller
is that it has strong robustness to disturbances and
unmodeled dynamics, so it has also beenwidely applied
[13–18]. However, all the above methods require that
the system meet an important condition, that is, the
unknown nonlinearity and the control input appear in
the same equation of the state space model, which is
usually regarded as the matching condition.

In the actual system, there is a large class of nonlin-
ear systems that do not meet the matching condition,
such as the systemof themechanical handwhich driven
by the motor. For mismatched uncertainty nonlinear
systems, the Backstepping control is very effective and
has achieved great success [19–24]. Traditional back-
stepping control needs to repeated differentiations of
the virtual control law of the former subsystem. If there
is a nonlinear function in the virtual control, repeated
differentiations will lead to the problem of “explosion
of complexity” with the increase of the order of the
system. This makes high order systems face great dif-
ficulties in controller implementation. If the system has
parameters or structural uncertainties and external dis-
turbances, it will further lead to the difficulty in the
application of backstepping control.

Hedrick et al. proposed a dynamic surface con-
trol method (DSC), which can avoid the problem of
repeated differentiations by using n first order low pass
filters, has been widely used [25–27]. But DSC can’t
deal with the uncertainty problem. Since fuzzy systems
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and neural networks can approximate arbitrary nonlin-
ear functions with arbitrary precision, many literatures
have combined themwithDSC or backstepping control
in recent years [27–34].

Furthermore, in literatures [35–36], fuzzy system
and backstepping control are used to control the
nonstrict-feedback stochastic nonlinear systems. In
[37] both adaptive fuzzy state feedback and observer-
based output feedback control design schemes are pro-
posed. Qi Zhou et al. proposed adaptive fuzzy tracking
control for a class of pure-feedback nonlinear systems
with time-varying delay and unknown dead zone [38].

Shaocheng Tong et al. proposed an adaptive fuzzy
output feedback control for a class of switched
nonstrict-feedback nonlinear systems in literatures
[39,40]. Yongming Li et al. proposed an adaptive fuzzy
fault-tolerant control of non-triangular structure non-
linear systems with error-constraint in [41], and robust
adaptive output feedback control to a class of non-
triangular stochastic nonlinear systems was designed
in [42].

Based on the above results, a novel adaptive fuzzy
backstepping control method is studied in this paper,
which is suitable for nonlinearmechanical systemswith
mismatched uncertainties. In each subsystem, only one
fuzzy system is used to approximate the unknown con-
trol gain, the unknown nonlinear function, and the
differential of the virtual control of the former subsys-
tem, and the control of the system is realized by the
backstepping method. The advantage of the proposed
control method is to compensate all the uncertainties
at the same time and avoid the inherent “explosion of
complexity” problem. By introducing special adjustable
control parameters, not only the control precision of the
system is greatly improved, and the initial control input
is significantly reduced.

This paper is organized as follows: Problem state-
ment and preliminaries is described in Section 2. In
Section 3 fuzzy system and its approximation is pre-
sented. Control design is presented in Section 4. Sta-
bility analysis and adaptive law design are proposed in
Section 5. The simulation results and conclusion are
given in Sections 6 and 7, respectively.

2. Problem statement and preliminaries

Consider the following class of uncertain, mismatched
nonlinear mechanical systems, which has the strict-
feedback structure:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = b1x2(t) + f1(x1(t)) + ω1(t)
ẋ2(t) = b2x3(t) + f2(x1(t), x2(t)) + ω2(t)

...
ẋi(t) = bixi+1(t)+fi(x1(t), x2(t), · · · , xi(t)) + ωi(t)
ẋn(t) = bnu(t)+fn(x1(t), x2(t), · · · , xn(t)) + ωn(t)
y(t) = x1(t)

(1)

where 1 ≤ i ≤ n − 1, x1, x2, · · · , xn are the state vari-
ables, u ∈ R, y ∈ R are input and output of the system,
respectively; ωi(t) is the unknown, but bounded exter-
nal disturbance, fi is the unknown smooth function,bi
is the unknown control gain.

Assumption 2.1: There exist positive constants bim and
biM such that 0 < bim ≤ |bi| ≤ biM, i = 1, 2, . . . , n.

Assumption 2.2: For smooth nonlinear function f (x)
and fuzzy logic system, there exists optimal parameter
θ∗ which defined as θ∗ = argmin

θ∈�0

[sup
x∈�

|f (x) − θTξ(x)|],
where �0 and � are the sets of boundedness of θ and x
respectively.

Assumption 2.3: The reference signal yd(t) is a suf-
ficiently smooth function of t, and yd(t), ẏd(t) are
bounded.

Control Objective. The control objective is to design an
adaptive control scheme such that the output y(t) tracks
the desired trajectory yd(t) while ensuring the bound-
edness of all the closed-loop
signals.

For convenience, symbols x̄i are introduced, where
x̄i = [x1, x2, · · · , xi]T ∈ Ri, i = 1, 2, · · · , n.

The system (1) does not satisfy the so-called
matching condition, and there are uncertain non-
linear functions and unknown control gains, and at
the same time, it is affected by external interfer-
ence, so it is difficult to achieve the above control
purposes.

3. Fuzzy system and its approximation

Fuzzy system with product inference, singleton fuzzi-
fier and center-average defuzzifier is a universal
approximator. If the fuzzy rule has the following
form:

IF x1 is F
j
1, and x2 is F

j
2, and . . . and xn is F

j
n, THEN

y is Bj(j = 1, 2, · · · ,N), where x = [x1, x2, · · · , xn]T ∈
Rn is the system input, y represents the output of the
system, Fji(i = 1, 2, · · · , n) and Bj stand for fuzzy sets,
N stands for the number of fuzzy rules, the output of
fuzzy system can be expressed as:

y(x) =

N∑
j=1

θj
n∏

i=1
μ
j
i(xi)

N∑
j=1

n∏
i=1

μ
j
i(xi)

(2)

where θj = max
y∈R

Bj(y), μ
j
i(xi) and Bj(y) denote Gaus-

sian membership functions with respect to fuzzy sets
Fji and Bj.
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Define fuzzy base functions as:

ξj(x) =

n∏
i=1

μ
j
i(xi)

N∑
j=1

n∏
i=1

μ
j
i(xi)

, j = 1, 2, · · · ,N (3)

ξ(x) = [ξ1(x), ξ2(x), · · · , ξN(x)]T is the fuzzy basis
function vector, and θ = [θ1, θ2, · · · , θN]T is the weight
parameter vector, thus the final output of the fuzzy
system (2) can be rewritten as:

y(x) = ξT(x)θ (4)

According to the universal approximation theorem
of fuzzy system, if f (x) is a continuous function defined
on the compact set �, and using fuzzy system y(x) =
ξT(x)θ to approximate f (x), there exist optimal param-
eter vector θ∗ such that sup

x∈�

|f (x) − θ∗ξ(x)| ≤ ε, for

any given small constant ε > 0 [7].

4. Adaptive fuzzy backstepping control design

4.1. Reconstruction of system equation

The mismatched nonlinear mechanical system (1) can
be reconstructed as follows:

For subsystem 1: ẋ1(t) = b1x2(t) + f1(x1) + ω1(t),
we can define e1 = y − yd. A virtual control signal α1
is introduced, then we can have

ė1 = ẏ − ẏd
= b1x2 − b1α1 + b1α1 + f1(x1) + ω1(t) − ẏd
= b1e2 + b1α1 + f1(x1) + ω1(t) − ẏd (5)

where e2 = x2 − α1.
For subsystem 2, a virtual control signal α2 is intro-

duced, and then we can have

ė2 = ẋ2 − α̇1

= b2x3 − b2α2 + b2α2 − α̇1 + f2(x̄2) + ω2

= b2e3 + b2α2 − α̇1 + f2(x̄2) + ω2 (6)

where e3 = x3 − α2.
For subsystem k, a virtual control signal αk is intro-

duced, and then we can have

ėk = ẋk − α̇k−1

= bkxk+1 − bkαk + bkαk − α̇k−1 + fk(x̄k) + ωk

= bkek+1 + bkαk − α̇k−1 + fk(x̄k) + ωk (7)

where ek+1 = xk+1 − αk.

Define en = xn − αn−1 for the final subsystem, and
then we can have

ėn = ẋn − α̇n−1 = bnu + fn(x̄n) + ωn − α̇n−1 (8)

As a result, (1) can be rewritten as the following
form:{

ėk = bkek+1 + bkαk − α̇k−1 + fk(x̄k) + ωk
ėn = bnu − α̇n−1 + fn(x̄n) + ωn

(9)

where α0 = yd, 1 ≤ k ≤ n − 1.
Equation (9) shows that the control object can be

achieved as long as the appropriate virtual control
law αk and control law u are designed [31]. However,
Because of the existence of unknown nonlinear func-
tion fk and fn, unknown virtual control gain bk and
bn, and external disturbance ωk and ωn, it is very dif-
ficult to design the control law. Moreover, Equation
(9) containing α̇k−1 and α̇n−1, it shows that the design
of virtual control law needs differentiation of the vir-
tual control of the former subsystem. Such repeated
differentiations will greatly increase the complexity of
the whole control system, resulting in the problem of
“explosion of complexity”. In order to deal with the
above problems, in this paper adaptive fuzzy system is
applied to approximate the unknown nonlinear func-
tions, unknown control gains and the differentiation
of virtual control. The problems of the inherent prob-
lem of “explosion of complexity” and the mismatched
uncertainties can be solved at the same time.

4.2. Adaptive fuzzy backstepping control (AFBC)

Step 1, the Lyapunov function can be chosen as

V1 = 1
2b1

e21 (10)

The time derivative of V1 is equal to

V̇1 = 1
b1

e1ė1

= e1(e2 + α1 + f1(x̄1) − ẏd
b1

) + 1
b1

e1ω1

= e1(e2 + α1 + f̂1) + 1
b1

e1ω1 (11)

where f̂1 = f1(x̄1)−ẏd
b1 .

Defineα1 = −λ1e1 − ϕ1,λ1 > 0,whereϕ1 is a fuzzy
system for approximating nonlinear function f̂1, then
we can have

V̇1 = −λ1e21 + e1e2 + e1(f̂1 − ϕ1) + 1
b1

e1ω1 (12)

Step 2, the Lyapunov function can be chosen as

V2 = V1 + 1
2b2

e22 (13)

Define α2 = −λ2e2 − e1 − ϕ2, λ2 > 0, where ϕ2 is a
fuzzy system for approximating nonlinear function f̂2,
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then we can have

V̇2 = V̇1 + 1
b2

e2ė2

= V̇1 + e2
(
e3 + α2 + f2(x̄2) − α̇1

b2

)
+ 1

b2
e2ω2

= V̇1 + e2(e3 + α2 + f̂2) + 1
b2

e2ω2

= −
2∑

i=1
λie2i + e2e3 +

2∑
i=1

ei(f̂i − ϕi) +
2∑

i=1

1
bi
eiωi

(14)

where f̂2 = f2−α̇1
b2 .

Step k(k = 3, 4, . . . n − 1), we can define

αk = −λkek − ek−1 − ϕk (15)

where λk > 0 and ϕk is a fuzzy system for approximat-
ing nonlinear function f̂k, then we can have

V̇k = −
k∑

i=1
λie2i + ekek+1 +

k∑
i=1

ei(f̂i − ϕi)

+
k∑

i=1

1
bi
eiωi (16)

Step n, the Lyapunov function can be chosen as

Vn = Vn−1 + 1
2bn

e2n (17)

The time derivative of Vn is equal to

V̇n = V̇n−1 + 1
bn

enėn

= V̇n−1 + en
(
u + fn(x̄n) − α̇n−1

bn

)
+ 1

bn
enωn

= −
n−1∑
i=1

λie2i +
n−1∑
i=1

ei(f̂i − ϕi)

+ en(u + en−1 + f̂n) +
n∑

i=1

1
bi
eiωi (18)

where f̂n = fn(x̄n)−α̇n−1
bn .

Define fuzzy system ϕn for approximating nonlin-
ear function f̂n, then we can design the control law as
follows:

u = −λnen − en−1 − ϕn, λn > 0 (19)

Equation (18) can be rewritten as:

V̇n = −
n∑

i=1
λie2i +

n∑
i=1

ei(f̂i − ϕi) +
n∑
i=1

1
bi
eiωi (20)

According to the virtual control (15) and the control
law (19), not only all the uncertainties are compen-
sated by fuzzy systems, but also there are no repeated
differentiations problems [43].

4.3. Improved adaptive fuzzy backstepping
control (IAFBC)

Equation (20) illustrates the influence of fuzzy approxi-
mation error (f̂i − ϕi) and external disturbance ωi on
system stability. In order to improve the stability of
the system and reduce the initial control input, an
improved adaptive fuzzy backstepping control method
is proposed in this paper.

Step 1, we redesign the Lyapunov function as follows:

V1 = 1
2b1β1

e21, β1 > 1 (21)

The derivative of Equation (21) is given by the fol-
lowing expression:

V̇1 = 1
b1β1

e1ė1

= 1
β1

e1(e2 + α1 + f̂1) + 1
b1β1

e1ω1

(22)

Define α1 = −λ1β1e1 − ϕ1, we can have

V̇1 = −λ1e21 + 1
β1

e1e2 + 1
β1

e1(f̂1 − ϕ1) + 1
b1β1

e1ω1

(23)
Step 2, the Lyapunov function is redesigned as

V2 = V1 + 1
2b2β2

e22,β2 > 1 (24)

Define α2 = −λ2β2e2 − β2
β1
e1 − ϕ2, we can have

V̇2 = V̇1 + 1
b2β2

e2ė2

= V̇1 + 1
β2

e2(e3 + α2 + f̂2) + 1
b2β2

e2ω2

= −
2∑

i=1
λie2i + 1

β2
e2e3 +

2∑
i=1

1
βi
ei(f̂i − ϕi)

+
2∑

i=1

1
biβi

eiωi (25)

Step k(k = 3, 4 · · · n − 1), define

αk = −λkβkek − βk

βk−1
ek−1 − ϕk (26)

We can obtain

V̇k = −
k∑

i=1
λie2i + 1

βk
ekek+1 +

k∑
i=1

1
βi
ei(f̂i − ϕi)

+
k∑

i=1

1
biβi

eiωi (27)

Step n, the Lyapunov function is redesigned as
follows:

Vn = Vn−1 + 1
2bnβn

e2n,βn > 1 (28)
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The derivative of Equation (28) is given by the
following expression:

V̇n = V̇n−1 + 1
bnβn

enėn

= −
n−1∑
i=1

λie2i +
n−1∑
i=1

1
βi
ei(f̂i − ϕi)

+ 1
βn

en
(
u + βn

βn−1
en−1 + fn(x̄n) − α̇n−1

bn

)

+
n∑

i=1

1
biβi

eiωi

= −
n−1∑
i=1

λie2i +
n−1∑
i=1

1
βi
ei(f̂i − ϕi)

+ 1
βn

en
(
u + βn

βn−1
en−1 + f̂n

)
+

n∑
i=1

1
biβi

eiωi

(29)

The control law is redesigned as follows:

u = −λnβnen − βn

βn−1
en−1 − ϕn, λn > 0 (30)

Then (29) can be rewritten as:

V̇n = −
n∑
i=1

λie2i +
n∑
i=1

1
βi
ei(f̂i − ϕi) +

n∑
i=1

1
biβi

eiωi

(31)
From Equation (31), we can see that by introduc-

ing the control parameters βi (βi > 1) in virtual con-
trol law (26) and control law(30), the influence of
fuzzy approximation error and external disturbance
in each subsystem can be reduced by βi times, thus
the stability and control precision of the system are
improved.

From Equations (26) and (30), we can see that
because of introducing of βi, the initial control input
will increase, such that the control method is difficult
to implement in practice. In order to decrease the initial
control input, a low pass filter is designed in this paper
such that βi = βi0 + Ki(1 − e−

1
Ti
t
), where βi0 is a con-

stant far less than 1, Ki is amplification coefficient, Ti is
time constant. If Ti is very small, βi will increase from
βi0 to Ki + βi0 at a very fast rate. Through the above
control scheme, not only the initial control input can
be obviously reduced, but also the system can achieve
higher control accuracy.

5. Stability analysis and adaptive law design

Now, consider the following Lyapunov candidate func-
tion:

V = Vn +
n∑

i=1

1
2riβi

θ̃
T
i θ̃ i (32)

where θ̃ i = θ∗
i − θ i, ri > 0.

The time derivative of Equation (32) is given by the
following expression:

V̇ = V̇n +
n∑
i=1

1
riβi

θ̃
T
i

˙̃
θ i

= −
n∑

i=1
λie2i +

n∑
i=1

1
βi
ei(f̂i − θ∗T

i ξ i(x̄i))

+
n∑
i=1

1
βi
eiθ̃

T
i ξ i(x̄i)−

n∑
i=1

1
riβi

θ̃
T
i θ̇ i +

n∑
i=1

1
biβi

eiωi

≤ −
n∑

i=1
λie2i +

n∑
i=1

1
βi

|eiεi| +
n∑

i=1
θ̃
T
i
1
βi

(eiξ i(x̄i)

− 1
ri

θ̇ i) +
n∑
i=1

1
biβi

eiωi (33)

Equation (33) shows that for the same control
parameters λi, as long as the designed parameters βi >

1, the influence of fuzzy approximation error and exter-
nal disturbance on system stability can be reduced. For
convenience, symbols S is introduced, where

S = −
n∑

i=1
λie2i +

n∑
i=1

θ̃
T
i
1
βi

(
eiξ i(x̄i) − 1

ri
θ̇ i

)

+
n∑

i=1

1
βi

|eiεi| +
n∑

i=1

1
biβi

eiωi (34)

Select the positive coefficients λi as

λi = αi + 1
2

+ 1
2ρ2(biβi)

2 (35)

where αi and ρ are positive constants, so λi > 0.5.
Substituting (35) into (34) results in

S = −
n∑
i=1

αie2i − 1
2

n∑
i=1

e2i −
n∑

i=1

1
2ρ2(biβi)

2 e
2
i

+
n∑

i=1
θ̃
T
i
1
βi

(eiξ i(x̄i) − 1
ri

θ̇ i) +
n∑

i=1

1
βi

|eiεi|

+
n∑

i=1

1
biβi

eiωi (36)

Because βi ≥ 1, we can have

− 1
2

n∑
i=1

e2i +
n∑

i=1

1
βi

|eiεi| ≤ 1
2

n∑
i=1

ε2i (37)

−
n∑

i=1

1
2ρ2(biβi)

2 e
2
i +

n∑
i=1

1
biβi

eiωi ≤
n∑

i=1

1
2
ρ2ω2

i

(38)
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Then, the inequality can be obtained as follows:

S ≤ −
n∑

i=1
αie2i +

n∑
i=1

θ̃
T
i
1
βi

(eiξ i(x̄i) − 1
ri

θ̇ i)

+ 1
2

n∑
i=1

ε2i +
n∑
i=1

1
2
ρ2ω2

i (39)

Define the adaptive updating law as:

θ̇ i = rieiξ i(x̄i) − 2kiθi (40)

where i = 1, 2, · · · , n, ki > 0.
Substituting (40) into (39) results in

S ≤ −
n∑

i=1
αie2i +

n∑
i=1

2ki
βiri

(θ∗
i − θ i)

Tθ i

+ 1
2

n∑
i=1

ε2i +
n∑

i=1

1
2
ρ2ω2

i

= −
n∑

i=1
αie2i +

n∑
i=1

ki
βiri

(2θ∗
i
T
θ i − 2θ iTθ i)

+ 1
2

n∑
i=1

ε2i +
n∑

i=1

1
2
ρ2ω2

i

≤ −
n∑

i=1
αie2i +

n∑
i=1

ki
βiri

(θ∗
i
T
θ∗
i − θ i

Tθ i)

+ 1
2

n∑
i=1

ε2i +
n∑

i=1

1
2
ρ2ω2

i

= −
n∑

i=1
αie2i +

n∑
i=1

ki
βiri

( − θ∗
i
T
θ∗
i − θ i

Tθ i)

+
n∑

i=1

2ki
βiri

θ∗
i
T
θ∗
i + 1

2

n∑
i=1

ε2i +
n∑

i=1

1
2
ρ2ω2

i

(41)

Since

θ̃
T
i θ̃ i = (θ∗

i − θ i)
T(θ∗

i − θ i) = θ i
∗Tθ∗

i − 2θ i∗Tθ i

+ θTi θ i ≤ 2θ i∗Tθ∗
i + 2θTi θ i (42)

We have

− 1
2
θ̃
T
i θ̃ i ≥ −θ i

∗Tθ∗
i − θTi θ i (43)

Substituting (43) into (41) results in

V̇ ≤ −
n∑

i=1
αie2i −

n∑
i=1

ki
2βiri

θ̃
T
i θ̃ i +

n∑
i=1

2ki
βiri

θ∗
i
T
θ∗
i

+ 1
2

n∑
i=1

ε2i +
n∑

i=1

1
2
ρ2ω2

i

≤ −
n∑

i=1
αi
2bimβi

2biβi
e2i −

n∑
i=1

ki
2βiri

θ̃
T
i θ̃ i

+
n∑
i=1

2ki
βiri

θ∗
i
T
θ∗
i + 1

2

n∑
i=1

ε2i +
n∑
i=1

1
2
ρ2ω2

i (44)

Define A = min{2bimaiβi, ki, i = 1, 2, · · · , n} and

B =
n∑

i=1

2ki
βiri θ

∗T
i θ∗

i + 1
2

n∑
i=1

ε2i . ωi are bounded distur-

bances, so we have ω2
i ≤ ci. Define C =

n∑
i=1

1
2ρ

2c2i .

So (44) can be rearranged as:

V̇ ≤ −A

( n∑
i=1

1
2biβi

e2i +
n∑
i=1

1
2βiri

θ̃
T
i θ̃ i

)
+ B + C

≤ −AV + B + C (45)

where A, B, C are positive constants.
Then, integrating the inequality (45), one has

V(t) ≤ V(0) + B + C
A

,∀t ≥ 0 (46)

From (46), we can prove that all the signals of the
designed control system are semi-globally uniformly
ultimately bounded.

6. Simulations

A motor driven manipulator used in the simulations,
the dynamic equation can be written as follows [43]:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = − B

Mt
x2 + N

Mt
f2(x1, x2) + Kt

Mt
x3

ẋ3 = f3(x1, x2, x3) + 1
L
u − 1

L
ω

y = x1

(47)

where x1 = θ , x2 = θ̇ , x3 = I, N = mgl + Mgl, Mt =
J + 1

3ml2 + 1
10Ml2D, g is the gravity acceleration

constant,f2 and f3 are unknown nonlinear functions, ω
is the external disturbance, θ is connecting rod angle, I
is electric current,Kt is torque constant,Kb is back EMF
coefficient, B is viscous friction coefficient of bearing,D
is load diameter, l is connecting rod length, M is load
quality, m is connecting rod weight, L is reactance, R
is resistance, u is the control voltage of the motor, J is
actuator torque.

The desired trajectory is yd = 5 sin(2π t), f2 = sin θ ,
f3 = −R

L x3 − Kb
L x2, ω(t) = 4 sin(t).

The parameters of the manipulator: B = 0.015, L =
0.0008, D = 0.05, R = 0.075, m = 0.01, J = 0.05, l =
0.6, Kb = 0.085,M = 0.05, Kt = 1, g = 9.8. The initial
state of the manipulator is x(0) = [0, 0, 0]T .

The two kinds of control schemes described above
are summed up as (48) and (49), respectively. In order
to verify the effectiveness, we compare their control
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performance with that of DSC control (50). The Three
schemes use the same fuzzy system (4) and the adaptive
law (40).

Control Scheme 1: AFBC⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1 = −λ1(x1 − yd) + ẏd
α2 = −λ2(x2 − α1) − (x1 − yd) − ϕ2
u = −λ3(x3 − α2) − (x2 − α1) − ϕ3
e1 = x1 − yd
e2 = x2 − α1
e3 = x3 − α2

(48)

Control Scheme 2: IAFBC⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = −λ1β1(x1 − yd) + ẏd
α2 = −λ2β2(x2 − α1) − β2

β1
(x1 − yd) − ϕ2

u = −λ3β3(x3 − α2) − β3

β2
(x2 − α1) − ϕ3

e1 = x1 − yd
e2 = x2 − α1
e3 = x3 − α2

(49)
Control Scheme 3: DSC⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = −λ1(x1 − yd) + ẏd
α2 = −λ2(x2 − s1) − (x1 − yd) − ϕ2 + a1 − s1

τ1

u = −λ3(x3 − a2) − (x2 − a1) − ϕ3 + a2 − s2
τ2

τ1ṡ1 + s1 = α1, s1(0) = α1(0)
τ2ṡ2 + s2 = α2, s2(0) = α2(0)
e1 = x1 − yd
e2 = x2 − s1
e3 = x3 − s2

(50)
The control parameters in all the three controlmeth-

ods are designed as follows: λ1 = 3, λ2 = 8.5, λ3 =
8.5, K = 10, T = 0.1s, β1 = β2 = β3 = 0.1 + K(1 −
e−

1
T t), τ = 0.01s, r1 = r2 = r3 = 2, k1 = k2 = k3 =

1.5.
Figures 1–3 show the performance of the posi-

tion tracking of the three control methods. From the

Figure 1. The position tracking.

Figure 2. Part of details of Figure 1.

Figure 3. The error of position tracking.

simulation results, we can see that the positon track-
ing accuracy of AFBC and IAFBC is much higher than
that of DSC which is widely used in the existing liter-
atures. Due to the addition of control parameters βi,
the influence of fuzzy approximation error and exter-
nal disturbance is reduced, thus the control accuracy of
IAFBC can be further improved compared with AFBC.

Figure 4. The speed tracking.
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Figures 4–6 show the performance of the speed
tracking of the three controlmethods. From the simula-
tion results, we can see that the initial error and steady-
state tracking error under DSC control are much larger
than those of AFBC and IAFBC. In the three methods,
the speed tracking error of IAFBC is the smallest.

Figure 5. Part of details of Figure 4.

Figure 6. The error of speed tracking.

Figure 7. The control input of AFBC.

Figures 7–9 show the control input signal of the
three control methods respectively. From Figure 7, we
can see that the initial control input of AFBC is 2300.
Figure 8 shows the initial control input of IAFBC is
54. Figure 9 shows the initial control input of DSC is
368210. The initial control input signal is significantly
reduced by IAFBC, this benefit is very conducive to the
actual engineering application.

Finally, for a better illustration, all the simulation
results are summarized in Table 1. From the Table 1,
it is clearly shown that the proposed control method
IAFBC indeed can have much better performance
than DSC.

Figure 8. The control input of IAFBC.

Figure 9. The control input of DSC.

Table 1. Performance comparison of the three control
schemes.

Performance comparison AFBC IAFBC DSC∫ t
0 e

2dt of position tracking 1.8 × 103 5.8 × 101 3.9 × 105∫ t
0 e

2dt of speed tracking 1.1 × 105 4.9 × 104 1.9 × 107

umax 2.3 × 103 5.4 × 101 3.6 × 105



AUTOMATIKA 9

7. Conclusion

In this paper, an improved adaptive fuzzy backstep-
ping control scheme has been proposed for a class of
nonlinear systems with mismatched uncertainties. By
using fuzzy systems and backstepping control, not only
mismatched uncertainties in systems, such as unknown
functions and unknown control gains, are identified,
but also the problem of “explosion of terms” inherent
in traditional backstepping control is avoided. More-
over, through the introduction of adjustable control
parameters and low pass filters, the influence of fuzzy
approximation error and external disturbances can be
further reduced, thus the control error convergence
is faster, the control precision is obviously improved,
and the initial control input signal is greatly reduced.
Finally, the stability of the control system is proved and
all the signals are guaranteed to be bounded. Some sim-
ulation results have demonstrated the effectiveness of
the proposed results. Future research directions are the
extension of the results to nonstrict-feedback stochas-
tic MIMO nonlinear systems with uncertainties and
unmeasured states.
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