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ABSTRACT
To improve power quality (PQ), detecting the particular type of disturbance is the foremost thing
before mitigation. So monitoring is needed to detect the PQ disturbance that occurs in a short
duration of time. Classification of real-time PQ disturbances under noisy environment is investi-
gated in this method by selecting an appropriate signal processing tool called fusion of time
domain descriptors (FTDD) at the feature extraction stage. It’s a method of extracting power
spectrum characteristics of various PQ disturbances. Few advantages like algorithmic simplicity
and local time-based unique features makes the FTDD algorithm ahead of other techniques. PQ
events like voltage sag, voltage swell, interruption, healthy, transient and harmonics mixed with
different noise conditions are analysed.multiclass support vectormachine andNaïves Bayes (NB)
classifiers are applied to analyse the performance of the proposed method. As a result, NB clas-
sifier performs better in noiseless signal with 99.66%, wherein noise added signals both NB and
SVM are showing better accuracy at different signal to noise ratios. Finally, Arduino controller-
based hardware tool involved in the acquisition of real-time signals shows how our proposed
system is applicable for industries that make detection simple.
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1. Introduction

According to the Electrical power research Institute
(EPRI) survey $15 billion to $24 billion is losing in
U.S. economy due to PQ disturbances [1]. Power qual-
ity (PQ) is becoming an important issue nowadays
in domestic and industrial fields [2]. Even in small
industries too we are using personal computers, servers
and UPS. Moreover, equipments like power electronic
devices, adjustable speed drives, microprocessors, logic
controllers, switched mode power supplies and Energy
efficient lightings are causing distortions in the utility
side. The above-mentioned causes may affect memory
loss in computers, error in electronic circuits and mal-
function of controllers. Hence monitoring of PQ and
automatic detection of disturbance is much essential
[3]. The magnitudes and time limits of voltage and cur-
rent signals are enlisted in IEEE standard 1159-2009
[4]. Among the number of signal processing techniques
used in feature extraction of PQ disturbances Fourier
transform (FT) is one of the fastest technique, but it is
not suitable for non-stationary signals. The next imple-
mentation of FT is the fast Fourier transform (FFT)
in which the performance is poor if signal changes
suddenly similar to transients [5]. Later short time
Fourier transform (STFT) is used, it gives both time and

frequency information, but due to constantwindow size
it covers only a portion of the signal [6].

The above requirements are fulfilled by the most
popular Wavelet Transform (WT) [7], using short win-
dow size for high frequency and long window size for
low frequency is the method adopted here. Still few
drawbacks exist in wavelet transform such as (i) Per-
formance depends on choosing the mother wavelets
tools like daubechies (db) symlets, coiflets, harr etc.
Mostly db4, db6 are suitable for fast changing signals
and db8 are suitable for slow changing signals. (ii)
Performance is degraded under noisy conditions.(iii)
Its inability to estimate the Fourier frequencies and
it has a local phase reference. These drawbacks of
WT are overcome by introducing Stockwell Trans-
form (ST) [8,9], It provides better feature extraction
and characterization. Unlike wavelet transform itmain-
tains an accurate reference phase also. Besides heavy
computational burden slow down the runtime if sam-
ple rate is high. Other approaches like Kalman Fil-
ter is preferred for its noise tolerance capability [10].
Still it fully depends on the filter model, if signal
mismatches the filter model it leads to error. Due to
advancement in signal analysis Hilbert–Huang trans-
form was proposed in [11] along with empirical-mode
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decomposition. A time-frequency analysis method of
analysing PQ disturbances using Gabor–Wigner trans-
form is presented in [12], but classification stage is
not proceeded. Ganyun et al. [13] recently proposed a
semi-supervisedmethod of classifying PQdisturbances
without known training data. A sparse signal decom-
position technique is applied in [14], detailed and
approximation signals are considered as features for
detection and Decision tree method for classification.
Moreover in [15], real-time detection of disturbances
under various noise levels based on time –frequency-
scale transform is performed and analysis is made by
comparing three different classifiers. Furthermore, Dis-
crete Gabor Transform-based feature extraction and
Type 2 fuzzy kernel (T2FK)-based SVM is proposed
in [16] around nine types of PQ events are classified.
Recently Stockwell Transform emerges in recognizing
PQ disturbances along with KNN and rule-based deci-
sion tree in [17]. In addition, few literatures highlights
the feature selection stage aiming to reduce the size of
large extracted feature in turn minimize the compu-
tational burden also to increase the performance. Still
around 25 feature extractors are proposed in various
literatures we need an extraction technique which pro-
vides unique features, because in PQ signals we can find
only slight variations between one another.

This paper presents a fusion of time domain descrip-
tors (FTDD)-based technique to discriminate the
PQ disturbances from normal pure sinusoidal signal.
FTDD provides informative features derived from first
and second derivative leads to better classification.
Already FTDD features are applied for myoelectric sig-
nals from EMG and ECG devices, also it proven better
pattern recognition for EMG signals when compared
with other 50 feature extraction techniques. Actually,
myoelectric signals stimulated from our human body
are very low signals in the range of milli or micro
volts. In such signals the variations between normal
and abnormal patients are very mild. The proposed
FTDD method shows a high resolution and capabil-
ity in extracting features in negligible distortions. This
initiates the researcher to utilize this technique in detec-
tion of PQ disturbances application. In PQ, few distur-
bances are almost identical but only the magnitude and
frequency changes slightly. In order to detect such dis-
tortions we are using power spectrum and graphical
indices like Sparseness (S),Waveform length ratio (WL)
and Irregularity factor (IF). The comparative studies
and analysis shows the robustness of the proposed sys-
tem. This method is implemented for real-time sig-
nals acquired using Arduino controller interfaced with
computer. Samples of PQ disturbances like sag, swell,
harmonics, transients and interruptions are captured
at various load conditions. This signals are mixed with
noises at 20, 30, 40, 50 and 60 db signal to noise levels
using synthetic noise generator. Thus FTDD algorithm
is proven to be the best for noise mixed signals and

when it is merged with Naives Bayes (NB) and multi
SVMclassifiers better accuracy is achieved.While com-
paring the performance with the other Naïve Bayes
classifier, it is found that NB is more effective than
multi-SVM under noise added signals.

The paper is organized in five sections: Section
2 describes the proposed methodology, FTDD-based
Feature extraction with algorithm is presented in
Section 3. Section 4 explains the working of classifica-
tionmethods. The results and performance analysis are
discussed in Section 5 and concluded in Section 6.

2. Proposedmethodology

The flow diagram of the proposed method is shown in
Figure 1. According to the proposed method shown in
flow diagram an Arduino-based PQ analyser is used to
collect PQ samples from various loads like induction
motors, switched mode power supplies, servers, UPS,
capacitor banks, choke and other industrial appliances.
The collected PQ samples are reconstructed into wave-
form distortions and this signals are further processed
to extract features. Before extracting the features, noises
are added at various db levels to validate our system is
effective under noisy conditions too.

FTDD is a new feature extraction tool and this
approach is new in PQ area. The idea behind FTDD can
be expressed in three steps (i) Nonlinearity in the time
domain signal x[k] is expressed as a function of fre-
quency x∗[k] using discrete Fourier transform (DFT).
(ii) Compute the power spectrum p[k] for the current
and previousmoments (iii) Using fusion technique cor-
relate the two features obtained from current and pre-
vious windows. These extracted six features of each PQ
disturbances signal are taken to multi SVM and Naïve
Bayes classifier for classification The size of the feature
set is minimum that reduces the computation burden
and time, Also this system can able to detect both noisy
and noiseless signals which provides a best solution for
different applications.

2.1. Acquisition of real-time signal

Few single phase loads connected to a 230V, 50Hz sup-
ply is measured with a hardware setup that can be used
as an analyser to acquire the real-time signals. It con-
stitutes of arduino microcontroller, potential divider,
clamper circuit, interfacing cards and multimeter. This
arrangement is interfaced with personal computer to
acquire five categories of PQ events like voltage sag,
voltage swell, harmonics, interruption and transients,
along with the pure signal. The hardware setup is tested
in electrical machines like induction motors, residen-
tial appliances like UPS, computers, SMPS and across
capacitor banks in institutional laboratories. The values
are converted to per units and stored in the database.
The numerical data are reconstructed into wave shapes
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Figure 1. Flow diagram of proposed method.

Figure 2. Samples of pure and noise added PQ disturbances.

and noises are added with the signal using MATLAB in
different signal to noise ratio (SNR). The dataset consist
of 200 samples of all classes, we have considered only 10
cycles for processing. For convenience a set of samples
with pure and 30 db noise added signals for two cycles
are shown in Figure 2.

3. Feature extraction using FTDD

The original distorted signal is processed to change
time domain signal to a new signal from which few rel-
evant information’s are extracted called features which
is more essential for classification. The extraction of
better feature is the major area in the performance of
classifier. If we minimize the size of the feature data the
classifier can able to recognize the signal easily and cor-
rectly, thereby the efficiency of classifier is increased.

The method of extracting features using FTDD [18] is
shown in Figure 3. It starts with the input signal x[j] of
lengthN = 2000 at sampling frequency 10KHz. FTDD
algorithm basically starts from the Parseval’s theorem
which states that the sum of square of the function is
equal to the sum of square of its transform. The distur-
bance signal in time domain x[k] is transformed as a
function of frequency x∗[k] using DFT.

N−1∑
j=0

[x(j)]2 = 1
N

N∑
k=0

[x(k)x∗(k)] =
N−1∑
k=0

p(k). (1)

Here, ‘k’ is the frequency index, p(k) is the power spec-
trum obtained by multiplying x[k] by its conjugate
and divided by N. Thus the square root of zero-order
derivatives indicating the power spectrum in frequency
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Figure 3. Process of feature extraction using FTDD.

domain is chosen as the zero-order moment ‘m0’ [19]

m0 =
√√√√N−1∑

j=0
x(j)2. (2)

Similarly, the square root of first derivative indicating
the power spectrum corresponding to frequency kx[k]
denotes second-order moment ‘m4’

m4 =
√√√√N−1∑

j=0
k2p(k). (3)

Repeating the same procedure by taking the second
derivative again gives the fourth- and eighth-order
moments ‘m4’and ‘m8’ shown in (4). Further increasing
the higher derivatives of the signal reduces the energy
of the signal. Power transformation is done in order
to normalize and reduce the effect of noise present in
features

m8 =
√√√√N−1∑

j=0
k4p(k). (4)

After normalization first three features are extracted
from the moments

f1 = log(m0)

f2 = log(m0 − m4)

f3 = log(m0 − m8)

⎫⎬
⎭ . (5)

The other three features can be calculated from
zero-, fourth- and eighth-order moments using Equa-
tions (6)–(8). The factors like Sparseness, Irregularity
factor and Waveform length ratio are used to differen-
tiate the nature of waveform from normal sine wave.
Sparseness (S) is the feature that gives the measure of
energy that is packed in a vector. If all the elements are

same it gives a sparseness level equal to zero, otherwise
the value is greater than zero.

f4 = log

(
m0√

m0 − m4
√
m0 − m8

)
. (6)

Irregularity Factor (IF) defines the ratio of number of
upward zero crossings and number of peaks. Irregular-
ity factor can be either computed directly from the sig-
nal using Number of Zero crossings (NZ) and Number
of Peaks (NP) or using the spectral moments [20].

f5 = log
(

(NZ)

(NP)

)
= log

(√
m4/m0√
m8/m4

)
. (7)

Waveform length ratio (WL) is defined as the ratio of
waveform length of first derivative to the waveform
length of second derivative

f6 = log

(∑N−1
j=0 |�2x|∑N−1
j=0 |�4x|

)
. (8)

The signal input x(j), number of steps away from cur-
rent window (20), size of window (2000) and spacing
between the windows (0.05) are the required inputs
to the algorithm. According to FTDD-based feature
extraction process in Figure 3, the proposed six fea-
tures are initially extracted and set of features per signal
are recorded. At the final stage the features of current
window and previous window are multiplied and this
process is called FTDD. In such a way we can corre-
late with the 2nd, 3rd or 4th previous window, and then
choose the nth window with improved accuracy. Fea-
tures thus obtained are having uniqueness and more
variation for slight changes in the input signal. A set of
features extracted by FTDD are tabulated in Table 1.
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Table 1. Extracted feature set using FTDD for a set of classes.

Classes f1 f2 f3 f4 f5 f6

Healthy (C1) 0.9684 0.9612 0.7853 0.2605 0.4823 0.5706
Harmonics (C2) 0.9293 0.9999 0.9029 0.3724 0.7221 0.4169
Sag (C3) 0.9673 0.9632 0.7921 0.2679 0.4786 0.7562
Swell (C4) 0.9694 0.9594 0.7825 0.2604 0.4774 0.7087
Interrupt (C5) 0.9418 0.9848 0.9974 0.6068 0.7804 0.9045
Transient (C6) 0.9688 0.9909 0.8955 0.5618 0.6351 0.8389

4. Classification stage

4.1. NB classifier

NB algorithm is a powerful tool in performing the clas-
sification task by using Bayes Probability method [21].
In NB classifier both statistical and supervised learn-
ing methods are followed. In this method, it consider
all the features and properties of any sample to find
the probability. This method is well known in predict-
ing multiclass variables, the fold value is chosen as
0.5 for splitting test data and train data. The method-
ology adopted for classifying PQ signals using NB is
enumerated in the algorithm below.

Algorithm of Naïve Bayes classifier

Step 1: Read the data.
Step 2: Create a partition object using the fold value.
Step 3: Create a training and test set.
Step 4: Calculate the conditional probability using the

Bayesian probability equation (9).

P(Ck/x) = P(CK)P(x/Ck)

P(x)
, (9)

where P(Ck)is the prior probability; P(x/Ck) the
likelihood; P(x) the predictor prior probability;
P(Ck/x) the posterior probability.

Step 5: Compute normal distribution and kernel
distribution

Step 6: Get the probability of test set from the training
Step 7: Compare the actual output with the predicted

output else,
Step 8: Maximize P(Ck/(xi . . . . . . xn)) to get predicted

output of test set.

4.2. Support vectormachine

SVM is a powerful method for solving pattern clas-
sification problems [22]. SVM algorithm is based on
supervised learning theory introduced by Vapnik [23].
In this method, a model is built using the training sam-
ples and by this model it can recognize the class of any
new sample. The aim of SVM model is to choose a
hyper plane that can able to separate the two classes. If
there are only two classes it is a binary SVM classifier,
in our data set there are different classes with nonlin-
earity nature so we find it difficult to separate. Hence
nonlinear SVM is adopted using a technique of Kernel
function; here the input vector is mapped in a higher
dimensional feature spaceH.

The hyper planes are denoted as �w · x − b = 1 and
�w · x − b = −1

In order tomaximize the distance between the hyper
plane and the data points we have to minimize | �w|

min| �w| Subject to yi(�w · x − b) ≥ 1, (10)

where, | �w| is the normal vector to the hyper plane, ‘xi’,
‘yi’ denote the feature and classes. Let xi is the input vec-
tor belongs to any one class y ε {−1, 1}. Using the non-
linear transformation ϕ(x) mapping is done through
suitable basis function. Also it uses the linear model in
feature space called the kernel function. Basically, SVM
separates only binary classes (k = 2), but practically we
have to discriminate more than two classes. In our sys-
tem, multiclass SVM can be decomposed into a series
of binary problems [16].

Min
1
N

N∑
i=1

max(0, 1 − yi(| �w|x1 − b)) + λ| �w|2, (11)

ϕ = (0, 1 − yi(�w · x1 − b)), (12)

where ϕ is the primal factor. Initially inmulti-SVM, the
training data and training labels of each class are given
as input. dendrogram-based training is done and clus-
ters are formed, then SVM is implemented at each node.
The advantages like better generalization property and
ability to handle large classification problems highlights
SVM over conventional classifiers.

5. Results and discussion

5.1. Data acquisition using Arduino-based PQ
analyser

In order to collect the PQ samples across different loads
causing the distortions, a hardware-based PQ anal-
yser is designed in cheaper cost when compared to the
recent PQ analysers available in the market which is of
high cost. Samples with six classes of disturbances are
collected and further stored at our computer. We are
able to get only six types of disturbances in our institu-
tional premises, machines laboratory, across capacitor
banks and UPS battery. This Arduino-based low cost
PQ analyser is useful for industries operating under sin-
gle phase loads. Furthermore, our robust classifier can
able to detect if any distortions existing in the voltage
signal.

5.2. Classification success of FTDD features

The dataset obtained using PQ analyser consists of
totally 200 samples. When it is mixed with Gussian
noise distortions at six levels from 20 to 60 db at an
interval of 10 db, totally 1000 samples were obtained.
Among the 1000 samples, 500 are taken for training
and 500 samples for testing. The target is denoted as
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(C1, C2, C3, C4, C5, C6) for the six classes. While col-
lecting real-time signals, we may or may not get noise
distorted signals. Therefore to perform a uniform anal-
ysis in all type of signals, the noise is added. Equation
(13) represents how SNR is calculated. Few other fea-
ture extractors find it difficult to detect the disturbance
under noisy environment. But the capability of FTDD
is quite superior in detecting PQ events with noise con-
tent. Thus when 500 samples are tested, the system
shows a better accuracy for different classifiers consis-
tently. A sample feature set of each class is shown in
Table 1. Only six features per sample reduce the dimen-
sion of feature size also reduces the memory space.
Thereby the computation time is also reduced.

SNR = 10 log10

(
Ps
Pn

)
. (13)

Table 2. Classification results using FTDD and SVM.

Classification accuracy (%)

Noise added

Classes Noiseless 20 db 30 db 40 db 50 db 60 db

C1 100 100 100 100 100 94.67
C2 96.67 100 99.33 100 99.33 100
C3 98.67 96.0 90.67 98.67 96.6 96.0
C4 99.33 98.0 100 100 96.0 95.33
C5 100 98.67 98.67 98.60 98.67 96.0
C6 100 99.33 98.0 97.33 100 98.67
Overall 99.11 98.66 97.65 99.10 98.43 96.77

Table 3. Classification results using FTDD and NB.

Classification accuracy (%)

Noise added

Classes Noiseless 20 db 30 db 40 db 50 db 60 db

C1 100 98.0 100 100 100 94.0
C2 100 100 100 99.3 99.3 100
C3 99.33 100 98.67 100 96.67 90.67
C4 98.67 98.0 100 100 96.0 95.33
C5 100 100 98.67 98.67 98.67 98.0
C6 100 99.33 97.33 98.67 100 92.67

5.3. Performance of SVMandNB under different
noise conditions

In the classification stage, two efficient classifiers are
applied to find the suitable classifier for different noisy
environments. The extracted features grouped as test-
ing and training data is further given to both SVM and
Naive Bayes classifiers to analyse the performance of
our proposed work. Some classifiers may show better
accuracy only up to a particular noise level, but the
two classifiers are superior in discriminating the distur-
bances. The confusion matrix of SVM classifier shows
an accuracy of 99.11%, similarly Naive Bayes classifier
is showing 99.66% accuracy for pure signals. The result
shows only a slight decline in the classification rate in
noisy conditions. A comparative analysis is done with
few existing methodologies to validate our proposed
system and to focus which combination pair of fea-
ture extractor and classifier is giving better accuracy.
Table 2 shows the classification results with the combi-
nation of FTDD with multi-SVM. Similarly, in Table 3,
the obtained accuracy with FTDD and NB is tabulated.

5.4. Performance comparison

Though a lot of literature related to the classification of
PQ disturbances is available, only the references related
to our work are alone taken for analysis. A survey is
undergone with references where simulations are car-
ried out in practical datawith noise and noiseless signal.
Here it is proved to be reliable for both noisy and noise-
less signals. Tables 4–6 show the comparison separately
for 20, 30 and 40 db. In most of the literature they have
analysed only up to 40 db, but we have executed up to
60 db. In all cases, the accuracy of our system is ahead
of existing techniques. Figure 4 shows the accuracy plot
obtained through SVM and Naïve Bayes classifier. In
such classification problems, NB is superior over SVM
when it is combined with FTDD the performance is
higher and reaches an average of 99%. Tables 2 and

Table 4. Comparative analysis of proposed system with existing methods under 20 db noise.

References Method
Whether real
data used

No of
disturbances

Accuracy (%)
noiseless

Accuracy (%)
with 20 db

Uyar et al. [7] WT+WNN No 9 95.71 89.92
Eristi et al. [24] WT+ SVM Yes 8 98.88 97.75
Abdelazeem et al. [10] Kalman+ fuzzy Yes 7 – 92.28
He et al. [8] HM+DT Yes 11 – 94.36
Biswal and Dash [25] Fast ST+DT Yes 13 – 96.90
Valtierra-Rodriguez et al. [26] Adaline+ FFNN Yes 12 97.75 90.53
Proposed FTDD+NB Yes 6 99.66 99.22

Table 5. Comparative analysis of proposed systemwith existingmethods under 30 db noise.

References Method
Whether real
data used

No of
disturbances

Accuracy (%)
with 30 db

Sabarimalai et al. [14] SSD+DT Yes 7 99.06
Abdelazeem et al. [10] Kalman+ fuzzy Yes 7 97.0
He et al. [8] HM+DT Yes 11 97.91
Eristi et al. [24] WT+ SVM Yes 8 98.14
Moravej [27] DWT+ SVM No 11 97.0
Proposed FTDD+NB Yes 6 99.11



AUTOMATIKA 17

Table 6. Comparative analysis of proposed systemwith existingmethods under 40 db noise.

References Method
Whether real
data used

No of
disturbances

Accuracy (%)
With 40 db

Uyar et al. [7] ST+NN No 7 93.64
He et al. [8] HM+DT Yes 11 99.27
Abdelazeem et al. [10] Kalman+ fuzzy Yes 7 98.71
Biswal and Dash [25] Fast ST+DT Yes 13 98.8
Proposed FTDD+NB Yes 6 99.44

Figure 4. PQ analyser using Arduino.

3 reveals except 20 and 60 db Naive Bayes classifier is
better and for SNR of 20 and 60 db SVM is perform-
ing higher. Few methods have shown higher classifi-
cation rate than our proposed method because results
are based on the size of the data taken from the tested
samples and depends on the number of classes. Also
in few literatures the algorithm is tested for minimum
samples and projected for large data. The classification
accuracies using SVM and NB classifiers are shown in
Figures 5 and 6.

5.5. Computational complexity

The start time, sampling time and the number of
cycles are programmed in the Arduino software. Nor-
mally 200 samples per cycle are collected with a size
(N) of 2000 for 10 cycles while acquiring the signals
via Arduino. Though the computation time for fea-
ture extraction takes only 1.57 s and classification time
including training of data takes about 6.25 s. Total com-
putation time is estimated to be 7.82 s which is much
better compared to an Mishra et al. [28] reported 75 s
for training and 0.06 s for testing. The computation

Figure 5. Classification accuracies of SVM and Naïve Bayes
classifier.

Figure 6. Performance measures of SVM and NB classifiers.

speed can be further increased by using updated pro-
cessors. On discussing the complexity of our system it
is very simple and of low cost. Since we do not require
any pre-processing or normalization steps, the com-
putational burden is much reduced. The cost of this
real-time PQ analyser setup is very less as even small
industries can also make this arrangement to analyse
the electrical signals often.

6. Conclusion

Though a lot of methodologies are implemented for
the detection of PQ disturbances acquired practically,
the proposed method of the feature extraction based
on an FTDD and SVM, NB classifiers shows a novel
detection. The disturbances like healthy, harmonics,
sag, swell, interruption and transients are considered.
Thereby, using FTDD for feature extraction and Naïve
Bayes for classification shows improved results for a
noisy and noiseless signal. This method shows a high
potential and capability for detection of PQ distur-
bances. The major advantage of the proposed sys-
tem is, the signal does not losses its characteristics
while processing since the signal is not at all decom-
posed to multi-level. FTDD-based feature extraction
is effective in simplifying the complexity present in
analysing time domain data. It reduces the quantum
of feature size thereby reducing the computational bur-
den and processing time. The classifier built based on
FTDD+ SVMapproach is able to achieve 99.11% accu-
racy where FTDD+NB approach achieves 99.66% for
noiseless signals also for noisy signals the accuracy is
more than 95.11% for all SNR levels. Also, this method
is preferable due to its robustness and less complexity.
The cost of Arduino-based PQ analyser is much lesser
than the analysers commercially available. This system



18 O. JEBA SINGH ET AL.

can be easily expanded for three-phase voltage signals
also ensure a successful implementation in real-time
detection and industrial applications.
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