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ABSTRACT
Focussing on the problem that redundant nodes in the kernel incremental extreme learning
machine (KI-ELM) which leads to ineffective iteration increase and reduce the learning effi-
ciency, a novel improved hybrid intelligent deep kernel incremental extreme learning machine
(HI-DKIELM) based on a hybrid intelligent algorithms and kernel incremental extreme learning
machine is proposed. At first, hybrid intelligent algorithms are proposed based on differential
evolution (DE) and multiple population grey wolf optimization (MPGWO) methods which used
tooptimize thehidden layer neuronparameters and then todetermine the effective hidden layer
neurons number. The learning efficiency of the algorithm is improved by reducing the network
complexity. Then, we bring in the deep network structure to the kernel incremental extreme
learning machine to extract the original input data layer by layer gradually. The experiment
results show that the HI-DKIELM methods proposed in this paper with more compact network
structure have higher prediction accuracy and better ability of generation compared with other
ELMmethods.
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1. Introduction

The artificial neural network analyses the data through
the abstract simulation process to the biological neu-
ron network, thereby realizing some functions such
as data classification, system identification, function
approximation and numerical estimation. However, the
training efficiency and learning ability of the traditional
Single Hidden Layer Feed Forward Neural Networks
(SLFNS) is still too low. It is need to update all param-
eters of the network in the learning process. Recently,
Huang et al. [1] proposed an extreme learning machine
(ELM) algorithm for training single hidden layer feed
forward neural networks. Compared to the traditional
neural network, the parameters of the hidden layer
nodes in ELM are randomly initiated and then fixed
without iteratively tuning and tedious iterative process.
The only free parameters need to be learned are the con-
nections or weights between the hidden layer and out-
put layer, and its output weight is obtained by the gener-
alized inverse solution of the matrix using regularized
least squaresmethods. In thismanner, ELMcan achieve
good universal approximation capability as well as high
running efficiency based on excellent network learning
performance and network structure, thereby, avoiding
the local minimum and slow convergence problems.

In practice, because of the complexity of various
problems, several methods for optimizing the ELM
hidden nodes have been proposed to obtain a suit-
able network structure and size. Huang et al. [2] pro-
posed a standard optimization method for classifica-
tion problems, then Huang [3] also proved the pos-
sibility of using ELM for arbitrary multi-classification
problems and obtained good experiment performance.
In [4], the class weight has been introduced to solve
the complex unbalanced learning problems to further
improve the performance. At present, ELM has been
widely used in face recognition, speech recognition,
licence plate recognition, power system [5–7] and so
on. For the reason of more classification labels, lack
of training samples and insufficient feature descrip-
tions, the recognition accuracy of ELM in traditional
classification problems is undesirable. Therefore, under
the precise of ensure the superiority of fast training
speed and good generalization performance, which fur-
ther improve the overall classification performance and
recognition accuracy of ELM, is becoming the present
research focus.

In traditional ELM, the higher dimensional net-
work structures have always been used for the purpose
of obtaining stronger learning ability, but the number
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of optimal hidden layer nodes and the scale of con-
trol model are difficult to determine. For this reason,
Huang et al. [8] proposed the Incremental Extreme
Learning Machine (I-ELM), where the hidden nodes
are added incrementally and the output weights are
determined analytically. In [9], a state-of-art learning
algorithm known as Enhanced Incremental Extreme
Learning Machine (EI-ELM) is presented to elect the
effective hidden layer node to construct the network
structure using some novel optimization algorithms
while reducing the complexity of the network to some
extent. However, when the size of the network is too
large, the iteration of the EI-ELM is greatly increased,
which affects the generalization ability. Huang et al. [10]
proposed the Barron-optimized Convex Incremental
Extreme Learning Machine (CI-ELM) to calculate the
output weights of existing nodes again after the increase
of hidden layer nodes to obtain a higher convergence
rate. In [11], a hybrid incremental Extreme Learning
Machine (HI-ELM) is proposed using chaos optimiza-
tion algorithm to optimize the parameters of hidden
layer nodes. However, the current I-ELM still has some
problems need to be solved urgently. The complexity
of the network structure will be increasing due to the
reason of redundant nodes which reduces the learn-
ing efficiency. The convergence rate is low; the number
of hidden layer nodes exceeds the number of learn-
ing samples. More sensitive to the new data, the online
prediction ability is not strong.

The combination of the parameters is crucial for the
ELMbecause it is affecting the training speed and learn-
ing accuracy of the ELM to some extent. Therefore, the
intelligent optimization algorithm to optimize the ELM
parameters based on bionics methods for the purpose
of improving the learning speed and accuracy is becom-
ing the research focus. In [12], a differential evolution
(DE) algorithmutilized to adjust the ELM input param-
eters is proposed. In [13], an adaptive DE algorithm
to optimize the parameters of the hidden layer nodes
is given, and then the MP generalized inverse method
is utilized to solve the output weights. In [14], an
improved particle swarm optimization algorithm is uti-
lized to optimize hidden layer node parameters. In [15],
a hybrid intelligent ELM is proposed using the DE
algorithm and the particle swarm optimizationmethod
to optimize the hidden layer nodes. However, the afore-
mentioned hybrid intelligent optimization algorithm
still faces two problems: although the DE algorithm
has strong global optimization ability but will appear
premature convergence problems, while the particle
swarm optimization algorithm can perform local opti-
mization but is searching speed are too slow.

Meanwhile, another leading trends for hierarchical
learning are called deep learning (DL), similarly, the
deep architecture extracts feature by a multilayer fea-
ture representation framework, and the higher layers
represent more abstract information than those from

the lower ones in order to improve the ELM perfor-
mance. In [16], a multilayer ELM is given which com-
bine the excellent feature extraction capabilities of deep
learning and the fast training ability of ELM. In [17], the
kernel function is being introduced and a novel deep
kernel ELM is proposed, and used for aero-engine com-
ponent fault diagnosis to improve diagnostic accuracy.

It is noteworthy that for ELM and its variants, all
of the improving algorithms are composed of two
stages: at first, random feature mapping and then out-
put weight optimization. However, for complex classi-
fication problems, the effect of using random feature
mapping to boost the separability of the original sam-
ple space is often limited, which increase the depen-
dence on subsequent output weight optimization pro-
cess. Moreover, most of the current variants of ELM are
based on the existing ELM framework and there are few
variations for combining the ELM network structure
with another network structure adjustment, except for
the deep learning network.

In this paper, to ensure the superiority of the pro-
posed network structure, a hybrid intelligent deep ker-
nel incremental extreme learning machine is proposed
in order to improve the ELM network performance.
First, the deep kernel incremental ELM (DKI-ELM) is
proposed based on incremental kernel ELM and the
deep leaning network. And the deep network structure
is used to extract the data in multiple layers to obtain
effective features and improve the classification accu-
racy. Second, a hybrid intelligent differential evolution
multiple grey wolf optimization algorithm is proposed
using the global search ability of the DE algorithm and
the local search capability of MPGWO algorithm in
order to obtain the optimal output weights for the pur-
pose of improving the training speed and classification
accuracy of the ELM.

In this paper, our major contribution is summarized
as follows:

1) An HI-DKIELM (hybrid intelligent deep kernel
incremental extreme learning machine) network
classifier is designed. HI-DKIELM consists of a
deep learning network and kernel incremental
extreme learning machine of cascade, where the
input data through the deep leaning network to
extract more information and boost the separabil-
ity can achieve higher dimensional spatial map-
ping, then the ELM network can be utilized to
provide a superior classification surface. In this
way, the HI-DKIELM proposed in this paper com-
bines the advantages of the deep learning network
and the KIELM network, and can improve the
performance effectively.

2) In order to explore an optimal parameter belong-
ing to the Extreme Learning Machine, an appro-
priate hybrid intelligent optimize algorithm for
HI-DKIELM is presented. The proposed hybrid
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differential evolution multiple grey wolf opti-
mization algorithm (DE-MPGWO) optimizes the
method using the global search ability of the DE
algorithm and the local search capability of multi-
group grey wolf algorithm.

The remainder of this paper is organized as fol-
lows. Section 2 reviews the implementation of ELM
and KIELM. Section 3 presents the Hybrid Intelligent
differential evolution multiple grey wolf optimization
algorithm. In Section 4, the detail of the HI-DKIELM
is briefly discussed. Hence, the experimental result is
presented in Section 5. Section 6 concludes our work
and outlines our future work to generalize the method
to multibiometric recognition system.

2. Preliminary

In this part, we will give the notation of Extreme Learn-
ing Machine (ELM) and kernel incremental extreme
learning machine (KI-ELM).

2.1. Extreme LearningMachine Theory

Extreme Learning Machine is a high efficient learning
algorithm proposed on the singer-hidden layer neu-
ral network. Unlike other different traditional neural
network, all the parameters in the Extreme Learning
Machine are generated randomly and the complicated
iteration process is avoided. Suppose the training set
{xi,ti}Ni=1 is composed ofN training samples, the input is
xi which the dimension is d, ti is the label of the output,
then the output of the ELM is

L∑
j=1

βjg(xi) =
L∑
j=1

βjg(wj · xi + bj) = ti. (1)

InEquation (1), the parameterwj = [wj1,wj2, . . . ,wjn]T

is the input weight of the jth hidden node, bj is the devi-
ation of the jth hidden node and βj is the weight of
the jth hidden node to the output node of the ELM.
G(aj,wj, xi) is the output function of the jth hidden
node. From Equation (1), we will obtain that h(xi) =
[G(a1,w1, xi), . . . ,G(a1,w1, xi)] is the output of hidden
layer in regard to training sample xi. And Equation (1)
can be simplified as

Hβ = T, (2)

where H is the hidden layer output matrix o and h(xi)
is the ith row hidden layer output vector relative to the
input Xi:

H =
⎡
⎣h(x1)

· · ·
h(xN)

⎤
⎦
N×L

=

⎡
⎢⎣
g(w1 · x1 + b1) · · · g(wL · x1 + b1)

... · · · ...
g(w1 · xN + b1) · · · g(wL · xN + b1)

⎤
⎥⎦ .

(3)

β = [
β1,β2, . . . ,βL

]T
L×m is output weight matrix and

T = [
t1, t2, . . . , tn

]T
N×m is the expected output. In order

to improve the generalization ability of ELM, a penalty
factor C is introduced in Equation (3), and the output
weight matrix β is

β = H†T = HT
(
1
C

+ HHT
)−1

T. (4)

Then the output of the extreme learning machine
can be expressed as

f (x) = h(x)β = h(x)HT( 1
C

+ HHT)−1T. (5)

2.2. Kernel Incremental Extreme Learning
Machine (KI-ELM)

Incremental Extreme LearningMachine (I-ELM) is dif-
ferent from the original incremental neural network
which is only a specific kind of active function can be
used. I-ELM can use any continuous or piecewise con-
tinuous function as the active function.Under the equal
premise learning accuracy, the training speed of the
I-ELM is 1000 times faster than SVM and BP neural
network. In the past 5 years, some variants of the I-ELM
such as EI-ELM, PC-ELM, KI-ELM and OP-ELM have
been proposed respectively. These improved Incremen-
tal Extreme Learning Machines are mainly aimed at
improving the hidden layer node parameters in I-ELM.
The kernel matrix of the KI-ELM can be expressed as

KELM = HHT = h(xi) · h(xj) = K(xi, xj), (6)

then the output function of KI-ELM can be converted
from Equation (5) to

f (x) = h(x)β = h(x)HT( 1C + HHT)−1T

=

⎡
⎢⎢⎢⎣
K(x, x1)
K(x, x2)

...
K(x, xN)

⎤
⎥⎥⎥⎦ ( 1C + KELM)−1T (7)

In Equation (7), assuming A = [ 1C + KELM], at t
moment, there are

At =

⎡
⎢⎣

1
C + K(x1, x1) · · · K(x1, xN)

... · · · ...
K(xN , x1) · · · 1

C + K(xN , xN)

⎤
⎥⎦ . (8)

So at the t + 1 moment, there are

At+1 =

⎡
⎢⎣

1
C + K(x1, x1) · · · K(x1, xN+k)

... · · · ...
K(xN+k, x1) · · · 1

C + K(xN+k, xN+k)

⎤
⎥⎦ .

(9)
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To simplify Equation (9), suppose

Ut =

⎡
⎢⎣
K(x1, xN+1) · · · K(x1, xN+k)

... · · · ...
K(xN , xN+1) · · · K(xN , xN+k)

⎤
⎥⎦ , (10)

Dt =

⎡
⎢⎣

1
C + K(xN+1, xN+1) · · · K(xN+1, xN+k)

... · · ·
...

K(xN+k, xN+1) · · · 1
C + K(xN+k, xN+k)

⎤
⎥⎦ ,

(11)
then Equation (9) can be simplified as

At+1 =
[
At Ut
UT
t Dt

]
. (12)

Using new data, we can obtain

A−1
t+1 =

[
A−1
t + A−1

t UtC−1
t U − tTA−1

t −C−1
t UtC−1

t
−C−1

t UT
t A

−1
t C−1

t

]
.

(13)

In Equation (13), Ct = Dt − UT
t A

−1
t Ut , for testing

data
Xtest = [

Xtest1, Xtest2, · · · XtestM
]
, the output value

Ŷtest can be estimated online, that

∧
Y
test

=

⎡
⎢⎣
K(xtest1, x1) · · · K(xtest1, xM)

... · · · ...
K(xtestN , x1) · · · K(xN , xM)

⎤
⎥⎦
⎡
⎢⎣
A−1
M y1
...

A−1
M yM

⎤
⎥⎦ .

(14)

3. The proposed DE-MPGWO algorithm

In this part, an improved hybrid intelligent optimized
strategy called Differential Evolution Multiple Grey
Wolf Optimization algorithm (DE-MPGWO) inspired
from the idea of Frog Leaping algorithm (FLA) is pro-
posed based on DE and MPGWO. In order to facilitate
the proposed optimization algorithm, in Section 3.1
and Section 3.2, we briefly review the concept of DE
algorithm and MPGWO algorithm, the hybrid intelli-
gent optimization proposed in this paper is discussed
in Section 3.3.

3.1. Differential evolution

The DE algorithm is an optimization method based on
group evolution process and it computed the optimal
solution by three major manipulations: the differen-
tial variation process, the binary mutation operation
and greedy choose. The major computing process is as
follows [20].

At first, the DE algorithm will generate Np popu-
lation, which the dimension is D, the solution of the
individual isXi,G = (xi1,G, xi2,G, . . . , xiD,G).G stands for
the number of iteration, then, generates correspond-
ing variation vector Vi,G using different differential

variation strategy towards every solution vector Xi,G.
The differential variation strategy used in this paper is
DE/rand/2 [21]:

Vi,G = Xri1,G
+ F · (Xri2,G

− Xri3,G
)

+ F · (Xri4,G
− Xri5,G

). (15)

After the operation, to generate the final probing solu-
tionUi,G based on every solution vector Xi,G and varia-
tion vector Vi,G using the binary mutation operation:

uij,G =
{

vij,G rand() ≤ CR or j = jrand
xij,G rand() > CR and j �= jrand.

(16)

In Equation (16), ui,G, vi,G and xi,G are the jth vector
of the final probing solution Ui,G, variation vector Vi,G
and solution vector Xi,G respectively. CR stands for the
mutation probability, jrand is the stochastic number.

Finally, we conduct the choosing operator opera-
tion between probing solution Ui,G and solution vec-
tor Xi,G, and then the best solution will be regard as
the new solution Xi,G+1 and will be stored in the next
generation.

3.2. MPGWOalgorithm

The GWO algorithm imitates the leadership hierarchy
and hunting mechanism of grey wolves in nature pro-
posed byMirjalili et al. [14]. Greywolves are considered
to be at the top of food chain and they prefer to live in a
pack. Four types of grey wolves such as alpha (α), beta
(β), delta (δ) and omega (ω) are employed for simulat-
ing the leadership hierarchy. In order tomathematically
model the social hierarchy of wolves while designing
GWO, we consider the fittest solution as the alpha (α).
Consequently, the second and third best solutions are
named as beta (β) and delta (δ), respectively. The rest
of the candidate solutions are assumed to be omega (ω).
Figure 1 shows three main steps of GWO algorithm,
namely hunting, chasing and tracking for prey, encir-
cling prey and attacking prey which are implemented
to design GWO for performing optimization.

Recently, a multi-population version of the GWO
(MPGWO) was proposed which extends the idea of the
original GWO for solving optimization problems with
multiple and conflicting populations. In MPGWO, a
fixed sized external archive is integrated to theGWOfor
saving and retrieving the Pareto optimal solutions. This
archive is then employed to define the social hierarchy
and simulate the hunting behaviour of grey wolves in
multi-objective search spaces, and share and exchange
information among different populations in order to
improve the diversity of the population for the purpose
of optimal solutions. The pseudo code of the MPGWO
algorithm is taken as in Table 1.



52 D. WU ET AL.

Figure 1. Hunting behaviour of grey wolves: (a)–(c) chasing and tracking prey; (d) encircling prey and (e) attacking prey.

Table 1. The pseudo code of multi-population grey wolf opti-
mization algorithm.

The pseudo code of MPGWO Algorithm

Step 1 Parameter Initialization: The maximum number of iterations,
the size of each population and the searching space of the
corresponding population

Max iteration = Themaximum number of iterations;
Agent number = The size of each population;
Dim-1 = the dimension of the searching space;
For i = 1:3 (i is the number of the population);
Ub(i) = the searching upper limit of the ith population;
Lb(i) = the searching lower limit of the ith population;
End
Step 2 Population Initialization: initial each population respectively
after the parameter initialization process. J is the serial number of the
grey wolf in the populations
For i = 1:3
Position(j,:)= rand(agent number,1). *(Ub(i)- Lb(i))+ Lb(i)
End
Step 3 Computing the Fitness: Each population was coded and to
calculate the fitness of each wolf.
For i = 1:3
For j = agent number
C = Position (j, 1);
γ = Position (j, 2);
Fitness(C)= Function (C,γ );
End
End
Step 4 Preserving the position of grey wolves which fitness
ranking in the top three in each population: Preserve the fitness
value and position of greywolves which fitness ranking in the top three
in each population, set the wolf as the heading wolf with the greatest
fitness value, and ranking the fitness value of the heading wolf in three
populations. Then set the three heading wolves as the ones with the
greatest fitness value. Other individuals in the population close to the
new heading wolf.
For i = 1:3
Alpha_score(i)= fitness(index(1));
End
Step 5 Iterative Optimization

3.3. The proposed hybrid DE-MPGWOalgorithm

The new proposed hybrid DE-MPGWO algorithm
using the DE and MPGWO as the evolution method
has the ability of meme evolution derived from Frog
Leaping algorithm (FLA) in order to improve the
performance when taking the advantage of the two

Table 2. The pseudo code of DE-MPGWO algorithm.

The pseudo code of DE-MPGWO algorithm

Step 1: In the solution space, generate ND dimensional solutions as
initial populations randomly, the total number of evolution iterations is
Iitermax, the number of iterations belong to each subpopulation isIiter ,
Cn = Iitermax

Iiter
.

Step 2: The population is divided into Nk subpopulations randomly.
Step 3: Choose k subpopulations randomly in the Nk subpopulations
while 1 < k < Nk , using the DE algorithm to compute Iiter generations
in the iteration process respectively. Regarding to the rest Nk − k
subpopulations, we divide them into three grey wolf populations. Using
the MPGWO algorithm to compute Iiter generations in the corresponding
iteration process respectively. In the entire iteration process, recording all
the changes of the optimal value to all the populations.
Step 4:Mixing Nk subpopulations to obtain the new population, judging
whether the number of the iteration of iteration of local search reaches the
designated number Cn , if so, the iteration stops, if not, turn to Step 2;
Step 5: The algorithm is termination.

algorithms. The detailed implementation of the pro-
posed optimization algorithm is described in Table 2.

4. The proposed HI-DKIELM

In this part, the traditional extreme learning machine
(ELM) is to be extended to HI-DKIELM based on ker-
nel incremental extreme learning machine and deep
learning network. The proposed HI-DKIELM consists
of an input layer, output layer and some hidden layer of
cascade. The structure of the HI-DKIELM is shown in
Figure 2. In the training process, we utilized the DE-
MPGWO optimization algorithm while given in this
paper to optimize the output weight for the purpose of
robustness. The initial data after the subtract through
k hidden layer is to obtain the input feature Xk, then
mapping the input feature using the kernel function.
The detailed implementation process of the proposed
HI-DKIELM is given in Table 3.

In this paper, the proposed hybrid intelligent HI-
DKIELM extracts the input data layer by layer in order
to obtain more effective features, which are conducive
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Figure 2. The structure of proposed DKI-ELM.

Table 3. The pseudo code of HI-DKIELM algorithm.

The pseudo code of HI-DKIELM algorithm

Step 1: Suppose training samples, xi = [
xi1, xi2, · · · xin

]T ,
ti ∈ R, set the expected network output error function is η, the
prediction error of the output is ϕ(xi , ti), the number of the hidden
node L = 0, network error e∗0 = T , the number of iterations is k = 0;

Step 2: Set the hidden layer nodesL = L + λ, when λ = 1,indicate
that we add one node in the hidden layer;
Step 3: Computing the prediction error:

ER = 1

2N

N∑
i=1

|fi(x) − f |
Step 4:YL∗ Computing the Optimal parameters of the hidden

layer node YL∗ based on the DE-MPGWO algorithm which
proposed in this paper, then computing the output weigh

βL∗ :βL∗ = EL · HTL (YL∗ )
H(YL∗ ) · HTL (YL∗ )

Step 5: Computing the output error:
EL = EL−1 − βL∗ ‖HL(YL∗ ), x‖
if EL < η, ER < ϕ, the training step termination, else, turn to Step2;

Step 6:Suppose A =
[
1

C
+ KELM

]
, for the t moment is At , for the t + 1

moment is At+1, computing the generalized inverse of At+1;
Step 7: Update the data online, computing the output Ŷtest ;
Step 8: The algorithm is termination.

to distinguish confused types easily and improving clas-
sification accuracy. In addition, these abstract features
are not original input features, but the kernel function
calculation could instead of the inner product calcula-
tion in the high-dimensional space, which is conducive
to further improving the accuracy of classification.

5. Result and discussion

5.1. Experimental settings

In this section, we will provide a wide range of different
experimental results in different quarters to access the
effectiveness of the proposed new method.

In the experiment, the system operating environ-
ment is Intel (R) Xeon (R) CPU E3-1231 v3@ 3.40
GHz 3.40GHz, memory 16GB, runningWin7 PC, and
the programming language is Matlab2013a. In order to
verify the validity and robustness of the proposed HI-
DKIELMalgorithm, the experiments are including four
parts:

(1) At first, we test the performance and robust-
ness of the proposed DE-MPGWO optimization
algorithm, which proposed in Section 3 while
using for obtaining the parameter of the hidden
layer node and output weight.

Table 4. UHI real data set.

Data set
Training
samples

Test
samples

Number
of

features Purpose

Firedman 18,000 12,000 11 Regression
CCPP 7000 4300 4 Regression
Servo 100 67 6 Regression
California Housing 4400 2000 8 Regression
CCS 1000 900 9 Regression
Abalone 4100 3000 8 Classification
Energy Efficiency 768 500 8 Classification
Boston Housing 466 300 13 Classification
Bank 3000 1300 8 Classification
Delta Ailerons 2800 1700 5 Classification

(2) For the HI-DKIELM while proposed in Section
4, the number of hidden layers has an important
impact for the performance of neural networks.
Based on the Abalone database, we test the impact
of different number of hidden layers for the net-
work structure.

(3) In order to test the generalization performance
of the proposed HI-DKIELM algorithm using 10
groups data of UHI real data set, we compare it
with the common CI-ELM, EI-ELM, ECI-ELM
and DCI-KELM for regression problems.

(4) In order to test the generalization performance
of the proposed HI-DKIELM algorithm using 10
groups data of UHI real data set, we compare it
with the common CI-ELM, EI-ELM, ECI-ELM
and DCI-KELM for classification problems.

5.2. Evaluate the performance and robustness of
the DE-MPGWOoptimization algorithm

In this section, we will evaluate the performance and
robustness of the DE-MPGWOoptimization algorithm
proposed in Section 3.

In this experiment, we are using 10 typical functions,
which are stated in Table 5 in order to check the opti-
mization ability. The dimension of the solution in every
typical function D is set as 30, the range of the solution
of the typical function Fn6 is set as [−100, 100], Fn9 is
set as [−500, 500], the remains set as [−30, 30].

In order to compare the performance of the DE-
MPGWO algorithm, we compare it with three basic
optimization algorithms: DE, PSO and FLA and
DEPSO that proposed in reference [24] while it is our
former work. The parameters in each method are given
in Table 6.

In the numerical experiment, the scales of the pop-
ulation in four algorithms are all the same that means
Np = 40, the number of the iteration in each method
is 2000. For each typical function, the times of the
optimization using four optimization algorithm is 50
and the average optimization value will be utilized
as the final optimization result. Table 7 outlined the
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Table 5. Typical optimization functions.

Function Name Equations

Sphere Fn1 =
D∑
i=1

x2i

Quadric Fn2 =
(

D∑
i=1

x2i

)2

Griewank Fn3 =
D∑
i=1

x2i
4000

−
D∏
i=1

cos(
xi√
i
) + 1

Ackley Fn4 = −20 exp(−0.2

√
1

D

D∑
i=1

x2i ) − exp

( 1
D

D∑
i=1

cos(2πxi
)+ 20 + e

Rosenbrock Fn5 =
D−1∑
i=1

(100(x2i − xi+1)
2 + (xi − 1)2)

Rastrigin Fn6 =
D∑
i=1

(x2i − 10 cos(2πxi) + 10)

Schwefel’s 1.2 Fn7 =
⎛
⎝ D∑

i=1

(
i∑

j=1
xj

)2
⎞
⎠ (1 + 0.4|N(0, 1)|)

Griewank with noise Fn8 =
D∑
i=1

(xi − N(0, 1))2

4000

Schwefel Fn9 = 418.9828D −
D∑
i=1

xi sin(|xi|1/2)

Schwefel’s 2.22 Fn10 =
D∑
i=1

|xi| +
D∏
i=1

|xi|

Table 6. The parameters in each method.

Method Parameter

DE F = 0.5, CR = 0.3
PSO w = 0.729, c1 = c2 = 1.495
FLA C = 1.2
DEPSO Nk = 4, Iiter = 10, k = 4
DE-MPGWO Nk = 4, Iiter = 10, k = 4

optimization result using DE, PSO, FLA, DEPSO and
DE+MPGWOmethodswhilemaking use of 10 typical
functions.

From the optimization results given in Table 7, we
can found that when we take optimization experiment
to the typical function Fn2, the searching performance
obtained using four optimization algorithms can reach
an ideal result. While the optimization result taking
another nine typical functions can be summarized as
follows: (1) For the precision of searching results, the
proposed DE-MPGWO optimization method is better
than theDE, PSOand the FLAmethods obviouslywhen
taking to the other nine typical functions, and it can
obtainmore precise solution. (2) For the ability of out of
local minimum, the PSO algorithm falls into the min-
imum value point quickly and the length which play
the major role in the time domain in the optimization
periods is very short; for the proposed DE-MPGWO
strategy, its can out of the local minimum continuously
in the iteration process in order to search the optimal

solution and it have a better searching ability. In conclu-
sion, the proposed DE-MPGWO optimization method
has a better improvement in the searching optimiza-
tion ability and has a good balance to the searching
optimization precision and convergence speed.

5.3. Setting the parameters of HI-DKIELM

In HI-DKIELM, the number of different network hid-
den layers has an important impact on the performance
of neural networks. Based on the Abalone database, it
assumes that the number of hidden layers is 1–6 respec-
tively, and the number of nodes in each layer is 20. In
this experiment, the impact of different hidden layer
numbers on the network structure is tested. Each net-
work structure is tested 10 times and the experimental
results are as shown in Figure 3.

From the results shown in Figure 3, it can be seen
that the testing accuracy does not increase with the
increase of the hidden layer data. When the number
of hidden layers is 3, the performance of the proposed
method is the most stable. When the number of hid-
den layers continues to increase, the testing accuracy
decreased, so in our following experiment, the number
of hidden layers was chosen to be 3.

In HI-DKIELM, the kernel function parameters γ

and the regularization parameters C have a great influ-
ence on the performance. At present, most of the
existing methods are selected by the cross-validation
method. In this paper, the values of the two param-
eters are changed from the range 100 ∼ 1010 at the
same time, and the testing accuracy is calculated. The
test accuracy and the values of the two parameters are
plotted as a surface, shown in Figure 4.

It can be seen from the experiment results shown
in Figure 4 that when the regularization parameter C
takes a small value, the performance is poor and varies
violently with the kernel function. When the regular-
ization parameter increases, the performance tends to
be stable and has the highest accuracy simultaneously.

5.4. Evaluate the performance of the proposed
HI-DKIELM based on the regression problem

In this part, we will evaluate the performance of the
proposed HI-DKIELM based on the regression prob-
lem. In the comparing experiment, the purpose is to
evaluate the generalization and robustness of the HI-
DKIELM, so we compare it with four basic ELM algo-
rithms: CI-ELM, EI-ELM, ECI-ELM and DCI-KELM.
In the experiment, the number of initial hidden layer
neurons in the neural network is one and the number
of hidden layer neurons in each iteration is increased by
one, all the extreme learning machines have the same
hidden layer neurons and the same number of itera-
tions. The comparison of the training error and the
testing error on the regression problem test is outlined
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Table 7. Typical optimization function optimization result.

Function Performance DE MPGWO FLA DEPSO DE-MPGWO

Fn1 Mean 1.7667e+002 1.2494e+003 1.1951e+002 1.2008e-009 0.9854e-009
Variance 7.3438e+001 2.5787e+002 4.1270e+001 7.4548e-010 5.8208e-010

Fn2 Mean 0.0000e+000 1.2494e+000 0.0000e+000 4.3528e-007 2.0305e-007
Variance 0.0000e+000 1.9059e-002 0.0000e+000 8.2034e-007 6.0356e-007

Fn3 Mean 9.8590e-001 1.2928e+000 1.0011e+000 8.4011e-004 4.0517e-004
Variance 9.2600e-002 6.0500e-002 3.5900e-002 1.5000e-003 1.0714e-003

Fn4 Mean 9.1589e+000 1.6711e+001 7.8190e-000 8.6480e-004 7.0882e-004
Variance 1.4730e+000 7.4780e-001 1.1279e-000 7.0593e-006 4.4363e-006

Fn5 Mean 2.9764e+005 1.3255e+007 1.2866e+005 2.6678e+001 1.2678e+001
Variance 1.9895e+00 6.2356e+006 7.4297e+004 9.3772e+000 7.8358e+000

Fn6 Mean 3.6770e+002 1.6137e+003 8.1555e+002 1.4644e+002 1.1108e+002
Variance 7.3999e+001 3.3505e+00 1.2285e+001 1.2235e+001 0.5141e+001

Fn7 Mean 2.3981e+004 3.7054e+005 7.7842e+002 2.3319e+002 1.4922e+002
Variance 9.3795e+003 9.5826e+004 3.7931e+002 1.4052e+001 0.8839e+001

Fn8 Mean 3.8400e-002 3.1190e-001 1.4609e-003 8.9489e-004 6.1414e-004
Variance 1.3400e-002 6.6700e-002 5.2516e-002 1.3616e-004 0..4517e-004

Fn9 Mean 6.8456e+003 7.4513e+003 7.5097e+003 4.4974e+003 2.2663e+003
Variance 1.4465e+003 6.2601e+002 6.1316e+002 3.6771e+002 1.6178e+002

Fn10 Mean 5.5864e+001 2.0366e+002 8.8238e+002 1.0276e-004 0.8385e-004
Variance 1.2322e+001 2.3497e+001 4.0068e+001 3.7921e-005 2.2097e-005

Figure 3. The comparison of the testing accuracy under differ-
ent hidden layer nodes.

Figure 4. The comparison of the testing accuracy under differ-
ent parameters.

in Table 8. Table 9 is the comparison of the network
complexity and training time on the regression prob-
lem. The value in the bracket is the RMSE which is the
error termination condition.

From the results shown in Table 8, we can find that
for the regression problem, the accuracy of the HI-
DKIEM method proposed in this paper has improved
significantly compared with the other four ELM algo-
rithms. For example, taking account to the CCPP
database, when the maximum hidden layer node num-
ber is 100 and the error termination condition crite-
ria RMSE is 0.052, the training error and the testing
error of the HI-DKIELM are 0.0417 and 0.0435 respec-
tively. However, for the DCI-KELM method, the train-
ing error is 0.0513 and the testing error is 0.0508, for the
ECI-KELM algorithm, the training error and the test-
ing error are 0.0535 and 0.0604 respectively. So from the
perspective of training error and testing error, the gen-
eralization and robustness of the HI-DKIELM is better
than other four ELMmethods obviously.

The comparison of network complexity and train-
ing time for the regression problem between the five
ELM is given in Table 9. From the experiment results,
we can find that the network complexity and training
time of the HI-DKIEMmethod proposed in this paper
has improved significantly compared with the other
four ELM algorithms. For example, taking account the
CCPP database, when the termination condition crite-
ria RMSE is 0.052, the network nodes and training time
of the HI-DKIELM are 27.06 and 1.0277 s respectively.
However, for the DCI-KELM method, the network
nodes are 45.35 and the training time is 2.0743S, for the
ECI-KELM algorithm, the network nodes and train-
ing time are 111.92 and 3.0178 s respectively. So from
the perspective of network nodes and training time,
the generalization and robustness of the HI-DKIELM
is better than other four ELMmethods obviously.

5.5. Evaluate the performance of the proposed
HI-DKIELM based on the classification problem

In this part, we will evaluate the generalization per-
formance of the proposed HI-DKIELM based on the
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Table 8. Comparison of training error and testing error on regression problem.

CI-ELM EI-ELM ECI-ELM DCI-KELM HI-DKIELM

Data set Node
Training
error

Testing
error

Training
error

Testing
error

Training
error

Testing
error

Training
error

Testing
error

Training
error

Testing
error

Firedman (0.1) 50 0.1061 0.1672 0.1465 0.1589 0.1424 0.1353 0.0956 0.1091 0.0905 0.0951
CCPP (0.052) 100 0.0576 0.0616 0.0551 0.0529 0.0535 0.0604 0.0513 0.0508 0.0417 0.0435
Servo (0.155) 50 0.1677 0.1784 0.1612 0.1601 0.1547 0.1542 0.1531 0.1514 0.1229 0.1219
California Housing (0.15) 100 0.1623 0.1588 0.1486 0.1533 0.1521 0.1509 0.1467 0.1403 0.1189 0.1154
CCS (0.045) 100 0.0671 0.0727 0.0529 0.0513 0.0447 0.0424 0.0431 0.0382 0.0346 0.0318

Table 9. Comparison of the network complexity and training time comparison on regression problem.

CI-ELM EI-ELM ECI-ELM DCI-KELM HI-DKIELM

Data set Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s)

Firedman (0.1) 140.26 2.2183 87.82 4.2162 62.37 4.0021 19.75 3.1134 13.14 1.4899
CCPP (0.052) 390.76 2.0104 305.18 2.5622 111.92 3.0178 45.35 2.0743 27.06 1.0277
Servo (0.155) 70.01 0.0381 58.56 0.4233 14.22 0.4511 11.74 0.0373 5.53 0.0281
California Housing (0.15) 220.73 0.0782 19.24 1.0515 112.08 1.4203 17.42 0.7216 14.35 0.3945
CCS (0.045) 70.22 0.5329 65.02 0.7439 51.23 0.8241 49.33 0.4125 22.38 0.2267

classification problem. In the comparing experiment,
the purpose is to evaluate the generalization and robust-
ness of the HI-DKIELM, so we compare it with four
basic ELM algorithms: CI-ELM, EI-ELM, ECI-ELM
and DCI-KELM. In the experiment, the number of
initial hidden layer neurons in the neural network is
one and the number of hidden layer neurons in each
iteration is increased by one, all the extreme learn-
ing machines have the same hidden layer neurons and
the same number of iterations. The comparison of the
training error and the testing error on the classifica-
tion problem test are outlined in Table 10. Table 11 is
the comparison of the network complexity and training
time on the classification problem.

From the results shown in Table 10, we can find
that for the classification problem, the accuracy of
the HI-DKIEM method proposed in this paper has
improved significantly compared with the other four
ELM algorithms. For example, taking account to the
Boston Housing database, when the maximum hid-
den layer node number is 100 and the error termina-
tion condition criteria RMSE is 0.1, the mean value

and the standard deviation of the HI-DKIELM are
98.21and 0.0038 respectively. However, for the DCI-
KELM method, the mean value is 93.01 and the stan-
dard deviation is 0.0041, for the ECI-KELM algorithm,
the mean value and the standard deviation are 84.82
and 0.0072 respectively. So from the perspective of the
mean value and the standard deviation, the generaliza-
tion and robustness of the HI-DKIELM are better than
other four ELMmethods obviously.

The comparison of network complexity and training
time for the regression problem between the five ELM
is given in Table 11. From the experimental results,
we can find that the network complexity and training
time of the HI-DKIEMmethod proposed in this paper
have improved significantly compared with the other
four ELM algorithms. For example, taking account to
the CCPP database, when the termination condition
criteria RMSE is 0.1, the network nodes and train-
ing time of the HI-DKIELM are 19.42 and 0.0774 s
respectively. However, for the DCI-KELM method,
the network nodes are 22.06 and the training time is
0.0942 s, for the ECI-KELM algorithm, the network

Table 10. Comparison of training error and testing error on classification problem.

CI-ELM EI-ELM ECI-ELM DCI-KELM HI-DKIELM

Date set Node Mean
Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

Abalone (0.075) 50 83.18 0.0022 84.02 0.0018 93.76 0.0014 94.23 0.0015 103.48 0.0010
Energy efficiency (0.045) 100 90.18 0.0014 92.42 0.0016 94.12 0.0011 96.52 0.0008 104.97 0.0006
Boston Housing (0.1) 50 68.02 0.0113 71.98 0.0101 84.82 0.0072 93.01 0.0041 98.21 0.0038
Bank (0.065) 100 90.21 0.0217 92.03 0.0122 91.82 0.0124 95.89 0.0076 103.44 0.0071
Delta Ailerons (0.04) 100 89.23 0.0372 86.89 0.0221 92.23 0.0117 92.71 0.0108 101.74 0.0083

Table 11. Comparison of the network complexity and training time comparison on classification problem.

CI-ELM EI-ELM ECI-ELM DCI-KELM HI-DKIELM

Data set Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s)

Abalone (0.075) 143.05 0.2852 113.94 0.9216 23.64 1.1215 19.15 0.6211 17.11 0.6159
Energy efficiency (0.045) 72.21 0.1502 80.43 0.3023 67.03 0.2822 50.21 0.2023 46.89 0.1756
Boston Housing (0.1) 38.41 0.0973 21.11 0.0734 39.17 0.1168 22.06 0.0942 19.42 0.0774
Bank (0.065) 199.43 0.6745 170.27 0.7891 10.21 0.8922 10.97 0.6276 8.47 0.5508
Delta Ailerons (0.04) 332.69 1.1239 290.21 2.1742 39.66 1.3653 36.03 0.6912 30.26 0.6372
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nodes and training time are 39.17 and 0.1168 s respec-
tively. So from the perspective of network nodes and
training time, the generalization and robustness of the
HI-DKIELM is better than other four ELM methods
obviously.

6. Conclusion

In this paper, a novelHI-DKIELMbased onKIELMand
a new DE-MPGWO method under the deep learning
network structure is proposed in this paper. The pro-
posed HI-DKIELM can reduce the redundant network
nodes due to the reason of ineffective iteration increase
and lower learning efficiency.

The main contribution of this paper can be summa-
rized as follows: (1) An HI-DKIELM network classi-
fier is designed. HI-DKIELM consists of a deep learn-
ing network and kernel incremental extreme learning
machine of cascade, where the input data through the
deep leaning network to extract more information and
boost the separability can achieve higher dimensional
spatial mapping, then the ELM network can be uti-
lized to provide a superior classification surface. In
this way, the HI-DKIELM proposed in this paper com-
bines the advantages of the deep learning network and
the KIELM network and can improve the performance
effectively. (2) In order to explore an optimal param-
eter belonging to the Extreme Learning Machine, an
appropriate hybrid intelligent optimize algorithm for
HI-DKIELM is presented. The proposed hybrid DE-
MPGWO algorithm optimizes the method using the
global search ability of the DE algorithm and the local
search capability of multi-group grey wolf algorithm.
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