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ABSTRACT
In this paper, we implemented a diagnostic system for vibration faults that occur on the PUMA
helicopter gearbox. We used an approach based on the joint use of the Order Tracking signal
analysis and theGenetic Algorithm. To achieve this goal, we first collected adatabase of vibration
signals measured during periodic inspections. The available vibration signals are acquired under
a time-varying operating conditions. Therefore, we used the Order Tracking method, which is
more accurate in extracting faults features. This technique was performed by resampling the
vibration data and then applying the Short Time Fourier Transform. To enable efficient and con-
tinuousmonitoringof gearbox vibration faults from features,weusedGenetic Algorithm tobuild
a rules-based diagnostic model. Genetic operators have been adapted to the specificity of the
problem to optimize the parameters of this model. This approach is successfully applied to the
diagnosis of vibrationdefects of helicopter gearboxes. The results havebeenvalidatedeffectively
with test data. The diagnostic model can therefore be implemented on helicopter computers to
detect faults in flight or on the ground. This approach has been used for the first time in the field
of helicopter gearbox vibration fault diagnosis.
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1. Introduction

Monitoring the mechanical condition of helicopters is
an important safety issue. Indeed, a defect not detected
in timemayworsen, spread and lead to significant prop-
erty damage or even loss of life. This is why important
resources are deployed for the early detection of heli-
copter defects. Periodic maintenance has shown some
limitations, especially in the case of failures that occur
randomly. It is progressively replaced in the aeronauti-
cal field by conditional maintenance based on regular
tests.

In the case of helicopters whosemost sensitive part is
the gearbox, the suitable method to perform the condi-
tional maintenance is the analysis of the vibratory sig-
nals generated by the components. If there are defects
on one of the gears, they would cause changes in these
vibration signals. Therefore, monitoring the condition
of the transmission system during operation, such as
the gearboxes, is crucial as it is intended to prevent sys-
tem malfunctions that could cause the system to shut
down or even cause human damage.

So far, condition monitoring and identification
of gearbox damage has received a lot of attention
from researchers engaged in multidisciplinary activi-
ties, especially in intelligent sensor technology, signal
processing and evolutionary algorithms.

In the field of signal processing, several techniques
have been adopted. The time-domain-based technique

extracts scalar indicators that give information on the
evolution of power and signal peaks (RMS, Peak Indi-
cator, Kurtosis, Skewness, etc.) [1,2]. However, this
method gives imprecise results during the diagnosis [3].

Spectral processing is the major tool for the study
of vibratory signals of rotating machines. Many prob-
lems associated to the detection of faults in the compo-
nents of the rotating machine can be solved by Fourier
analysis [4]. Nevertheless, there are cases where simple
Fourier analysis is inefficient; wemainly refer to the case
of local non-stationary signals.

The signal processing of non-stationary signals
requires the implementation of a specific tool allow-
ing the analysis of the time-frequency domain. In this
sense, the wavelet transform has gained popularity in
the field of the diagnosis of vibratory defects [5]. More
recently, empirical mode decomposition (EMD) has
been widely used. Similar to the wavelet transform, the
EMD breaks down the signal into a collection of intrin-
sic functions (IMF). IMFs are obtained iteratively using
the Hilbert–Huang transformation [6,7].

However, if the vibratory signals measured on the
gearboxes are not stationary and the rotational speeds
of the shaft are not constant, as in the case of helicopter
gearboxes, all these techniques will have some limits
and cannot be applied effectively.

Order Tracking Signal Processing is a useful tech-
nique when the rotational speed of the shaft changes.
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We used this method because it allows to extract pre-
cisely the features of the faults from the collected vibra-
tory signals.

Nevertheless, the automatic and continuous moni-
toring of faults from extracted variables is not an easy
task and must be carried out continuously and effi-
ciently, this can be done effectively with machine learn-
ing methods.

The Neural Networks and Deep Learning have been
applied successfully [8–11] but requires a lot of calcula-
tion, a large database to perform a training and predis-
posed to overfitting. Decision trees have been used but
they have the disadvantage of instability on the small
sample. Random Forest is resistant to overfitting but
classification problems are found if the number of rele-
vant variables is small [12,13]. Support Vector Machine
is a good classifier but requires a lot of calculation [14].

Other methods based on evolutionary algorithms
have been used to achieve this goal [15,16]. These are
stochastic algorithms whose principle is inspired by the
theory of evolution to solve various problems. Among
these algorithms, there are Genetic Algorithms that
are metaheuristics inspired by the process of natural
selection.

The purpose of this article is to implement a diag-
nostic system for vibratory faults occurring in gear-
boxes mounted on helicopters. To build this system,
we used a database of vibration signals that was col-
lected during periodic inspections of PUMA SA330
helicopters. We used the Order Tracking signal analy-
sis method to extract fault features from the vibratory
signals. This technique takes into account the fluctua-
tions of the rotational speeds of the shaft to analyse the
vibratory signals. To enable the detection and contin-
uous identification of defects from the data calculated
by the previous technique, we used Genetic Algorithms
to construct a diagnostic model based on classification
rules.

The originality of this work is to build a diagnostic
model of vibratory faults combining the Order Track-
ing signal processing technique with a classifier based
onGenetic Algorithms. This techniquewas used for the
first time to set up a model that allows a quick and effi-
cient diagnosis that is adapted to the specificity of the
vibrations generated by helicopter gearbox.

This paper is organized as follows. Section 2
describes the Order Tracking Signal Processing tech-
nique. Section 3 gives the basic concept of Genetic
Algorithms and the classification task. The results of
features extraction and data classification are discussed
in Section 4. Finally, Section 5 concludes the paper.

2. Order tracking signal processing technique

Order Tracking is a technique for analysing the vibra-
tory signals of rotating machines, such as engines,
compressors, turbines and pumps. The vibration signal

generated by a rotating machine is the superposition
of signals generated by the various mechanical com-
ponents that compose it, such as gearboxes, bearings,
blades and shafts. All these signals have harmonics that
are multiple of shaft rotation frequency.

Signal processing using the Fast Fourier Transform
(FFT) method is widely used to analyse vibration sig-
nals. The FFT power spectrum can be used to diagnose
rotating machines by associating the characteristic fre-
quencies with the different mechanical components. If
the machine is running at an invariable speed, peaks
in the power spectrum can be identified at certain
multiples of the shaft rotation frequency.

However, in rotatingmachines, the rotational speeds
of the shaft are not always constant. Therefore, it would
be difficult to observe mechanical faults. As the rota-
tional speed changes, the frequency bandwidths of
the harmonics become wider. Therefore, there may be
an overlap between some frequencies. Identification
from the power spectrumof the characteristic vibratory
components frequencies becomes complicated. Visible
peaks associated with particular mechanical parts can-
not be identified. The Order Tracking techniques are
effective when the speed of rotation changes with time
because it allows the normalization of the speed of
rotation. The order components are the vibration har-
monics of the rotational speed. The order 1 is 1 times
the speed of rotation and the order 2 is 2 times the
speed of rotation of the shaft and so on. Thanks to the
Order Tracking, it is possible to easily distinguish the
hidden harmonics in the power spectrum. The spec-
trum obtained with this technique shows more clearly
the peaks associated with the different mechanical
parts.

The first uses of this technique have their origins
in the field of electronics [17]. The principle is that
the acquisition systems are triggered by electronic cir-
cuits synchronized with speed sensors. Thus, thanks to
these techniques, the data acquisition is done directly
in the angular domain; the sampling is done in constant
increments of the rotation angle of the shaft.

With the improved computing power of digital sig-
nal processors, it has become easier and economi-
cally more appealing to resample signals in the angular
domain, thereby reducing the complexity of acquisition
systems.

There are several methods adopted for Order
Tracking analysis that can be grouped into three
major families: Computed Order Tracking, Kalman
filter based methods, and Order Tracking Transform
methods.

Computed Order Tracking methods operate in the
time domain by interpolating the signal in the angular
domain by a resampling approach [18]. The princi-
ple of the second family is based on the use of the
Vold–Kalman filter in order to estimate the amplitudes
of the harmonics and the instantaneous speed of the
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Figure 1. Rotation speed and vibration signal.

rotational speed of the shaft [19,20]. With regard to
the approach Order Tracking Transform, it performs
both time domain synchronization with the shaft rota-
tion speed and the Fourier transform to evaluate the
amplitude and phase of each order. Thus, we can obtain
the harmonic amplitude without going through the
resampling phase [21].

In our work, we used the method of Computed
Order Tracking techniques, since we have a data acqui-
sition system that allows measuring the rotational
speeds of the shaft by a tachometer.

Vibration frequencies are oftenmultiples of the rota-
tional speed. With this approach, we can extract them
accurately. The principle is based on resampling and
interpolation of the measured signal to obtain a con-
stant number of samples per cycle (angle increment)
[18,22].

In practice, the rotation speedωcyc ismeasured inde-
pendently with a tachometer which generates pulses at
each rotation of the shaft (Figure 1(a)). So we can cal-
culate the angular vector θ according to Equation (1).
Figure 1(b) shows the sampled data in the time and
angle domains:

θ(t) =
∫ t

0

ωcyc (τ )

60
dτ (1)

The maximum value of the order Omax that can be
detected depends on the sampling frequency of the
signal fs, it is calculated by Equation (2):

Omax =
fs
2

max(ωcyc
60 )

(2)

Thus the sampling frequency frsm of the signal in the
angular domain must be greater than twice the value of
Omax to avoid the aliasing phenomenon. In the case of
our study we have taken a value four times higher than

Figure 2. Data sampling in angular domain.

this value as it is expressed by Equation (3):

frsm = 4 × 2 × Omax (3)

The vibratory signal sampled in the angular domain is
represented in Figure 2.

After this resampling step, we can apply the
Short Time Fourier Transform (STFT) method to the
vibratory signal in order to calculate the features.
This method provides spectral information on non-
stationary data and is often used to evaluate whether
a signal is stationary or not [23,24].

The principle of STFT is based on the calculation of
the Fast Fourier Transform (FFT) of overlapping seg-
ments of the signal (see Figure 3). The FFTs of each
segment are returned as a dataset that contains both
the time and frequency domain. However, the weight-
ing window must be well defined to improve tem-
poral resolution and avoid spectral leakage (refer to
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Figure 3. STFT diagram.

Equation (4)):

FT = {S (i)} (m, n)

=
m�K+L/2−1∑
i=m�K−L/2

S(i)Win(i − m�K) exp
(−j2πni

N

)

(4)

FT is the STFT of the signal S(i), L is the length and
�K is the time step of the sliding window Win. N is
the frequency intervals. Frequency resolution improves
and the temporal resolution decreases as the length
of the window increases. The percentage overlap (Ov)

between the windows is given by Equation (5):

Ov = 100 × L − �K
L

(5)

After calculating the STFT and averaging it over time,
we extracted the signal features by Equations (6):

F1 =
∑K

k=1 S(k)
K

(6a)

F2 =
∑K

k=1(S(k) − F1)2

K − 1
(6b)

F3 =
∑K

k=1(S(k) − F1)3

K(
√
F2

3
)

(6c)

F4 =
∑K

k=1(S(k) − F1)4

KF22
(6d)

F5 =
∑K

k=1 fkS(k)∑K
k=1 S(k)

(6e)

F6 =
√∑K

k=1(fk − F5)2S(k)
K

(6f)

F7 =
√√√√∑K

k=1 f
2
k S(k)∑K

k=1 S(k)
(6g)

F8 =
√√√√∑K

k=1 f
4
k S(k)∑K

k=1 f
2
k S(k)

(6h)

F9 =
∑K

k=1 f
2
k S(k)√∑K

k=1 S(k)
∑K

k=1 f
4
k S(k)

(6i)

F10 = F6
F5

(6j)

F11 =
∑K

k=1(fk − F5)3S(k)
KF36

(6k)

F12 =
∑K

k=1(fk − F5)4S(k)
KF46

(6l)

where S(k) and fk are respectively the amplitude and the
frequency of the kth order (k = 1, 2, . . . ,K with K is the
number of spectrum lines)

3. Genetic algorithm concept

In our work, we used Genetic Algorithms to con-
struct a rule-basedmodel to classify defects from vibra-
tional data. The rules database allows from 12 features
calculated from a vibratory signal to identify and detect
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a possible defect. Here is an example of a rule that can
be generated by GA:

IF [feat1 < 0, 2] and [feat2 ≥ 0, 3] - - - [feat12 < 0, 5]
THEN Class

where feat1, feat2 · · · feat12 are the features calculated
by signal processing and Class is the predicted fault.

In what follows we will introduce a brief overview of
the concept of Genetic Algorithms.

GAs are evolutionary algorithms based on the
manipulation of the evolution process and adaptation
of organisms in natural environments. Most of these
algorithms are problem-solving processes based on
Darwinian Theory.

They have successfully solved difficult optimization
problems in various fields [25–28]. One of the biggest
advantages of GAs is their flexibility. It offers the possi-
bility of adapting the technique to the specificity of the
problem studied.

They have been used effectively in the field of unsu-
pervised learning especially clustering to discovering
the structure of data when we have unlabelled data
[29,30] and in supervised classification to define rules
for classifying data [31–34]. Different representations
can be used by these classifiers, for example decision
trees, classification rules, discriminant functions and
many others.

For classification rules, discovered knowledge is usu-
ally represented by IF–THEN prediction rules, where
the IF part contains predictive attributes and the THEN
part contains the prediction of the class. The discov-
ered rules can be evaluated according to several criteria,
such as the degree of confidence in the prediction, the
accuracy rate of the classifications, comprehensibility,
etc. [35].

The Genetic Algorithm constructs the classification
model by inserting new rules. Two approaches are used
to codify the population of individuals (chromosomes):
the Michigan approach and the Pittsburgh approach
[36,37]. In the Michigan approach, each individual
codes a single prediction rule, while in the Pittsburgh
approach, each individual encodes a set of prediction
rules. In this case, a population consists of a set of indi-
viduals where each represents a list of rules. In our
study, we opted for theMichigan approach to codify the
rules.

The Genetic Algorithms follow all the steps
described in the diagram in Figure 4. The main steps
can be summarized as follows:

(1) An initial population is randomly generated, and
the performance of individuals in this population
is evaluated.

(2) The following operations are then repeated until a
stop criterion which can be a maximum number
of iterations or a maximum performance level to
be achieved:

Figure 4. Genetic algorithm diagram.

• Individuals who will produce children are
selected. This selection takes into account their
performance. The better an individual is, the
more likely he is to reproduce.

• Create an offspring by combining the selected
parents.

• Some genes of children may mutate randomly.
This can bring new characteristics to the new
offspring by increasing their performance.

• The performance of individuals in this popula-
tion is evaluated.

• Individuals whose performance is the least
adapted are eliminated and will not be part of
the next generation.

(3) At each iteration, the best solution (represented
by an individual or population) to the problem is
retained. It is these solutions that will be proposed
by the algorithm as answers to the problem.

The general principle of a Genetic Algorithm has been
described, nextwewill describe the blocks necessary for
its implementation.

After the codification of individuals, a fitness func-
tion has been defined to evaluate each individual. Then,
genetic operators were adapted to this codification to
produce a new population. They are the operators of
selection, crossover, mutation and replacement.

3.1. Individual encoding

There are at least two ways to codify the individuals.
They depend on how to represent the class to predict
(part THEN of the rule) [37]. The first possibility is to
represent the predictive class in the genome of the indi-
vidual. The code of the individual will therefore include
the codes of the IF part and the THEN part [38]. In
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Figure 5. Chromosome codification.

our work, we used a second possibility where the indi-
vidual’s code includes only the IF part. It associates all
the individuals of the population to the class to predict
which remains unchanged during the execution of the
algorithm. The execution of the algorithm is repeated
as many times as the number of existing classes. At
each execution, the algorithm discovers only the rules
relating to a single class [39].

A chromosome is composed of several genes. The
number of these genes is the same as that of the
attributes or predictive variables obtained from the
vibratory signal. Each of them represents a condition
involving an attribute [38,40]. The first gene repre-
sents the first condition; the second gene represents
the second condition, and so on (see Figure 5). All of
these genes codify the IF part of the rule. Each gene
is subdivided into three fields: Weight, Operator and
Value.

The first filed of a gene “W” is the weight which
is a real number whose value is in the range [0 1]. It
gives the degree of importance of the attribute that cor-
responds to this condition. If its value is greater than
a fixed threshold, the condition is accepted otherwise
this condition is removed from the rule. The second
field “Op” corresponds to the relational operator that
can only take two values 0 or 1 that encode the twooper-
ators “< ” or “≥ ”. As for the last field of a condition
“V ”, it gives the value of the attribute; also its value is
normalized between 0 and 1.

The advantage of this type of coding is to offer flex-
ibility to the length of the rule even if the length of
the chromosome is fixed. This is possible because a
condition of a rule can be accepted or eliminated by
comparing the weight “W” of the gene with a threshold
value that we set at 0,3.

3.2. Fitness function

It is necessary to have a fitness function to be able
to evaluate individuals according to their performance
and to select the best ones. This function is entirely
specific to the problem and takes as parameter an indi-
vidual “I” and calculates a value “Val” which represents
its level of performance (Equation (7)):

f (I) = Val (7)

For classification problems, the fitness function evalu-
ates the performance of each individual (rule) [35]. It is
necessary to recall the basic concepts of the evaluation

Table 1. Confusion matrix.

Predicted positive Predictive negative

Real positive True positive (TP) False negative (FN)
Real negative False positive (FP) True negative (TN)

of a classification rule before defining the fitness
function.

Let a rule whose antecedent is “A” and the conse-
quent (the predicted class) is “C” with the form: “IF
A THEN C ”. After using a rule to classify a data
instance, depending on the class provided by the rule
and the actual class of the instance, one of the follow-
ing four types of results can be observed: this can be
summarized in Table 1:

• The actual class is C and the predicted class is alsoC.
• The actual class is C, but the predicted class is not C.
• The actual class is not C and the predicted class is

also not C.
• The actual class is not C, but The predicted class

is C.

Se = TP
TP + FN

(8a)

Sp = TP
TP + FP

(8b)

f = TP
TP + c1FN

× TP
TP + c2FP

(8c)

The calculation of the fitness function is based on the
number of times these results occur after the evalu-
ation of the individual on each line of the database.
Sensitivity (Se) and Specificity (Sp) indicators will be
combined to obtain the value of the fitness function f
(Equations (8)). In our work, the fitness function that
we propose is the same as that used by [35].

The weights c1 and c2 control the dependence of the
fitness function on the values of TP,FP,TN and FN. For
example, a decrease of c1 or an increase of c2 will gener-
ally improve the prediction accuracy, but will increase
the tendency to overfitting. In this article we set c1 to 1
and c2 to 20

3.3. Selection operator

This operator allows generating offspring from the indi-
viduals who have the greatest value of the fitness func-
tion. The roulette wheel selection method has been
widely used but it has problems when chromosome
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performance varies considerably. Other methods have
replaced it, such as rank selection or tournament
selection [41]. Rank selection first sorts the popula-
tion by fitness function and attribute a rank according
to their positions. In this method, all chromosomes
have a chance of being selected, but it leads to a slower
convergence.

We used in our study the tournament selection; it
increases the chances of the worst individuals to par-
ticipate in the improvement of the population. A tour-
nament consists of a competition between several indi-
viduals randomly selected from the population. The
winner of the tournament is the individual of better
quality.

The operators who will be next studied are the
crossover and the mutation operators. In order to avoid
producing an invalid child, some restrictions have been
imposed on these operators. They produce only valid
rule conditions, avoiding inconsistencies.

3.4. Crossover operator

From selected individuals, a new generation is created
using the crossover operator. Offspring individuals are
obtained from the selected parent by a combination of
genes. The crossover operator aims to direct research
towards promising areas of the research space.

This procedure applies with a certain probability
which is called the crossover rate which generally
ranges between 0.45 and 0.95. This rate represents the
proportion of the parent population that will be used by
a crossover operator. In the case of our study, we fixed
this rate at 0.8.

This operator is applied in several ways; we canmen-
tion single-point crossover and two-point crossover
[42]. In the case of our study, we adopted the Heuris-
tic Crossover Operator which was adapted to our type
of individuals codification as follows: The combination
between the chromosomes representing the individuals
is carried out at the level of each field. If the fields are
real values (fields of the weights and fields of the values
of the attributes) the combination is done according to
Equations (9). For fields corresponding to the operators
“< ” and “≥ ” that are encoded by the “0 ” and “1” val-
ues, the combination is performed by a permutation of
the fields of both chromosomes. An explanation of this
operator is shown in Figure (6):

Wi
of 1 = αWi

1 + (1 − α)Wi
2 (9a)

Wi
of 2 = (1 − α)Wi

1 + αWi
2 (9b)

where:

• Genei1 and Gene
i
2 are respectively ith genes of parent

chromosomes;

Figure 6. Crossover operator.

• Wi
(1,2) andW

i
of (1,2) are respectively the weight values

of the parent chromosomes and the child chromo-
somes;

• Opi1 and Opi2 are comparison operators;
• Vi

(1,2) and Vi
of (1,2) are respectively the values of

the attributes of the parent chromosomes and the
child chromosomes;The values of the attributes
are calculated in the same way as the weights
(Wi

(1,2),W
i
of (1,2));

• α is a randomweighting value that we set in our case
between −0,2 and 1,2.

3.5. Mutation operator

This operator consists in changing the value of the
parts of a gene with a very low probability. It guaran-
tees the diversity of the population that is essential for
Genetic Algorithms and prevents some genes favoured
by chance from spreading to the detriment of others
and from being present in the same place on all chro-
mosomes. Also, this operator limits the risks of prema-
ture convergence to a local optimum by ensuring that
each point in the search space can be reached. Thanks
to this property, we are sure to be able to reach the global
optimum [15].

For our case, themutation is adapted to the genotype
of the individuals. There are two mutation operators:
The mutation mechanism for real value fields is to add
or subtract a random value from the current value and
the mutation mechanism of the comparison operator
field ( “< ”,“≥ ”) consists in inverting its value.

3.6. Replacement operator

The replacement operator determines the final compo-
sition of the next generation. There are two main types
of methods [15].

The first type, called stationary replacement, consists
of keeping a constant population size. At each genera-
tion, children replace all or part of the parents. In this
case, the best parents are kept for the next generation
to maintain the same population size. The second type,
which can be called elitist replacement, consists in hav-
ing a growing population size. A child is included in
the next generation only if it is at least better than the
least successful of the parent generation. We can then
imagine a whole range of variations between these two
main methods. In our work, we chose the stationary
replacement method.
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Figure 7. Signal in time domain.

4. Results and discussions

4.1. Features extraction and order tracking signal
processing results

The data we used in our study was collected from a
PUMASA330 helicoptermaintenance centre. Only one
defective component was present in the system during
data acquisition. In our work we have selected six cases
of study:

(1) spiral input pinion bearing spalling;
(2) spiral input pinion gear tooth scuffing;
(3) helical input pinion chipping;
(4) helical idler gear crack;
(5) collector gear crack;
(6) no defect.

The acquired data are as follows:
For each case studied, we obtained 20 vibratory sig-

nals with a duration of 1min and a sampling frequency
fs = 40, 000Hz (see Figure (7)). A tachometermounted
on the measuring device records the rotational speed

of the shaft. To increase the size of the database, we
divided each signal into four parts.

Wefirst interpolated the vibratory signal in the angu-
lar domain with a sampling frequency frsm (see Equa-
tions (1), (2) and (3)) then we calculated the spectro-
gram of the signal. We used the flat top window with
a length of 2006 points and an overlap of 50% (see
Figure 8).

WithMatlab Signal Processing Toolbox, we analysed
and extracted the fault features from all available vibra-
tory signals. These data will be used by the Genetic
Algorithm to construct a rule-based diagnostic model.

4.2. Genetic algorithm classification results

The features calculated from the vibration signal pro-
cessing are first organized into a matrix of 480 lines and
12 columns (80 lines for each class). We carried out a
post-processing by normalizing the data between 0 and
1 before starting the classification of the data. This step
is performed so that the variables are treated with the
same priority. Next, we divided the data into two parts:
50% of the data for training (240 lines) and 50% for
the validation (240 lines). These data allow the Genetic
Algorithm to construct a rules-based model for classi-
fying defects in the six classes of defects mentioned in
Section 4.1.

For each class, we used a population of 100 individu-
als. The maximum number of iterations has been set to
50. The offsprings are obtained from the combination
of 80% of the population and the mutation of 30% of
this population.

The Diagnostic model based on Genetic Algorithms
have effectively classified vibratory defects. The classifi-
cation rate for the training data is 100%. For validation
data the classification rate has reached the value of
99.16% (Tables 2 and 3).

All the signals are classified with a percentage of
100%, except for the signals corresponding to faults of

Figure 8. (a) Order spectrum. (b) Average order spectrum.
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Table 2. Classification rate (training data).

Target class (%)

Output class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 All faults

Class 1 16.67 0 0 0 0 0 100
Class 2 0 15.83 0 0 0 0 100
Class 3 0 0 17.50 0 0 0 100
Class 4 0 0 0 16.67 0 0 100
Calss 5 0 0 0 0 15.00 0 100
Class 6 0 0 0 0 0 18.33 100
All faults 100 100 100 100 100 100 100

Table 3. Classification rate (validation data).

Target class (%)

Output class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 All faults

Class 1 16.67 0.42 0 0 0 0 97.56
Class 2 0 17.08 0 0 0 0 100
Class 3 0 0 15.42 0 0 0 100
Class 4 0 0 0 16.67 0 0 100
Calss 5 0 0 0 0 18.33 0 100
Class 6 0 0 0.42 0 0 15.00 97.30
All faults 100 97.62 97.37 100 100 100 99.16

Figure 9. Fitness Function population evaluation.

Class 2 (Spiral input pinion gear tooth scuffing) and
faults of Class 3 (Helical input pinion chipping) which
respectively have a classification rate of 97.62% and
97.37%.

Figure 9 shows the variation of the fitness function
for class 1 and class 2 during training.

The Genetic Algorithm program was fully devel-
oped and executed with Matlab R2017b on a machine
with the following performance: Intel Core i7 2.20GHz
processor with 8.0GB of RAM. The execution time is
18min 14.15 s. This program is run offline just to build
the diagnostic model using the vibratory database.

After this step the diagnosis can be made according
with the Simulink model of Figure 10. The main steps
can be summarized as follows:

(1) Phase 1: Acquisition of vibratory data by accelera-
tion sensors at the gearbox.

(2) Phase 2:
• Application of the Order Tracking signal pro-

cessing technique to extract 12 features.
• Apply post-processing to data.

(3) Phase 2: Detection and Identification of fault by a
rule-based model.

We used Genetic Algorithms to set up a rule-based
classification system that can detect and locate vibration
defects from vibration signals. The following example is
a rule generated by the genetic algorithm.

Figure 10. Diagnostic system.
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IF (F1 ≥ 0, 69) and (F3 < 0, 90) and (F6 < 0, 20)
and (F7 ≥ 0, 60) and (F9 ≥ 0, 47) and (F12 ≥ 0, 92)

THEN Fault Class=3
where F1, F2 · · · F12 are the extracted features from

vibratory signals by Equations (6) and “Fault Class=3”
corresponds to the fault “helical input gear shredding ”.

The advantage of using Genetic Algorithms is that,
from a few training data, we can build an efficient
classification model.

5. Conclusion

In our work, we build a diagnostic model of vibra-
tory faults that occur on gearboxes of PUMA SA300
helicopters.We used a database of vibratory signals col-
lected during periodic inspections. Among the vibra-
tory data available, we selected six classes, one corre-
sponding to the faultless case and the others to five
different types of defects. The possibility of using con-
ventional signal processing techniques has not been
used because the vibratory signals are collected with
time-varying operating conditions. We opted for the
Order Tracking technique which takes into account the
variation of the rotation speed by interpolation of the
signal in the angular domain. We then carried out the
STFT to extract the features from each signal. From
computed data and Genetic Algorithms we have built
a rule-based classifier.

Compared to other methods, this technique has the
advantage of constructing a classification model from a
smaller database. We obtained very satisfactory results
with a classification rate of 100% for training data and
99.16% for validation data. Thanks to the obtained
results the model has been validated and retained for
a possible computer implantation on the ground or in
flight for the vibratory faults diagnosis.

The technique we adopted was used for the first
time to diagnose vibration faults in PUMA SA330 heli-
copter gearboxes. We have chosen a technique which is
adapted to the specificity of the problem by a joint use
of the order analysis technique for the signal processing
and the Genetic Algorithms for the classification of the
defects.
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