
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: 0005-1144 (Print) 1848-3380 (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

An application of ensemble empirical mode
decomposition and correlation dimension for the
HV circuit breaker diagnosis

Mingliang Liu, Bing Li, Jianfeng Zhang & Keqi Wang

To cite this article: Mingliang Liu, Bing Li, Jianfeng Zhang & Keqi Wang (2019) An application
of ensemble empirical mode decomposition and correlation dimension for the HV circuit breaker
diagnosis, Automatika, 60:1, 105-112, DOI: 10.1080/00051144.2019.1578037

To link to this article:  https://doi.org/10.1080/00051144.2019.1578037

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 21 Feb 2019.

Submit your article to this journal 

Article views: 396

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2019.1578037
https://doi.org/10.1080/00051144.2019.1578037
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1578037
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1578037
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1578037&domain=pdf&date_stamp=2019-02-21
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1578037&domain=pdf&date_stamp=2019-02-21
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2019.1578037#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2019.1578037#tabModule


AUTOMATIKA
2019, VOL. 60, NO. 1, 105–112
https://doi.org/10.1080/00051144.2019.1578037

REGULAR PAPER
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aHLJ Province Key Lab of Senior-Education for Electronic Engineering, Heilongjiang University, Harbin, China; bCollege of Mechanical and
Electrical Engineering, Northeast Forestry University, Harbin, China

ABSTRACT
During the operation process of the high-voltage circuit breaker, the changes of vibration signals
reflect the machinery states of the circuit breaker. The extraction of the vibration signal feature
will directly influence the accuracy and practicability of fault diagnosis. This paper presents an
extraction method based on ensemble empirical mode decomposition) and correlation dimen-
sion and a classification method with BP (back propagation) neural network. Firstly, original
vibration signals are decomposed into a finite number of stationary intrinsic mode functions
(IMFs). Secondly, correlation dimension of the top four IMFs by the G–P algorithm is calculated
and the characteristic vector of the vibration signal of the circuit breaker is formed. At last, the
classificationof characteristic parameter is realizedwith a simple BPneural network for fault diag-
nosis. The experimentation without loads indicates that the method can easily and accurately
diagnose breaker faults and exploit a new road for diagnosis of high-voltage circuit breakers.
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1. Introduction

High-voltage (HV) circuit breaker plays a key role in
controlling and protecting the power network. There-
fore, the action reliability of the HV circuit breaker is
very important in the electric system. In recent years,
research studies on the diagnosis of the circuit breaker
are increasing. The vibration signals produced by the
circuit breaker contain a lot of important information,
which can be used to evaluate the mechanical state of
circuit breaker, the techniques based on vibration signal
analysis have gradually become hot [1–3].

Hung et al [4] used empirical mode decomposition
(EMD) to decompose the mechanical vibration signal
of high-voltage circuit breaker, but the EMD method
has the disadvantage of modal aliasing, and Hu et al.
[5] has clearly analysed the cause of modal aliasing
in EMD. Huang et al. [6] used one-class support vec-
tor machine (SVM) to diagnose the fault of a high-
voltage circuit breaker, but the design of the internal
parameters of the SVM has large impact on its per-
formance. In consideration of that, the vibration sig-
nals of the HV circuit breaker often represent certain
chaotic characteristics. We can analyse the vibration
signals ofHV circuit breaker from the chaotic dynamics
[7,8]. Therefore, this paper presents a feature extrac-
tion method of vibration signal with the combination
of fractal theory and ensemble empirical mode decom-
position (EEMD) and a classification method with the

back propagation (BP) neural network. The EEMD
method can effectively reduce the modal aliasing prob-
lem of the EMD. Furthermore, the internal characteris-
tics of the signal can be well reacted through the fractal
theory. By restructuring the phase space and calculat-
ing the correlation dimension of the top four intrinsic
mode functions (IMFs), we can obtain the character-
istic parameter of the signal. BP neural network is a
network structure based on gradient descent algorithm,
unlike the SVM, it can adjust the weights by error BP. At
present, it is widely used in the fault diagnosis field. The
experiment indicates that the method can easily and
accurately diagnose breaker faults and exploit a new
road for diagnosis of HV circuit breakers.

2. EEMDmethod

EMD is the method suitable to process nonlinear and
non-stationary signals [9]. However, the mode mix-
ing problem brought by the EMD greatly restricts its
application in practice. EEMD is a modification of
the EMD method, which takes advantage of the uni-
form distribution statistical characteristics of Gauss
white noise in the frequency domain and adds the
Gauss white noise to original signal [10,11] so that the
EEMD could process signal continuously in different
scales, the problem of mode mixing will be eliminated
effectively.
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2.1. Steps of EEMDdecomposition

EEMD is a new method of signal process, the specific
decomposition steps and principles are as follows [12]:

Step 1: Adding the randomGauss white noise ni(t)with
the mean zero of amplitude and the constant of stan-
dard deviation to the original signal x(t) (The standard
deviation of white noise is 0.1–0.4 times the size of the
original signal.) The function is as follows:

xi(t) = x(t) + ni(t), (1)

where xi(t) is the signal that is added to the ith
Gauss white noise. The addition of Gauss white noise
will directly affect the decomposition of signal by the
EEMD.
Step 2: Signal xi(t) is decomposed into several IMFs
cij(t) and the margin ri(t), in which,cij(t) is the jth IMF
component after the ith Gauss white noise is added to
original signals.
Step 3: Repeat step1 and step 2N times.Next, the overall
average operation for the corresponding IMF by apply-
ing the principle that the statistical mean of random
and independent sequence is zero could eliminate the
effects of multiple Gauss white noise on the real IMF.
The final IMF by the EEMD is written as

cj(t) = 1
N

N∑
i=1

cij, (2)

where the cj is the jth IMF component of the original
signal by the EEMD. When the N is larger, the sum of
the white noise of IMFS will tend to zero. At this time
the results for the EEMD are written as

x(t) =
∑
j
cj(t) + r(t), (3)

where r(t) is the final residual component, represent-
ing the average trend of signal. The EEMDmethod can
put any signal x(t) into several of the IMFs and a resid-
ual component. The intrinsic mode components cj(t)
(j = 1,2, . . . ) represent the elements of signal from
high- to low-frequency band, each frequency band is
different fromothers, andwill changewith the vibration
signal x(t).

According to the decomposition steps of the EEMD,
we take the normal signal as an example for the

EEMD decomposition now. The time domain wave-
form shown in Figure 1 is a normal state vibration
signal which has denoized. We can see from Figure 1,
this vibration signal exhibits short-time non-stationary
and nonlinear characteristics, it can be thought of as a
chaotic vibration.

The signal can get eight major components and a
residual component by the EEMD, as shown in Figure
2. From the diagram, we can see the normal state of
non-stationary vibration signal is decomposed into a
number of stationary IMF components by the EEMD,
and different IMF components contain different time
scales.

2.2. Selection of principal IMF components

EEMDdecomposes the signal into several IMF compo-
nents from high frequency to low frequency, the IMF
components fully embody the details of the original
signal. However, we have to filter the principal IMF
components for two reasons:

(1): For different signals, the number of IMF compo-
nents obtained by the EEMD decomposition is
different.

(2): The most effective information of the original sig-
nal is often concentrated in some certain IMF com-
ponents, and the other components are spurious
components.

In view of these reasons, cross-correlation function
is introduced in our research, cross-correlation func-
tion is an index to judge whether the two signals are
related in frequency domain [13]. It is defined as fol-
lows:

R(f , g) = cov(f , g)√
cov(f , f )

√
cov(g, g)

, (4)

where R(f , g) is the correlation coefficient of function
f(t) and g(t), cov(f, g) is the covariance of f (t) and g(t).

On the above theoretical basis, firstly calculate the
cross-correlation coefficients between each IMF com-
ponent and the original signal, then select the IMF
components which are more relevant to the original
signal.

The signals of the normal state (normal), the lack
of lubrication state (fault I), the foundation bolt loose-
ness state (fault II) and the energy storage spring

Figure 1. Standard signal of the normal state.
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Figure 2. Results of EEMD decomposition.

Table 1. Cross-correlation coefficient between each IMF com-
ponents and each state of original signals.

Cross-correlation coefficient

State IMF1 IMF2 IMF3 IMF4 IMF5 ≥ IMF6

Normal 0.7148 0.5738 0.4415 0.3084 0.0295 ≤ 0.01
Fault I 0.6635 0.5617 0.5234 0.2543 0.0245 ≤ 0.01
Fault II 0.7223 0.5002 0.5453 0.2453 0.0179 ≤ 0.01
Fault III 0.6978 0.6324 0.6451 0.3986 0.0374 ≤ 0.01

shed state (fault III) are decomposed by the EEMD
algorithm. Screening the principal IMF components is
done by using the cross-correlation coefficient criterion
i.e. the average number of cross-correlation coefficient
between each IMF components.

We can see, from Table 1, the value of the cross-
correlation coefficients between the first four-order
IMF components and the original signal is much larger
than other higher order IMF components (more than
10 times), that’s to say the first four-order IMFs are
more associated with the original signal. Therefore,
analysis of the top four IMF components can satisfy the
requirement of vibration signal feature extraction.

3. Correlation dimension

Correlation dimension is one of the fractal dimensions.
It is sensitive to the time course of system, reflecting
the dynamics of the system well. The G–P algorithm
put forward by Grassberger and Procaccia in 1983 is a
classic method to define and calculate the correlation
dimension [14].

According to the G–P algorithm [15], calculating
the correlation dimension mainly has two aspects: (1)
Reconstructing the phase space. {x1, x2, x3, . . . , xN} is
the time series that its time interval is �t and recon-
structing the phase space by Shi Yanfa. Constructing
a series of vectors Xi = [xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ ]
adopting the delay time τ , inwhich,m is the embedding
dimension; i = 1,2, . . . , L; L = N− (m− 1) τ is the
number of vector after the phase space reconstruction.

(2) Define the correlation dimension. Correlation
functionC(r) can be obtained by calculating themutual
distance of each vector in the phase space.

C(r) = 1
L(L − 1)

∑
i�=j

[H(r − Xi − Xj)]. (5)

In (5) H(s) is the Heaviside function:

H(s) =

⎧⎪⎨
⎪⎩
0 s < 0
1
2 s = 0
1 s > 0

, (6)

where r is the sphere radius of phase space. Then the
definition of correlation dimension is as follows:

D(r) = d lnC(r)
d ln r

. (7)

In the process of actual calculation, fitting the lin-
earity better part from the double logarithm curve
lnC(r) − ln r on the least squares, the slope is the corre-
lation dimension for the corresponding time sequence.
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Figure 3. The double logarithm curve of top IMF of the normal vibration signal.

Fractal dimension was applied to fault diagnosis of the
high-voltage circuit breaker, using correlation dimen-
sion depict fault feature of vibration signal. The non-
integer fractal dimension can be used to describe
the complexity and nonlinear characteristics of the
mechanical system to some extent.

Calculate the correlation dimension of the nor-
mal closing vibration signal by the G–P algorithm.
Delay time τ and embedding dimension m are two
important parameters of phase space reconstruction.
The delay time τ is commonly determined by using
the C–C algorithm [16].The embedding dimension m
is calculated by a method from the geometric point
of view which is called the false neighbouring point
method [17].

Using the Matlab to realize the G–P algorithm, the
main process is as follows:

Firstly, reconstructing the time series data with the
function Y(i, j) = data((i − 1)τ + j) and storing the
phase space vectors in the matrix Y(i, j).

Secondly, calculating distance between every two
points in the phase space with d(i, j) = abs(Y(:, i)−
Y(:, j)). The distances are stored in the d(i, j). Count-
ing up the number of less than r from the d(i, j), then
getting C(r).

At last, according to formula (7), the double log-
arithm curve is done by processing logarithmic for
C(r) and r. As shown in Figure 3, in which the slopes
of the curve lnC(r) − ln r of the linear part are dif-
ferent from different IMF components. Then, obtain-
ing the slope of linear part of the double logarithm

curve with linear fitting of the least squares, the slopes
also are the correlation dimensions. The correlation
dimensions of IMF1∼ IMF4 represent the feature vec-
tor H = [3.7090, 7.4334, 5.0600,2.9481].

4. The working process of BP neural network

The BP neural network was developed by Rumelhart
andMcCleland, which is amultilayer feed-forward net-
work. The characteristic of this network is the signal-
forward transmission and error-BP. When signals are
transmitted forward, they will pass through the input
layer, hidden layer and output layer in sequence. If the
output layer fails to achieve the desired output, then
BP is performed, and the network weights and thresh-
olds are adjusted according to the prediction error. In
this way, the predicted output of the neural network
approaches the desired output continuously. The topo-
logical structure of BP neural network includes input
layer, hidden layer and output layer, as shown in Figure
4: where X0, X1, . . . , Xn are the input values of the BP
network, Y1, Y2, . . . , Ym are the output values of the
BP network. Here wij and wjk are weights of the BP
network.

The working process of the BP neural network con-
sists of the following steps [18]:

(1): Initialize network parameters; determine the
number of the nodes in the input layer (marked n)
and the number of the nodes in the hidden layer
(marked l) and the number of the nodes in the
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Figure 4. The structure of the three-layer BP neural network.

output layer (marked m) based on the input and
output sequence (X,Y). Initialize the connection
weight wij between the input layer and the hid-
den layer and the connection weight wjk between
the hidden layer and the output layer. Initialize the
hidden layer threshold (also called bias) aj and the
output layer threshold bk given learning efficiency
η and neuron excitation function f (x).

(2): Calculate outputs of the hidden layer by the fol-
lowing formula:

Hj = f

( n∑
i=1

wijxi − aj

)
j = 1, 2, . . . , l, (8)

where l is the number of the nodes in the hid-
den layer, f is the excitation function of the hidden
layer, usually in the following form:

f (x) = 1
1 + e−x . (9)

(3): Calculate outputs Ok of the output layer by the
following formula:

Ok =
l∑

j=1
Hjwjk − bk k = 1, 2, . . . ,m. (10)

(4): Calculate prediction error ek as follows:

ek = Yk − Ok k = 1, 2, . . . ,m, (11)

where Yk is the desired output and Ok is the pre-
dictive output.

(5): Update weights; update connection weightwij and
wjk based on the value of ek. The update formula
is as follows:

wij = wij + ηHj(1 − Hj)x(i)
m∑
k=1

wjkek

i = 1, 2, . . . , n; j = 1, 2, . . . , l (12)

wjk = wjk + ηHjek j = 1, 2, . . . , l;

k = 1, 2, . . . ,m. (13)

We alwayswant the error function ek to be as small
as possible [19,20]. The partial derivative of error
functions ek can be calculated by the following
formula:

∂ek
∂wjk

=
m∑
k=1

(Yk − Ok)

(
− ∂Ok

∂wjk

)

= (Yk − Ok)(−Hj) = −Hjek. (14)

So we can obtain formula 13, similarly we can
obtain formula 12 by formula 15 as follows:

∂ek
∂wij

= ∂ek
∂Hj

∂Hj

∂wij
= Hj(1 − Hj)x(i)

m∑
k=1

wjkek.

(15)
(6): Update threshold; update threshold aj and bk

based on the value of ek.

aj = aj + ηHj(1 − Hj)

m∑
k=1

wjkek j = 1, 2, . . . , l

(16)

bk = bk + ηek k = 1, 2, . . . ,m. (17)

Imitate formula 14 and 15, we can obtain formula
16 and 17 by formula 19 and 18, respectively:

∂ek
∂bk

= (Yk − Ok)

(
−∂Ok

∂bk

)
= −ek (18)

∂ek
∂aj

= ∂ek
∂Hj

∂Hj

∂aj
= Hj(1 − Hj)

m∑
k=1

wjkek. (19)

(7): Determine whether the iteration is over and if not,
repeat step two.

5. Analysis of practical application

5.1. Extraction and analysis of feature parameters

Collecting the vibration signals of the normal state
(normal), the lack of lubrication state (fault I), the foun-
dation bolt looseness state (fault II) and the energy
storage spring shed state (fault III) from the typeZW32-
12 of vacuumcircuit breaker in the laboratory, as shown
in Figure 5. Each state collected 25 groups of close-
brake vibration signal and totally 100 groups of data are
gained.

After obtaining the test signals in each group, data
are, respectively, processed by wavelet soft-threshold
de-noising firstly. Data in each group after de-noising
are decomposed by the EEMD, and the correlation
dimension of the top four IMF components of data in
each group is calculated. In this way, we can obtain 100
feature vectors of the four states, and some results are
shown in Table 2. As we can see from the table, the
vibration signals with the same condition have the sim-
ilar correlation dimensions; however, the correlation
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Figure 5. Four types of vibration signals.

Table 2. The correlation dimensions of IMF1-IMF4.

IMF1 (H1) IMF2 (H2) IMF3 (H3) IMF4 (H4)

Normal 3.7090 7.4334 5.0600 2.9481
3.8419 7.8574 4.9044 3.2259
3.2142 6.6805 5.2809 3.2477
3.3265 7.3719 5.9668 4.2950

Fault I 3.2904 3.5946 1.2125 0.9350
3.5609 2.6978 0.9408 0.9630
4.2526 2.9600 1.0028 0.6697
4.5570 3.4017 1.3729 1.2963

Fault II 4.6105 8.7775 5.0410 3.3082
4.8515 8.1683 5.1993 3.9393
5.7225 8.2179 5.3124 4.1334
5.0115 8.0247 5.2189 3.9701

Fault III 4.2666 4.2799 2.5500 1.2443
5.4193 3.7254 2.2891 1.2421
5.9329 3.3691 2.5340 1.1931
5.3453 4.0003 2.3620 1.5314

dimension of vibration signals varies greatly in different
states.

5.2. Design and application of the BP network

The BP neural network with a single hidden layer is
constructed with MATLAB neural network tool. The
parameters of the BP neural network are designed as
follows:

(1): Taking into account each signal has four charac-
teristics, there are four neurons in the input layer
and four neurons in the output layer.

(2): All transfer function is ‘tan-sigmoid’ and the
training function is ‘trainlm’. The maximum iter-
ation number is 200 [21].

(3): The value of learning efficiency is 0.1.
(4): The connection weight wij and wjk are random

numbers generated by ‘Rand’ functions. The val-
ues of wij and wjk are more than 0, less than 1.

(5): In the design of the BP network, the number of
hidden neurons is most difficult to determine,
if the number of neurons in the hidden layer is
too small, the network will not be able to study
well, and the accuracy of the recognition will be
affected, if the number of nodes is too large, then
the training time increases and the network tends
to over-fitting. In this research, we determine the
number of hidden nodes by the method of ‘trial
and error’. When the number of neurons is 16, the
average prediction error of the test sample reaches
the minimum, since then, as the number of neu-
rons increases, the number of iterations increases,
BP networks are easy to fall into local minima.
Taking into account these factors, 16 neuronswere
chosen.

The 60 four-dimension characteristic vectors are
randomly selected as training sets and input them to
the input layer of BP neural network, correspondingly,
the number of neuron in input layer is 4, while, the four
nodes at output layer relate to four kinds of state. When
a test sample inputs to BP neural network, the corre-
sponding node of output layer will output ‘1’, expresses
the ‘true’, otherwise output ‘0’, and expresses ‘false’[22].

The remaining feature vectors are used as test sam-
ple inputs to the BP neural network after training,
the expected outputs and practical outputs related to
each characteristic are partly shown in Table 3. It
can be shown from these data that the outputs of
designed neural network related to characteristic vec-
tor ‘true’ all above 0.963, and the outputs related
to characteristic vector ‘false’ all below 0.0653, the
classification accuracy is much high. In the 40 set
of test data of this research, only three sets of data
were identified by mistake, and the error data appear
at Normal state and fault II. It can also reflect the
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Table 3. Testing results of the neural network.

Outputs

y1 y2 y3 y4

State practical expected practical expected practical expected practical expected

Normal 0.9980 1 0.0008 0 0.0006 0 0.0502 0
0.9798 1 0.0004 0 0.0359 0 0.0095 0
0.9898 1 0.0013 0 0.0011 0 0.0595 0
0.9898 1 0.0006 0 0.0073 0 0.0161 0

Fault I 0.0281 0 0.9903 1 0.0000 0 0.0236 0
0.0161 0 0.9876 1 0.0000 0 0.0267 0
0.0100 0 0.9907 1 0.0000 0 0.0320 0
0.0653 0 0.9913 1 0.0000 0 0.0259 0

Fault II 0.0072 0 0.0000 0 0.9871 1 0.0113 0
0.0235 0 0.0000 0 0.9799 1 0.0249 0
0.0007 0 0.0000 0 0.9993 1 0.0651 0
0.0023 0 0.0000 0 0.9981 1 0.0081 0

Fault III 0.0033 0 0.0054 0 0.0016 0 0.9668 1
0.0059 0 0.0079 0 0.0006 0 0.9742 1
0.0001 0 0.0043 0 0.0225 0 0.9895 1
0.0002 0 0.0094 0 0.0162 0 0.9630 1

characteristic extracted with the method proposed
in this paper is sensitive to the state change of the
high-voltage circuit breaker, so this method is effec-
tive for the fault diagnosis of the high-voltage circuit
breaker.

6. Conclusion

This paper firstly proposes a method combining
the EEMD and correlation dimension to extract the
characteristics of vibration signals of the high-voltage
circuit breaker. The correlation dimension of the orig-
inal signal data is difficult to extract the fault infor-
mation. So, it cannot reflect the complexity and non-
linear smooth characteristics of signal in detail. The
IMF components of the signal at different frequencies
can be obtained by EEMD decomposition. It can sep-
arate the mechanical characteristic of the high-voltage
circuit breaker. Then, the top four IMF components
which contain the most significant information of the
original signal are chosen to calculate the correla-
tion dimension. These correlation dimensions form
the characteristic vector of the vibration signal of cir-
cuit breaker. At last, the classification of characteristic
parameter is realized by the simple BP neural network.
Practical examples show that this method can effec-
tively diagnose the fault state of the high-voltage circuit
breaker. The test results of 40 groups of data show that
the recognition rates of four states were 90%, 100%,
80%, 100%. But these data were obtained under ideal
laboratory conditions, more data are needed to ver-
ify and improve this method in practical engineering
applications.
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