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Robust tracking control for a class of uncertain mechanical systems
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ABSTRACT
In this paper, it is proposeda control structure to solve the trackingproblem in a class of uncertain
mechanical systems. It is considered that the system is affected by unknown disturbances, dis-
continuous friction and uncertainties. The proposed control algorithm is based on the twisting
control algorithm plus a nested signum term, moreover a disturbance estimator is used as feed-
back to the controller in order to compensate the nonmodelled parameters and uncertainties of
the plant, also a velocity observer is proposed. Through the usage of Lyapunov tools, it is shown
that the closed-loop nonlinear system is globally asymptotically stable and achieves zero steady-
state position error, also, it is shown that while being asymptotically stable and homogeneous of
degree q< 0, these systems approach the equilibriumpoint in finite time. Numerical simulations
and real-time experiments carried out in a mass-spring-damper system show the performance
and effectiveness of the control structure.
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1. Introduction

The study of mechanical systems under uncertainties
for a long time has attracted the interest of researchers.
In order to design controllers with better performance
and robustness against uncertainties and parametric
variation, as well as to achieve a faster convergence time
to the reference using a control law with the lowest
amplitude possible; the aforementioned control objec-
tives are difficult to improve in real systems perfor-
mance.

Control of mechanical systems under uncertainties
involve different control methodologies such: sliding
mode control, fuzzy control or adaptive control. In [1]
a novel nonlinear disturbance observer-based sliding
mode control approach has been proposed to atten-
uate uncertainties. However, only numerical simula-
tions have been performed using this approach. In [2]
an adaptive sliding-mode controller for the Takagi-
Sugeno (T–S) fuzzy system with mismatched uncer-
tainties and exogenous disturbances is designed. In
[3,4] a linear matrix inequality (LMI)-based sliding
surface design method for integral sliding-mode con-
trol of mismatched uncertain systems is proposed. The
proposed controller is verified through computer sim-
ulations to show the effectiveness of the method. Also,
[5] investigates the robust sliding mode control prob-
lem for a class of uncertain nonlinear stochastic sys-
tems with mixed time delays, a simulation example
is given to demonstrate the effectiveness of the pro-
posed scheme. In [6,7] a composite nonlinear feed-
back method for robust tracking control of uncertain

linear systems with time-varying delays and distur-
bances is proposed. In [8] an adaptive controller for
trajectory control of a class of mechanical systems with
unbounded and fast-varying uncertainties is presented,
although the algorithm renders good performance, the
tracking errors are not guaranteed to converge to zero.

Themain goal of this paper is robust control of a class
of mechanical systems with uncertainties, where the
uncertainties and parametric variations are bounded. It
is assumed, thatmechanical system has either prismatic
or translational links. The proposed control algorithm
uses a disturbance estimator and a velocity observer.
The integration of these elements in a closed-loop sys-
tem constitute a robust control structure. The stability
of each element and the stability of the control structure
is proved using Lyapunov tools.

The proposed controller is based on the twisting
algorithm which was one of the first second-order slid-
ing mode controllers presented in the literature [9–12].
The proposed controller can guarantee finite time con-
vergence of the trajectories to the reference and absorb
uncertainties and unknown disturbances which neces-
sarily need to be bounded, although this boundary can
change trough the time by using self-tuned gains. It is
important to note that the amplitude of the discontinu-
ous terms of the controller need to be greater than the
sum of all the uncertainties upper bounds, due to this
high frequency oscillations that are present in the con-
trol signal. Oscillations can be diminished by the usage
of the output of the disturbance filter as compensation
in the closed-loop system. Other way to mitigate the
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high oscillations in the control signal is using self-tuned
gain parameters in the controller, which depends in
part on the amplitude of the disturbances present in the
closed-loop system. Sliding mode twisting controllers
are one of the best choices among other high order slid-
ing mode controllers for the stabilization of nonlinear
systems under disturbances or uncertainties [13,14],
some previous works about the twisting algorithm can
be found in the seminal work of [10], andmore recently
in [12] and [11]. The proposed controller has a nested
signum function which adds robustness to the afore-
mentioned twisting algorithm. A previous work using
a nested signum function as a control input to solve the
robust tracking and cruise control of a class of robotic
systems is presented in [15].

Sliding mode control is the control methodology
used in this work, and it constitutes a variable structure
control method [16,17]. Some other previous works
about mechanical systems under uncertainties using
sliding mode control can be found in [18], which
addressed force feedback control via position measure-
ment in a spring who collides against a wall. In [19]
is addressed the regulation problem in an underactu-
ated mechanical system with an elastic clearance using
a sliding mode control with an H∞ term within the
sliding surface, in order to attenuate unmatched pertur-
bations.

The main contribution of the present paper is the
control structure proposed, which renders an improved
performance through the usage of a disturbance esti-
mator, and a velocity observer along with the con-
trol algorithm. Global stability around the equilibria
is proved through a strict Lyapunov function; more-
over, based on the results of [20], it is shown that the
control algorithmwhile being asymptotically stable and
homogeneous of degree q<0 approach the equilibrium
point in finite time. It is considered that some parame-
ters of the plant are not perfectly known. Furthermore,
it is not necessary to know their upper bounds when
the disturbance estimator is used in the control design.
Additionally a velocity observer is proposed, which is
robust to bounded parameter uncertainties. The vali-
dation of the proposed control structure is carried out
bymeans of numerical simulations performed inMAT-
LAB. Furthermore, real-time experiments are made in
a mass-spring-damper system to solve the trajectory
tracking problem.

The rest of the paper is organized as follows: In
Section 2 the statement of the problem in a class of
mechanical systems with either rotational or transla-
tional links is described. The control design is presented
in Section 3. The global asymptotic stability analysis
using a strict Lyapunov function, and the global equiu-
niform finite time stability of the controller using the
concept of homogeneity is also presented in the same
Section. A velocity observer design and its stability
proof is presented in Section 4. In Section 5 is presented

a second order low-pass filter in order to obtain the
disturbances affecting the system. In Section 6 the
output feedback synthesis considering the controller,
the velocity observer, and the disturbance estimator
as a whole system is presented. The stability analy-
sis is offered using a Lyapunov function. In Section 7
a comparison is made to twisting controllers [10,21]
and the present approach in numerical simulations.
Section 8 presents real-time experimental results to
solve the tracking problem in a mass-spring-damper
platform, from Educational Control Products (ECP-
210). Section 9 includes some conclusions. Finally,
Section 10 presents some directions to further and
improve the work.

2. Statement of the problem

The main concern of this paper is to propose a control
structure and its stability proof to solve the regulation
and tracking problems in a class of mechanical sys-
tems. The system is considered to have uncertainties,
besides of unknown disturbances, both uncertainties
and disturbances at this stage are considered bounded.

Consider a mechanical system represented by

ẍ = c−1 (−ax − bẋ − f (x, ẋ) − αsign(ẋ) + τ + w(t)
)

(1)

where x(t), ẋ(t) ∈ IR are the position and velocity of the
body, respectively, a, b, c are constants which are differ-
ent from zero, f (x, ẋ) is a nonlinear function, u ∈ IR is
the control input. To account for discrepancies in the
model, a not completely known Coulomb friction coef-
ficient α has been introduced, such that 0 < α < M,
for some known bound M, also, w(t) is a non com-
pletely known non-vanishing disturbance bounded by
an upper bound so it satisfies supt |w(t)| ≤ N.

Moreover, the sign is the signum function defined in
[22,23] as

sign(ẋ) =

⎧⎪⎨⎪⎩
1 ẋ > 0
[ − 1, 1] ẋ = 0
−1 ẋ < 0

(2)

since the right hand side of the Equation (1) has dis-
continuous terms, the solutions of system (1) are under-
stood in the Filippov sense (see [11]). For system (1) the
following controller design is proposed

τ = f̃ (x, ẋ) + u. (3)

where f̃ (x, ẋ) = f (x, ẋ) + �f (x, ẋ) is an approximate
compensation term for the nonlinear function f (x, ẋ)
and �f represents the error between f and f̃ which
is considered upper bounded by a constant P. Let us
denote by x1 the position x and by x2 the velocity
ẋ. Then, for a constant force input u = ū and zero
disturbance (w=0), the system (1) has the following
equilibrium points:
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Figure 1. A block diagram of the control structure with distur-
bance identification.

(1) If ū ≥ α, then x̄2 = 0 and x̄1 ∈ [�f /a, (�f + ū +
α)/a).

(2) If |ū| < α, then x̄2 = 0 and x̄1 ∈ ((�f + ū −
α)/a, (�f + ū + α)/a).

(3) If ū ≤ −α, then x̄2 = 0 and x̄1 ∈ ((�f + ū −
α)/a,�f /a].

If it is desired that the equilibrium point to be at
the origin, in steady state, then it must be chosen that
the force or torque ū must be equal to the Coulomb
friction αsign(x2) and �f = 0 otherwise if it is chosen
ū to be a constant, the equilibrium region of inter-
est can be considered as (x̄1 ∈ [(�f + ū − α)/a, (�f +
ū + α)/a], x̄2 = 0).

The proposed control structure is shown in Figure 1.
The plant is a second order mechanical system, given
by (1). The other components include a nested twist-
ing controller, a discontinuous observer, and a low-
pass filter. These components are described in the next
sections.

3. Control design

Let us suppose that the disturbance w(t) affecting sys-
tem (1) satisfies supt |w(t)| ≤ N, and the Coulomb
friction coefficient is such that 0 < α ≤ M, for some
known bound M. The control objective is to find a
control u, depending on the desired position or tra-
jectory x∗, the generalized displacement x and velocity
ẋ, such that the closed-loop response of system (1)
satisfies

lim
t→∞ |x(t) − x∗| = 0. (4)

Let us propose a variable structure controller, based on
an array of signum functions plus compensation terms,
to be applied on system (1). For this purpose, first let
us shift the equilibrium point of (1) by defining the
following transformation,

e1 = x − x∗,

e2 = ẋ − ẋ∗. (5)

Then system (1), can be rewritten as

ė1 = e2,

ė2 = c−1(−a(e1 + x∗) − b(e2 + ẋ∗)

− f (e1 + x∗, e2 + ẋ∗) − αsign(e2 + ẋ∗)

+ τ + w(t)) − ẍ∗. (6)

A discontinuous control lawwith a nested signum func-
tion is now proposed for system (6), to the best of our
knowledge this simple but functional controller has not
been proposed elsewhere

τ = f̃ (e1 + x∗, e2 + ẋ∗) + u, (7)

with

u = −k1sign(e1) − k2sign(e2) − k3sign(sign(e1)

+ sign(e2)) + ax + bẋ + cẍ∗ (8)

the parameters k1, k2 and k3 > 0 are tunable gains
which ensure that the motion of the trajectories will
be directed towards the desired trajectory. Necessary
conditions for k1, k2, and k3 are given in the following
stability sections.

3.1. Stability analysis

The stability of the closed-loop system (6)–(8) will be
analyzed in this section using Lyapunov tools, first of all
substituting (7) and (8) into (6), the closed-loop system
takes the form

ė1 = e2,

ė2 = c−1 (−αsign(e2 + ẋ∗) + w(t)

− k1sign(e1) − k2sign(e2)

−k3sign(sign(e1) + sign(e2)) + �f
)
. (9)

An important remark is that |�f | ≤ P. Now let us find
some sufficient conditions to show asymptotic stabil-
ity, using classical Lyapunov technique. A Lyapunov
candidate function for the system is given by

V(e1, e2) = (k1 + k3) |e1| + c
2
e22. (10)

In order to keep (10) positive-definite the following
condition must be kept k1 + k3 > 0. Using the proper-
ties sign(sign(x)) = sign(x) and −sign(x + y) ≤
−(sign(x) + sign(y) − 1) and looking back on the
upper bounds 0 < α < M and supt |w(t)| ≤ N, the
time derivative of (10) along the solutions of (9) is
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Figure 2. Phase portrait of the second order switched sys-
tem (9).

given as follows

V̇(e1, e2) ≤ −
(
k2 − (M + N + P)

)
|e2| ≤ 0 (11)

the derivative ofV(e1, e2) is negative semidefinite under
the condition

k2 > M + N + P (12)

by this way in the uncertain system (9), the trajecto-
ries cross the switching lines e1 = 0 and e2 = 0 every-
where except the origin e1 = e2 = 0 so that all the
system trajectories are uniquely continuable on the
right.Hence, the extended version [24,25] ofKrasovskii-
LaSalle’s invariance principle [26–28] is applicable to
the switched system (9). Since the equilibrium point
e1 = e2 = 0 is the only trajectory of (9) on the invari-
ance manifold e2 = 0 where V̇(e1, e2) = 0, this system
is globally uniformly asymptotically stable by the afore-
mentioned extension of the invariance principle.

Global equiuniform finite time stability. Let condi-
tion (12) be satisfied. Then the uncertain switched
system (9) is globally equiuniformly finite time stable
around the origin. The qualitative behaviour of sys-
tem (9) is depicted in Figure 2. Due to the parameter
subordination (12), the velocity vectors of (9) point
toward the same region in the switching lines

S1 = {(e1, e2) ∈ IR2 : e1 > 0, e2 = 0},
S2 = {(e1, e2) ∈ IR2 : e1 = 0, e2 < 0},
S3 = {(e1, e2) ∈ IR2 : e1 < 0, e2 = 0},
S4 = {(e1, e2) ∈ IR2 : e1 = 0, e2 > 0}, (13)

regardless of bounded uncertainties affecting the sys-
tem. Hence, the uncertain system (9) rotate around the
origin e1 = e2 = 0, while approaching the origin in a
finite time. Thus, the uncertain system (9) exhibit chat-
tering modes with an infinite number of switches on
a finite time interval. These systems do not generate

sliding motions anywhere except the origin. If a trajec-
tory starts there at any given finite time, there appears
the so-called sliding mode of the second order (see
[10,29,30]).

Due to the upper boundsM,N, and P the piece-wise
continuous uncertainties −αsign(e2 + ẋ∗) + w(t) +
�f are locally uniformly bounded, whereas the right-
hand side of the nominal model

ė1 = e2,

ė2 = c−1 (−k1sign(e1) − k2sign(e2)

−k3sign
(
sign(e1) + sign(e2)

))
, (14)

is piece-wise continuous and globally homogeneous
of degree q=−1 with respect to dilation r = (2, 1).
Hence, the condition q + r2 ≤ 0, required by
Theorem 3.2 in [20], is satisfied, and Theorem 3.2 is
applicable to the globally equiuniformly asymptotically
stable uncertain system (9). By applying Theorem 3.2,
the uncertain system (9) is thus globally equiuniformly
finite time stable.

By direct integration of (14) the settling times are
obtained, depending on the initial states e1(0) and
e2(0), they are given by

e1(t) = 0 for t ≥
√

2e1(0)
k1 + k2 + k3

,

e2(t) = 0 for t ≥ e2(0)
k1 + k2 + k3

(15)

note that the convergence time can be reduced through
increasing the gain parameters k1, k2, and k3.

4. Velocity observer design

This section explains a discontinuous velocity observer
for the system (1), the following observer design is
based on the previous works of [31,32]. Considering
x1 = x and x2 = ẋ system (1) takes the following form

ẋ1 = x2

ẋ2 = c−1 (−ax1 − bx2 − f (x1, x2)

− αsign(x2) + τ + w(t)
)

y = x1 (16)

where y is the output of the system and x2 is not avail-
able for measurement. The terms αsign(x2) and w(t)
are considered as disturbances which are also bounded
by some known constantsM and N.

The proposed discontinuous observer has the form

˙̂x1 = x̂2 + k4η1

˙̂x2 = c−1
(
−ax̂1 − bx̂2 − f̃ (x1, x̂2) + τ

)
+ k5sign(η1) + k6η1 (17)
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the output of the observer ŷ = [x̂1, x̂2]T ∈ L2∞ is
bounded by a saturation function, this is made for sta-
bility purposes that will be clear in the following devel-
opments. The variables η1 and η2 stand for the errors,
which are given by η1 = x1 − x̂1 and η2 = x2 − x̂2, the
primary concern of the present discontinuous observer
is the stability analysis of the following dynamical sys-
tem in terms of the observed errors

η̇1 = η2 − k4η1

η̇2 = c−1 (−aη1 − bη2 + �f − αsign(η2 + x̂2)

+w(t)) − k5sign(η1) − k6η1. (18)

Let us consider that

�(·) = −αsign(η2 + x̂2) + w(t) + �f ≤ M + N + P.

Now lets make a change of variables z1 = η1 and z2 =
η2 − k4η1. The dynamics of the system (18) in the new
state space representation are given by

ż1 = z2

ż2 = c−1
(

− (a + bk4)z1 − bz2 + �(·)
)

− k5sign(z1) − k6z1 − k4z2. (19)

Considering the nominal version of (19) with c−1�(·)
− k5sign(z1) = 0, the observer can be seen as a second
order low pass filter; let us get the cut-off frequency in
rad/sec of the observer which is given by

ωc =

∣∣∣∣∣∣∣∣∣∣∣

−(c−1b + k4)

±
√
cb2 + k24 − 2c−1bk4 − 4ac−1 − 4k6

2

∣∣∣∣∣∣∣∣∣∣∣
.

(20)
As it can be seen from (20), the cut-off frequency ωc
depends on both, the parameters of themechanical sys-
tems a, b, c and the observer gains k4, k6. By this way in
order to modify the range of velocity that can be esti-
mated by the observer, it is enough to tune the gains k4
and k6 according to (20).

4.1. Stability analysis

For stability purposes let us consider the following Lya-
punov candidate function

V(z1, z2) = 1
2

[
z1 z2

] [
� 1
1 1

]
︸ ︷︷ ︸

P1

[
z1
z2

]
+ k5|z1| (21)

where � = k6 + k4 + c−1(a + b(k4 + 1)). The func-
tion V(z1, z2) remains positive-definite through keep-
ing � > 1. The time derivative of V(z1, z2) along the

trajectories of the system (19) is given by

V̇(z1, z2) = −
(
k6 + a + bk4

c

)
z21 − k5|z1| + �(·)

c
z1

−
(
k4 + b

c
− 1

)
z22 + �(·)

c
z2

≤ −
(
k6 + a + bk4

c

)
z21 −

(
k5 − �(·)

c

)
|z1|

−
(
k4 + b

c
− 1

)
|z2|2 + �(·)

c
|z2|

= −
(
k6 + a + bk4

c

)
z21 −

(
k5 − �(·)

c

)
|z1|

−
(
1 − θ

)
ρ|z2|2 − θρ|z2|2 + �(·)

c
|z2|

≤ −
(
k6 + a + bk4

c

)
z21 −

(
k5 − �(·)

c

)
|z1|

−
(
1 − θ

)
ρ|z2|2, ∀ |z2| ≥ �(·)/cθρ

(22)

where 0 < θ < 1 and ρ = (k4 + b/c − 1), while z1
decays asymptotically to zero and z2 remains globally
uniformly ultimately bounded, according to
Theorem 4.18 and Lemma 9.2 in [33] that bound is
given by

� = �(·)
cθρ

√
λmax(P1) + k5
λmin(P1) + k5

(23)

in the case where �(·) = 0, the set of equilibria (z1, z2)
of (19) are uniformly asymptotically stable.

5. Filter

According to [34], the equivalent output injection or
equivalent control ueq coincides with the slow compo-
nent of the discontinuous term in (18) when the state
is in the discontinuity surface. The equivalent control
provides measurement information about the unmea-
sured states that can continually move their estimates
asymptotically closer to them, this includes uncertain-
ties, disturbances and non well modelled parameters as
those contained in �(·). Thus, the equivalent control
can be recovered using a low-pass filter with a fre-
quency constant big enough as compared with the slow
component response, yet sufficiently small to filter out
the high-rate components, for further details see [35].
Given this background, let us propose to use a second
order low-pass Butterworth filter to estimate the equiv-
alent controlueq. This filter is described by the following
normalized transfer function:

Y(s)
U(s)

= w2
c

s2 + √
2wcs + w2

c
(24)

where wc is the cut-off frequency of the filter. Here, the
filter input is the discontinuous term of the observer,
k5sign(y − ŷ). Denoting the output of the filter as
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yf (t) ∈ IR, and choosing a constant wc that minimizes
the phase-delay, it is possible to assume that

lim
t→∞ yf = �̃(·) ≈ �(·), (25)

where ‖�̃(·) − �(·)‖ ≤ A0 for A0 � M + N + P.

6. Output feedback synthesis

In this section, it is presented the synthesized control
algorithm for the output feedback. For this purpose, let
us use the controller (7) and (8) but now we will use
as feedback the observed velocity x̂2 and the estimated
disturbance yf , given as follows

τ = f̃ (e1 + x∗, ẽ2 + ẋ∗) + u, (26)

and

u = −k1sign(e1) − k2sign(ẽ2)

− k3sign(sign(e1) + sign(ẽ2))

+ ax + bẋ + cẍ∗ − yf , (27)

notice that |f̃ (e1 + x∗, ẽ2 + ẋ∗) − f (e1 + x∗, e2 + ẋ∗)|
≤ L and ẽ2 = x̂2 − ẋ∗. Now, the gain parameter k2 can
be greatly reduced by using the output of the filter yf ,
just keeping in mind that k2 > ‖�̃(·) − �(·)‖. This
gain can help to reduce the amplitude of the high fre-
quency components present in the control signal, which
are generated by the signum functions.Wemust keep in
mind that the new nominal output error of the filter is
‖�̃(·) − �(·)‖ ≤ A1 for A1 � L + M + N.

6.1. Stability analysis of the control structure:
controller+observer+filter

The stability proof is developed using the Lyapunov
function V(e1, ẽ2) = (k1 + k3)|e1| + (c/2)ẽ22. The time
derivative of V(e1, ẽ2) along the trajectories of the
closed-loop system (6), (26), and (27) is given by

V̇(e1, ẽ2) ≤ −
(
k2 − A1

)
|ẽ2| ≤ 0 (28)

while keeping k2 > A1 it can be ensured V̇(e1, ẽ2) is a
negative semidefinite function, it only remains to apply
the extended version of Krasovskii-LaSalle’s invariance
principle to the system in question to ensure global
asymptotic stability.

7. Numerical simulations

This section presents numerical simulations to solve
the trajectory tracking problem in a double integra-
tor system. The goal of the numerical simulations is to
validate the afore developed control structure and its
stability analysis in a closed loop system. For this pur-
pose let us use the controller given in (26) and (27).

Table 1. Desired reference and tuning parameters of the con-
trol structure.

Description Notation Value

Desired trajectory x∗ 1.0 sin(t)
Controller gain k1 1.1
Controller gain k2 1
Controller gain k3 0.1
Observer gain k4 20
Observer gain k5 2
Observer gain k6 5
Filter cut-off frequency wc1 6 rad/sec.

The parameters of the controller, observer, and filter are
shown in Table 1. In the disturbed case, a disturbance
of 1.2 cos(0.1t) is applied to the system.

In order to test the performance and robustness
properties of the proposed control structure a compar-
ison has been made to twisting controller [10], where
the control gain parameters are shown in Table 1

τ = −k1sign(e1) − k2sign(e2) + ẍ∗. (29)

The other controller considered in the comparison is
a finite-time dynamic twisting controller recently pre-
sented in [21], the control gain parameters are also
shown in Table 1

τ = −k1sign(e1) − k2sign(e2) − 0.5sign(x3) + ẍ∗

ẋ3 = −2e1 − e2. (30)

The comparison results can be seen from Figure 3 to
Figure 4, for both, undisturbed and disturbed case. In
Figure 3, in the undisturbed case (a), the closed-loop
system response is quite similar using the proposed
control algorithm and the twisting controller, although
the convergence time to the reference using the pro-
posed controller is a little bit faster due to the action of
the nested signum gain. Moreover, the proposed con-
troller by Luo and Su [21] presents a relatively large con-
vergence time to the reference. The performance of the
proposed controller is outstanding in the disturbed case
(b); note that the proposed controller in [21] has a better
closed-loop performance than the twisting controller,
this happens because the amplitude of the disturbance
is bigger than the k1 gain parameter of each one of the
three controllers.

In Figure 4, the phase portrait and identified dis-
turbance are shown, for both cases: undisturbed and
disturbed. In the phase portrait of the undisturbed case,
it can be seen that the proposed controller in [21] does
not drive the states of the system to the origin due to its
slow time response. In the disturbed case the twisting
controller does not drive the states of the system to the
origin.

8. Real-time experiments

Performance issues and robustness properties of the
proposed control structure have been tested with some
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Figure 3. Trajectory tracking, tracking error, and control effort results, for both, (a) undisturbed and (b) disturbed case.

physical experiments performed in the platform ECP-
210 see Figure 6. The experiments were implemented
with a data acquisition board DSPACE�, running in a
computer DELL� XPS 420 Quad-Core 2; the acquisi-
tion sampling rate was set to 0.0001 seconds.

8.1. Mass-spring-damper system

Now, let us consider the system shown in Figure 5,
described by

ẍ = m−1 (−kx − bẋ − αsign(ẋ) + τ + w(t)
)

(31)

where m is the mass, k is the stiffness coefficient of
the spring and b is the damper coefficient. The objec-
tive is to design a control τ so that the mass position
x converges to a given trajectory or constant x∗. For
that purpose the system can be rewritten in terms of the
errors e1 = x − x∗ and e2 = ẋ − ẋ∗ as

ė1 = e2,

ė2 = m−1 (−k(e1 + x∗) − b(e2 + ẋ∗)

−αsign(e2 + ẋ∗) + τ + w(t)
) − ẍ∗. (32)
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Figure 4. Phase portrait and disturbance, for both, (a) undisturbed and (b) disturbed case.

Figure 5. Mass-spring-damper mechanical system.

Figure 6. Mass-spring-damper system, experimental platform.

where τ stands as follows

τ = −k1sign(e1) − k2sign(e2) − k3sign(sign(e1)

+ sign(e2)) + kx + bẋ + mẍ∗ − yf . (33)

Table 2. Desired trajectory, plant parameters, controller and
observer gains (Mass-spring-damper).

Description Notation Value

Desired trajectory x∗ 1.0 sin(t) cm.
Mass m 1 kg
Damper coefficient b 8 kg/s
Spring stiffness k 127 N/m
Disturbance w(t) 3sin(2t)N.
Controller gain k1 3 N.
Controller gain k2 1.5 N.
Controller gain k3 0.5 N.
Observer gain k4 600
Observer gain k5 5
Observer gain k6 150
Filter cut-off frequency wc1 50 rad/sec.

The experiments were performed under the parameters
shown inTable 2. In Figure 7 and 8 are shown the results
for trajectory tracking, in Figure 7 position, velocity
from the observer, and position error are shown; the
control signal is activated t0 = 2 seconds after starting
the experiment, this is made in order to have a bet-
ter appreciation of the transient signal and the effect
of the disturbance; the nominal stage is reached after
0.2 seconds approximately of being initialized the con-
trol signal. In Figure 8 can be seen the control signal,
phase portrait, and the identified disturbance using the
second order filter (24).
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Figure 7. Position regulation, velocity from observer, and posi-
tion error using the proposed control algorithm. The control
signal is activatedafter t0 = 2 seconds inorder to appreciate the
effect of the disturbancew = 3 sin(2t)when there is no control
action (Mass-spring-damper).

9. Conclusions

A robust control structure to solve the tracking prob-
lem is studied for a class of mechanical systems. These
systems and their models are rather simple; however,
they constitute a basic unit of variable structure sys-
tems, from which more complete and complex devices
can be addressed. Moreover, they incorporate some
real elements like not completely known Coulomb

Figure 8. Control signal, phase portrait, and identified distur-
bance, using the proposed controller. The control signal is acti-
vated after the first 2 seconds of the experiment (Mass-spring-
damper).

friction, disturbances and parametric variations. A
controller, synthesized using a twisting control algorithm
and adding a nested signum function, rendered a robust
closed-loop system response. It was proved that the
controlled system trajectories were globally asymptot-
ically stable using a strict Lyapunov function, also was
proved global equiuniformfinite time stability using the
concept of homogeneity.

High-frequency components in the control signal
are typical of this kind of discontinuous controllers.
However, the magnitude of high-frequency oscillations
can be adjusted by setting an adequate value of the
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controller coefficients k1, k2 and k3, always keeping in
mind that the parameters should be chosen to satisfy
the inequalities k1 + k3 > 0 and k2 > ‖�̃(·) − �(·)‖.
The chattering phenomenon is inherent to this type
of controllers, it can be reduced by lowering the con-
troller gain parameters although it is sacrificed the
closed-loop system robustness and the convergence
time to the reference increases; thus at the time of tun-
ing the controller, it is necessary to prioritize between
reducing the chattering or increasing the closed-loop
robustness.

Moreover, a velocity observer design is proposed,
which can be use in some cases where velocitymeasure-
ments are not available. The control algorithm along
with the observer and the disturbance estimator com-
prise the proposed control structure which it is con-
sidered the main contribution of the present control
approach. Stability proofs using Lyapunov tools are
given for the control algorithm, the observer and the
whole control structure.

Numerical simulations in a double integrator system
were carried out using MATLAB, moreover, real-time
experiments were performed in a mass-spring-damper
system. They showed good agreement and robustness
performance against unknown disturbances, Coulomb
friction and uncertainties.

10. Directions to further work

The future work lies on the improvement of the
controller performance, while the robustness of the
closed-loop system is maintained, this can be achieved
through:

(1) Design of self-tuned controller gains.
(2) Continuous control signal or at least, high frequen-

cies attenuation in the control signal.
(3) Avoidance of an observer by using only position

measurements as feedback to solve the tracking
problem.

(4) Achieve finite time convergence to the reference
even in the presence of disturbances and uncer-
tainties.

Future efforts will be aimed at achieving these objec-
tives.
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