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ABSTRACT
In this paper, an autonomous Toda jerk oscillator is proposed and analysed. The autonomous
Toda jerk oscillator is obtained by converting an autonomous two-dimensional Toda oscilla-
tor with an exponential nonlinear term to a jerk oscillator. The existence of Hopf bifurcation is
established during the stability analysis of the unique equilibrium point. For a suitable choice of
the parameters, the proposed autonomous Toda jerk oscillator can generate antimonotonicity,
periodic oscillations, chaotic oscillations and bubbles. By introducing two additional parame-
ters in the proposed autonomous Toda jerk oscillator, it is possible to control partially or totally
the amplitude of its signals. In addition, electronic circuit realization of the proposed Toda jerk
oscillator is carried out to confirm results found during numerical simulations. The commensu-
rate fractional-order version of the proposed autonomous chaotic Toda jerk oscillator is studied
using the stability theorem of fractional-order oscillators and numerical simulations. It is found
that periodic oscillations and chaos exist in the fractional-order form of the proposed Toda
jerk oscillator with order less than three. Finally, combination synchronization of two fractional-
order proposed autonomous chaotic Toda jerk oscillators with another fractional-order pro-
posed autonomous chaotic Toda jerk oscillator is analysed using the nonlinear feedback control
method.
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1. Introduction

Chaotic oscillations can be generated in the third-
order or higher-order autonomous nonlinear differen-
tial equations. In the case of non-autonomous differ-
ential equations, i.e. nonlinear damped systems driven
by external periodic voltage, the minimal order of the
differential equations can be reduced to two. Chaos
was found useful with great potential in many fields,
including liquid mixing with low power consumption,
human brain and heartbeat regulation, and secure com-
munications [1–5]. In electrical circuits, chaotic oscilla-
tions have been observed and intensively investigated,
but the circuits considered lead to difficult electronic
implementations. Since 2000, the development of new
autonomous chaotic oscillators with easy electronic
implementation has been of interest, as it is shown in
Sprott’s paper [6]. Sprott [7] proposed many new jerk
systems with several nonlinearities that show chaotic
behaviour with easy electronic implementation. In one
of the chapter of “Elegant Chaos: Algebraically Simple
flow”, book published in 2010, Sprott proposed a list

of 16 autonomous jerk oscillators with different non-
linearities called memory oscillators (MO0 to MO15)
[8]. He gave the value of parameters for which these
MOs can exhibit chaos and plotted the phase portraits
of the chaotic attractors of each oscillator. These nonlin-
earities of MOs are quadratic, cubic, quintic, absolute,
maximum, sign, exponential, sine hyperbolic and tan-
gent hyperbolic functions. However, the results of [8]
are restricted on the presentation of the rate-equations
of chaotic memory oscillators and make no mention
on the chaotic mechanism of each MO. The authors
of [9,10] introduced, theoretically studied and experi-
mented two autonomous chaotic oscillators using the
Van der Pol dynamics immersed into a jerk oscillator.
These two jerk oscillators belong to the family of MO5.
This MO is a chaotic jerk oscillator with cubic nonlin-
earity. In [11,12], authors proposed, theoretically stud-
ied and experimented an autonomous chaotic Duffing
oscillator based on a jerk system which belongs to the
family of MO5. Kengne et al. proposed, numerically
analysed and experimented a chaotic jerk oscillator
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with hyperbolic sine nonlinearity which belongs to the
family of MO15 in [13].

Motivated by the above works, in this paper, an
autonomous chaotic jerk oscillator is obtained by con-
verting an autonomous two-dimensional Toda oscil-
lator into a three-dimensional differential equations
using the jerk architecture which belongs to the fam-
ily of MO11. This memory oscillator is a simple
autonomous jerk oscillator with exponential nonlinear-
ity. TheToda oscillator is a two-dimensional differential
equation describing an oscillator with exponential non-
linearity. TheToda equation is amodel of CO2 and solid
state lasers [14–16]. In the classical Toda oscillator with
external periodic signal, the period-doubling route to
chaos has been observed [17]. However, the frequency
generator used to provide the external periodic signal
is not always easy to obtain because it is expensive.
The proposed autonomous jerk oscillator can provide
wide benefits compared to the classical Toda oscilla-
tor with external periodic signal in some applications
where the space to put all the devices can be very small
as a system on a chip for example. On the dynam-
ical point of view, a chaotic behaviour generated by
an oscillator driven by a periodic signal is not indi-
cated for some relevant engineering applications such
as secure communications because of the presence of
the driven frequency in the secure signal. The power
spectrum of chaos found in an autonomous oscillator
has a randomly distributed harmonics peaks indicat-
ing the robustness of the chaotic signal [8,18,19]. To
the best of author’s knowledge, there is not work in
the literature on theoretical and experimental analy-
sis of integer and fractional autonomous jerk oscillator
with exponential nonlinearity. Therefore, in this paper,
the integer and fractional autonomous Toda jerk oscil-
lator is analysed in order to understand the dynamics
of this class of jerk oscillator with exponential nonlin-
earity. Our objective in this work is divided twofold.
Firstly, givemore light on the dynamics of the proposed
autonomousToda jerk oscillatorwith experimental ver-
ifications. Secondly, dynamical behaviour and com-
bination synchronization in its fractional-order form
investigation using the stability theory of fractional-
order oscillators [20] and numerical simulations based
on the Adams–Bashforth–Moulton predictor corrector
scheme [21–23].

The paper is organized as follows. Section 2 is
devoted to the analytical and numerical analysis of the
autonomous Toda jerk oscillator under investigation.
In Section 3, an electronic circuit is designed and real-
ized for the investigation of the dynamical behaviour of
the autonomous Toda Jerk oscillator. Section 4 focuses
on analysis of the effect of fractional derivation on
the chaos found in the proposed Toda jerk oscillator
and the combination synchronization of the proposed
Toda jerk oscillator with two other proposed Toda jerk
oscillators. The conclusion is given in section 5.

2. Description and analysis of the autonomous
Toda jerk oscillator

Motivated by the simplicity of the jerk systems and
that it is easy to build its corresponding analogue com-
puter, we proposed and analysed in this section a three-
dimensional oscillator based on the jerk architecture
derive from the Toda two-dimensional oscillator. A Jerk
oscillator is a three-dimensional differential equation of
the form [6,23–30]:

...x = f (ẍ, ẋ, x), (1)

where x, ẋ, ẍ and
...x represent the dynamical variables,

first-, second-, third-order time derivative, respectively.
The autonomous two-dimensional Toda oscillator is
given by [19]

ẍ + αẋ − 1 + exp(x) = 0, (2)

which is a two-dimensional differential equation. The
parameter α is a dimensionless damping coefficient
(α > 0). It is well known in the literature that for any
value of parameter α, the trajectories of Equation (2)
converge asymptotically to its only equilibrium point
(x(0) = 0, y(0) = ẋ(0) = 0).

...x = −[ẍ + αẋ − 1 + exp(x)]. (3)

The Toda equation can be converted to a jerk oscil-
lator using the famous method to transform the
two-dimensional non-autonomous oscillator into an
autonomous oscillator. The state space representation
of the novel jerk oscillator yields:

ẋ = y, (4a)

ẏ = βz, (4b)

ż = −z − αy + 1 − exp(x), (4c)

where ẋ(t) = y(t) and ẍ(t) = z(t). The positive con-
stant parameter β is added in order to generate chaotic
behaviour in system (4).

2.1. Analytical study

System (4) is dissipative because ∇V = ∂ ẋ/∂x +
∂ ẏ/∂y + ∂ ż/∂z = −1 < 0. It has only one equilibrium
pointO = (0, 0, 0). The characteristic equation derived
from the Jacobian matrix at O is

λ3 + λ2 + αβλ + β = 0. (5)

Using the Routh–Hurwitz criteria, this equation has
all roots with negative real parts if and only if:

β > 0, (6a)

(α − 1)β > 0. (6b)

Since α > 0, the equilibrium point O = (0, 0, 0) of sys-
tem (4) is stable if α > 1 and unstable for α < 1. In
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the following paragraph, we study the Hopf bifurcation
from equilibriumpointO regardingα as the bifurcation
parameter.

Theorem: If β > 0, system (4) has a Hopf bifurcation
at equilibrium point O when α passes through the critical
value αH = 1.

Proof: Replacing λ = jω (ω > 0 and j2 = −1) into
Equation (5) and separating real and imaginary parts,
we obtain �

ω = ω0 =
√

β , (7a)

αH = 1. (7b)

Differentiating both sides of Equation (5) with
respect to α gives

3λ2
dλ
dα

+ 2λ
dλ
dα

+ αβ
dλ
dα

+ βλ = 0 (8a)

and
dλ
dα

= −βλ

3λ2 + 2λ + αβ
, (8b)

then

Re

(
dλ
dα

∣∣∣∣
α=αH , λ=iω0

)
= −1

4
�= 0. (8c)

Since the Jacobian matrix of system (4) at the equi-
librium point O has two purely imaginary eigen-
values and the real parts of eigenvalues satisfy Re
(dλ/dα|α=αH , λ=iω0) �= 0; all the conditions for Hopf

bifurcation to occur are satisfied. Consequently, system
(4) has a Hopf bifurcation at O when α = αH = 1 and
periodic solutions will exist in a neighbourhood of the
point αH (provided that β > 0 holds). For α = 1.05 >

αH , the trajectories of system (4) converge to the equi-
librium point O, whereas for α = 0.9 < αH , system (4)
exhibits a limit cycle (not shown).

2.2. Numerical study

The dynamical behaviours of system (4) can be illus-
trated by numerical bifurcation diagrams, Lyapunov
exponents, phase portraits and first-return map. We
choose parameters α and β as the control parame-
ters. We fix β = 5 and vary parameter α. In Figure 1,
we present the bifurcation diagram depicting local
extrema of x(t) and the largest Lyapunov exponent
versus parameter α.

When the parameter α varies from 0.165 to
1.1, the bifurcation diagram of the output x(t) in
Figure 1(a) displays period-1-oscillations followed by
period-doubling to chaos interspersed with periodic
windows. By further increasing the parameter α, sys-
tem (4) undergoes a reverse period-doubling bifurca-
tion and a period-1-oscillation is observed up to α ≈
1, where a Hopf bifurcation occurs followed by con-
verging of the trajectories of system (4) to the equi-
librium point O = (0, 0, 0). The chaotic behaviour is
confirmed by the largest Lyapunov exponent shown
in Figure 1(b). We plot in Figure 2, the phase por-
traits of chaotic oscillations for specific values of α

and β .

Figure 1. Bifurcation diagram depicting the local maxima (black dots) and local minima (grey dots) of x(t) (a) and the largest
Lyapunov exponent (b) versus parameter α for β = 5.
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Figure 2. Phase portraits of system (4) in planes (x, y), (y, z) and (x, z) with β = 5 and α = 0.235. Initial conditions
(x(0), y(0), z(0)) = (0.1, 0.1, 0.1).

Figure 3. Bifurcation diagram depicting the local maxima of x(t) (a) and the largest Lyapunov exponent (b) versus the parameter β
for α = 0.2.

From Figure 2, one can notice that the trajecto-
ries of the chaotic attractor of system (4) are swirling
around equilibrium point O. This is a signature of one-
scroll chaotic attractor. For α = 0.2, we plot as shown
in Figure 3 the bifurcation diagram of x(t) and the
largest Lyapunov exponent versus the newly introduced
parameter β .

When the parameter β increases from 3 to 96
[see Figure 3(a)], the bifurcation diagram of the
output x(t) shows period-1-oscillation followed by
period-doubling bifurcation to chaos for 4.86 < β <

19.52. The chaotic region is interspersed with five

main periodic windows. Then a reverse period-
doubling bifurcation is observed followed by period-2-
oscillations from β ≈ 20.38 until β ≈ 24.8105 where a
chaotic behaviour occurs. For parameter β > 24.8105,
period-6-oscillations is watched followed by period-
doubling bifurcation to chaos interspersed with peri-
odic windows. By further increasing parameter β , sys-
tem (4) undergoes a reverse period-doubling bifur-
cation and a period-1-oscillation are observed for
β > 92.41. These forward and reverse period-doubling
sequences, as a parameter of system (4) increases in
a monotone way, are called antimonotonicity [31–34].
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Figure 4. Bifurcation diagrams depicting the local maxima of x(t) versus parameter β for specific values of parameterα: (a) unique
chaotic oscillations at α = 0.38, (b) two chaotic bubbles at α = 0.39, (c) bubble of period 16 at α = 0.401, (d) bubble of period 8 at
α = 0.402, (e) bubble of period 4 at α = 0.41 and (f ) bubble of period 2 at α = 0.42.

The chaotic behaviour is confirmed by the largest Lya-
punov exponent shown in Figure 3(b).

2.3. Antimonotonicity phenomenon

The term antimonotonicity has been coined by Daw-
son et al. [33] to characterize creation and annihilation
of periodic orbits, via reverse bifurcation sequences as
a parameter is increased in nonlinear dynamical sys-
tems. Dawson et al. [34] have proposed a geometric
mechanism called dimple formations a possible means
for antimonotonicity in one-dimensional maps that
contain two critical points inside the chaotic attrac-
tor. Thus, in order to demonstrate the existence of
the antimonotonicity phenomenon in the proposed
autonomous Toda Jerk oscillator, the bifurcation dia-
grams depicting the maxima of x(t) versus parameter
β are computed for some specific values of parameter α

as depicted in Figure 4.
In the bifurcation diagrams of Figure 4(a) and

(b) chaotic oscillations and chaotic bubbles [31] are
depicted respectively, while in the bifurcation dia-
grams of Figure 4(c)–(f), only periodic states (periodic
bubbles) are found. For α = 0.42, system (4) under-
goes the sequence: period-1-oscillation → period-2-
oscillations → period-1-oscillation. Bier and Boun-
tis [31] named this sequence as “primary bubble”.
The chaotic bubble shown in Figure 4(b) is further
detailed in Figure 5, which depicts the phase portrait
of the resulting chaotic attractor of system (4) in plane
(x, y), (y, z), (x, z) and the first-return map of the local

maxima of x(t) for specific values of parameters α

and β .
The chaotic bubbles attractor is presented in

Figure 5(a)–(c) where one can note that the trajectories
of the chaotic attractor of system (4) are swirling around
equilibrium point O and the shape of the attractors
of Figure 5 are different to the one of chaotic attrac-
tors of Figure 2. The chaotic behaviour is confirmed
by the numerical calculation of the Lyapunov expo-
nents which gives LE1 ≈ 0.0527, LE2 ≈ 0 and LE3 ≈
−1.0527. The Lyapunov dimension of the chaotic bub-
bles isDKY ≈ 2.0500. In Figure 5(d), the map is indica-
tive of one-dimensionalmapswith two critical points p1
and p2, which support the occurrence of the antimono-
tonicity phenomenon in the proposed autonomous
Toda Jerk oscillator according to the results of Dawson
et al. [34].

2.4. Partial and total amplitude control

Oscillators with partial and total amplitude controls
are of great interest for some engineering applications
where the desired amplitude level can be achieved
by using one or two constant parameters. This fasci-
nating feature was reported in few chaotic oscillators
[35–40]. In security engineering, chaotic signals are
commonly used to transmit sensitive information over
an unsecured channel. Therefore, the amplitude of the
chaotic signal containing this information must match
the channel characteristic otherwise it will be altered.
For this purpose, the amplitude of the attractors of the
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Figure 5. Phase portraits in planes (x, y) (a), (y, z) (b), (x, z) (c) and the first-returnmap (Maxn+1(x) = f (Maxn(x))) of themaxima
of x(t) (d) for α = 0.39 and β = 5 with initial conditions (x(0), y(0), z(0)) = (0.1, 0.1, 0.1).

system (4) can be adjusted as in [35,36]. Interestingly,
system (4) has feature of partial amplitude control.
Indeed, the state variable x appears only in the third
equation of autonomous system (4) and its amplitude
can be changed by inserting a boosting controller γ into
system (4) as follows:

ẋ = y, (9a)

ẏ = βz, (9b)

ż = −z − αy + 1 − exp(x + γ ). (9c)

System (9) has only one equilibrium point E1 =
(−γ , 0, 0). The local stability of E1 = (−γ , 0, 0) reveals
that if β > 0, system (9) has a Hopf bifurcation when α

passes through the critical value αH = 1. So the stabil-
ity of equilibrium point E1 = (−γ , 0, 0) is independent
of boosting controller γ . In order to check the partial
amplitude control of chaotic system (9), the plot of the
average values of the state variables x, y and z versus
boosting controller γ is shown is in Figure 6.

It is shown in Figure 6 that the average of the state
variable x decreased and other two state variables (y
and z) remain unchanged when boosting controller is
varied. The phase portraits and time series of the state
variable x of system (9) are depicted in Figure 7 for
different of values of boosting controller γ .

As shown in Figure 7, the amplitude of chaotic sig-
nal x is boosted from a bipolar signal to unipolar signal
when increasing boosting controller γ .

Furthermore, system (4) has also the feature of total
amplitude control by inserting x → x/ε, y → y/ε and
z → z/ε in system (9). The parameter ε remains in

Figure 6. (Colour online) The average values of the state vari-
ables x (black), y (blue) and z (red) versus boosting controller γ
for α = 0.235 and β = 5.

the constant and exponential terms as shown in the
following system (10):

ẋ = y, (10a)

ẏ = βz, (10b)

ż = −z − αy + ε[1 − exp(x/ε + γ )]. (10c)

System (10) has only one equilibrium point E2 =
(−εγ , 0, 0). The local stability of E2 = (−εγ , 0, 0)
shows that if β > 0, system (10) has a Hopf bifurca-
tion when α passes through the critical value αH = 1.
So the stability of equilibrium point E2 = (−εγ , 0, 0) is
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Figure 7. Phase portraits in the plane (x, y) and time series of the signal x of system (9) forα = 0.235 and different values of control
parameter γ : γ = −4 (black), γ = 1 (blue) and γ = 6 (red). Initial conditions (x (0), y (0), z (0)) = (0.1, 0.1, 0.1).

Figure 8. (Colour online) Phase portraits in the planes (x, y) and (z, y) of system (10) for γ = 0,α = 0.235 andβ = 5 and different
values of control parameter ε: ε = 0.5 (black), ε = 2 (blue) and ε = 4 (red). Initial conditions (x (0), y (0), z (0)) = (0.1, 0.1, 0.1).

independent of the parameters ε and γ . The phase por-
traits of system (10) are depicted in Figure 8 for different
values of control parameter ε.

As shown in Figure 8, the amplitude of chaotic sig-
nals x, y and z are adjusted simultaneously by the con-
trol parameter ε. The amplitude control scheme adjusts
the amplitude of the attractors for a small value (for
ε =0.5, the amplitude is less than 10) to large values (for
ε =4, the amplitude is greater than 30).

3. Electronic circuit realization of the
autonomous Toda jerk oscillator

In this section, an electronic circuit to model the
autonomous proposed Toda jerk oscillator is designed
and realized (see Figure 9).

The circuit of Figure 9 is built using four operational
amplifiers OP_1 to OP_4, six resistors, three capacitors
C1, C2, C3 of ceramic type and a simple diode D of
reference 1N4148which is used to implement the expo-
nential nonlinearity. The expressions of voltage across
the capacitors are obtained using the Kirchhoff voltage

law as follows:

dVx

dt
= 1

R1C1
Vy, (11a)

dVy

dt
= 1

R2C2
Vz, (11b)

dVz

dt
=− 1

RC 3
Vz − 1

R6C 3
Vy− IS

C3

(
exp

(
Vz

ηVt

)
−1
)
,

(11c)

where Vx, Vy, Vz are the output voltages of the opera-
tional amplifiers OP_1, OP_2, OP_3, respectively. The
parameter IS = 2.862 nA is the reversed saturation cur-
rent, the parameter η = 1.9 is the scaling factor while
the parameter Vt = 26mVis the thermal voltage. The
values of components in the circuit are selected asC1 =
C2 = C3 = C = 18 pF, R3 = R4 = 10 k�, R1 = R =
22M�, the potentiometersR6 = 99M� and 250 k� <

R2 < 1.8M�. Here the values of the parameters β and
α can be chosen by varying the values of R2 and R6,
respectively. The circuit of Figure 9 is studied and the
phased portrait observed on the oscilloscope is shown
in Figure 10.
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Figure 9. (Colour online) Circuit diagram (a) and experimental set-up (b) of the proposed autonomousToda jerk oscillator described
by system (4): The simplicity is remarkable.

Figure 10. (Colour online) Phaseportraits of the chaotic attractors obtained fromtheelectronic circuit of Figure 9(b) andobservedon
theoscilloscope. Inpanels (1), (2) and (3),wedepict thephaseportraits inplanes (Vx , Vy), (Vy , Vz)and (Vx , Vz), respectively. The value
of resistors R2 are R2 = 2.7M� (the first line reproduces Figure 2) and R2 = 866 k� (the second line reproduces Figure 5(a)–(c)).

The reader can see in Figure 10 that the circuit of
Figure 9(b) displays chaotic attractors (chaotic oscilla-
tions in the first line of Figure 10 and chaotic bubbles
in the second line of Figure 10) which are similar to
those obtained numerically in Figures 2 and 5(a)–(c),
respectively.

4. Analysis and combination synchronization
of the fractional-order autonomous chaotic
Toda jerk oscillator

The fractional calculus deals with the generalization of
ordinary differentiation and integration to non-integer
order namely fractional-order. For many years, this
branch of sciencewas considered as a solemathematical

and theoretical subject with nearly no applications
[41,42]. But, in recent decades, fractional calculus has
become an interesting topic among researchers and dif-
ferent applications have been proposed for this field
of science [43–45]. Using the notion of fractional-
order in modelling and simulation of systems may
be a more realistic step because real phenomena are
generally fractional [46]. So, fractional-order calculus-
based modelling tools enable us to describe and model
real processes more accurately than the integer order
methods [47,48]. For example, the capacitors are one
of the crucial elements in integrated circuits and are
used extensively in many electronic circuits. However,
Jonscher [49] demonstrated that the ideal capacitor
cannot exist in nature, because an impedance of the
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form 1/(jωC) would violate causality. So, the necessity
of finding more realistic models of capacitors leads to
the usage of fractional calculus as a modelling tool.
In this section, we consider the fractional-order of
the proposed autonomous Toda jerk oscillator moti-
vated by the fact that for realistic modelling, the elec-
tric characteristics of the capacitors used in the cir-
cuitry realization of the proposed autonomous Toda
jerk oscillator (see Section 3) can include fractional-
order time derivative. The mathematical description
of the commensurate fractional order of the proposed
autonomous Toda jerk oscillator is expressed as follows:

dqx
dtq

= y, (12a)

dqy
dtq

= βz, (12b)

dqz
dtq

= −z − αy + 1 − exp(x), (12c)

where q are the derivative orders satisfying 0 < q ≤ 1.
There are several definitions for the fractional differ-
ential operator: first the Grünwald–Letnikov derivative
is a basic extension of the natural derivative to the
fractional one, which was introduced by Anton Karl
Grünwald in 1867, and then by Aleksey Vasilievich
Letnikov in 1868; the second, the Riemann–Liouville
fractional derivative acquiring by Riemann in 1847 and
the third Caputo derivative [50,51]. Riemann–Liouville
fractional derivatives failed in the description andmod-
elling of some complex phenomena. Caputo derivative
was introduced in 1967 [52] and was able to describe
the modelling of some complex phenomena. In the
present work the authors choose the Caputo definition.
The main advantage of using the Caputo definition is
due to the fact that initial conditions for the fractional-
order differential equations with the Caputo derivatives
are in the same form as those of integer order differen-
tial equations, and there are clear interpretations of the
initial conditions for integer orders [53]. In addition, it
has the benefit of possessing a value of zero when it is
applied to a constant.

4.1. Effect of fractional derivation on the
autonomous chaotic Toda jerk oscillator

To study the effect of fractional derivation on the
chaotic autonomous Toda jerk oscillator for α = 0.235
and β = 5.0, we consider the stability condition of the
equilibrium point to obtain the necessary condition
of chaos occurrence. The fractional-order system (12)
has a unique equilibrium point O = (0, 0, 0). Evalua-
tion of the Jacobian matrix at the equilibrium point
O = (0, 0, 0) yields the following eigenvalues: λ1 =
−1.839228065, λ2, 3 = 0.4196140325 ± 1.594508035j.
From [20], we can get the following inequality in order
to determine the stability condition: arg(0.4196140325

± 1.594508035j) > qπ/2 ⇒ q < 0.8361801503. Now
according to [20], equilibrium point O is saddle point
of index 2. In order to find the lowest order of sys-
tem (12) to remain chaotic, we investigate numerically
the dynamics of this system by plotting the bifurcation
diagram illustrating the local maxima and the maxi-
mum Lyapunov exponent diagram of the state variable
x(t) while the fractional-order q is varied as depicted in
Figure 11.

We can notice that the period-doubling cascade
to chaos occurs for increasing values of q: period-1-
oscillations for q < 0.94, period-2 for 0.94 < q < 0.98,
period-4-oscillations for 0.98 < q < 0.995 until chaos
for 0.995 < q < 1.0. These numerical simulations
reveal that for q ≥ 0.995 the fractional-order system
(12) is chaotic. Hence, it is clear that the lowest order
for the commensurate fractional-order system (12) to
show chaos is 3q ≈ 2.985. We present in Figure 12
the phase portraits in the planes (x, y) of significant
results obtained for specific values of commensurate
fractional-order q obtained from the numerical simu-
lations of fractional-order system (12).

For q = 0.996, Figure 12(a) shows one-scroll chaotic
attractor. Period-8-oscillations (see Figure 12(b)),
period-4-oscillations (see Figure 12(c)), period-2-
oscillations (see Figure 12(d)) and period-1-oscillations
(see Figure 12(e)) are shown at q = 0.994, q = 0.99,
q = 0.96 and q = 0.9, respectively. The fractional-
order system (12) becomes non-chaotic and its trajecto-
ries converge to its equilibrium point O at q = 0.8 (see
Figure 12(f)).

4.2. Combination synchronization of the
fractional-order autonomous chaotic Toda jerk
oscillator

The aim of this subsection is to provide an example
of combination synchronization of three fractional-
order proposed autonomous chaotic Toda jerk oscil-
lators where the first two of them are the drive type
and the third is the response oscillator. In a common
drive-response scheme, the drive system is responsible
for transmission of the signal, however for the combina-
tion synchronization; two chaotic systems are capable
of transmitting signal which might have harder anti-
hack capability than transmitted by a typical drive-
response model [54–56]. The drive-response systems
of fractional-order proposed autonomous Toda jerk
oscillators are expressed, respectively as follows:

dqxm
dtq

= ym, (13a)

dqym
dtq

= βzm, (13b)

dqzm
dtq

= −zm − αym + 1 − exp(xm), (13c)
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Figure 11. (a) Bifurcation diagram showing the local maxima of the state variable x and (b) the maximum Lyapunov exponent dia-
gram versus the commensurate fractional-order q. The parameters are α = 0.235 and β = 5. Initial conditions (x(0), y(0), z(0)) =
(0.1, 0.1, 0.1).

Figure 12. Phase portraits of the fractional-order system (12) with commensurate fractional-orders: (a) q = 0.996, (b) q =
0.994, (c) q = 0.99, (d) q = 0.96, (e) q = 0.9 and (f ) q = 0.8. The other parameters are α = 0.235 and β = 5. Initial conditions
(x(0), y(0), z(0)) = (0.1, 0.1, 0.1).
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wherem = 1, 2 and

dqxs
dtq

= ys + u1, (14a)

dqys
dtq

= βzs + u2, (14b)

dqzs
dtq

= −zs − αys + 1 − exp(xs) + u3, (14c)

where ui (i = 1,2,3) are controllers to be designed
such that the three systems can be synchronized.
For this purpose, let the state errors be e = Ax +
By − Cz where x = (x1, y1, z1)T , y = (x2, y2, z2)T , z =
(xs, ys, zs)T , e = (ex, ey, ez)T ,A, B, C ∈ R3×3. Choose
some suitable control functions ui (i = 1,2,3), such that
limt→∞||Ax + By − Cz|| = 0 then the three systems
will approach synchronization. For the convenience
of our discussions, we assume that A = diag(η1,η2,η3),
B = diag(γ1,γ2,γ3), C = diag(ε1,ε2,ε3), we get the error
dynamical system as follows:

ex = η1x1 + γ1x2 − ε1xs, (15a)

ey = η2y1 + γ2y2 − ε2ys, (15b)

ex = η3z1 + γ3z2 − ε3zs. (15c)

It is easy to see from the set of Equation (15) that the
error dynamical system can be obtained as follows:

dqex
dtq

= η1
dqx1
dtq

+ γ1
dqx2
dtq

− ε1
dqxs
dtq

, (16a)

dqey
dtq

= η2
dqy1
dtq

+ γ2
dqy2
dtq

− ε2
dqys
dtq

, (16b)

dqez
dtq

= η3
dqz1
dtq

+ γ3
dqz2
dtq

− ε3
dqzs
dtq

. (16c)

Substituting Equations (13), (14) and (15) into Equa-
tions (16a) to (16c) yields

dqex
dtq

= η1y1 + γ1y2 − ε1ys − ε1u1, (17a)

dqey
dtq

= βη2z1 + βγ2z2 − βε2zs − ε2u2, (17b)

dqez
dtq

= −ex − αey + (η3 + γ3 − ε3)

− [η3 exp(x1) + γ3 exp(x2) − ε3 exp(x3)]

− ε3u3. (17c)

If the controller laws are chosen as follows:

u1 = (η1y1 + γ1y2 − ε1ys − v1)/ε1, (18a)

u2 = (βη2z1 + βγ2z2 − βε2zs − v2)/ε2, (18b)

u3 = [η3 + γ3 − ε3 − η3 exp(x1) − γ3 exp(x2)

+ε3 exp(xs) − v3]/ε3, (18c)

where vi are chosen by suitable linear functions of the
errors terms ei(i = x, y, z), we choose it such that the
error dynamics become stable. The general formof such
functions is as follows:⎛

⎝vx
vy
vz

⎞
⎠ = Ā

⎛
⎝ex
ey
ez

⎞
⎠ , (19)

where A =
⎛
⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎠ is a 3 × 3 real matrix.

Based on the vi, we need to make the conditions
|arg(λi)| > qπ/2 satisfied where λi are eigenvalues
of the error dynamical system. If we choose a11 =
0, a12 = 1, a13 = 0, a21 = 0, a22 = 0, a23 = 8.5,
a31 = −1, a32 = −1.765, a33 = −2, then the error

Figure 13. Synchronization errors between the drive and response Toda jerk oscillators (13) and (14) for α = 0.235, β = 5,
q = 0.996 and the control parameters η1 = η2 = η3 = 1, γ1 = γ2 = γ3 = 1, ε1 = ε2 = ε3 = 0.5.
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dynamical system is

dqex
dtq

= ey, (20a)

dqey
dtq

= 8.5ez, (20b)

dqez
dtq

= −2ex − (1.765 + α)ey − 2ez. (20c)

Since α = 0.235 and q = 0.996, we get three eigenval-
ues λ1 = −1.06224279, λ2 = −0.4688786033 + 3
.972911655j and λ3 = −0.4688786033 - 3.972911655j
which satisfy |arg(λi)| = 1.688271805 > 0.498π . This
ensures that the error states asymptotically converge
to zero as t → ∞ and therefore the combination syn-
chronization between the drive-response systems (13)
and (14) is achieved. For the purpose of numer-
ical simulations, we set α = 0.235,β = 5 and q =
0.996 with the initial conditions of the drive and
response Toda jerk oscillators: (x1(0), y1(0), z1(0)) =
(0.1, 0.1, 0.1), (x2(0), y2(0), z2(0)) = (−0.1,−0.1,−0.1)
and (xs(0), ys(0), zs(0)) = (−0.2,−0.2,−0.2) to ensure
chaotic oscillations. In Figure 12, the synchroniza-
tion errors between the drive and response proposed
autonomousToda jerk oscillators (13) and (14) are plot-
ted in order to check the effectiveness of the design
controllers.

Form Figure 13, one can see the asymptotical con-
vergence of the error states to zero. As shown in the
numerical simulations, the design controllers can syn-
chronize the drive and response proposed autonomous
Toda jerk oscillators (13) and (14).

5. Conclusion

This article reported results on the analysis of an
autonomous Toda jerk oscillator and combination syn-
chronization of its fractional-order form. By using the
Routh–Hurwitz stability criterion and linear stabil-
ity of the only equilibrium point, it was found that
Hopf bifurcation occurs in the proposed autonomous
Toda jerk oscillator. For specific parameters, the pro-
posed autonomous Toda jerk oscillator exhibited one-
scroll chaotic attractor, antimonotonicity, periodic and
chaotic bubbles. By adding two new parameters in the
proposed autonomous Toda jerk oscillator, a flexible
chaotic autonomous jerk oscillator with partial or total
amplitude control was achieved. One-scroll and bubble
chaotic attractors obtained during numerical simula-
tions were confirmed using electronic circuit realiza-
tion of the proposed autonomous Toda jerk oscilla-
tor. Chaos was shown to exist in the fractional-order
Toda jerk oscillator with orders less than three. Using
the nonlinear feedback control technique, combination
synchronization was obtained between drive-response
fractional-order of the proposed autonomous chaotic
Toda jerk oscillators. Conditions for achieving chaos

synchronization of fractional-order of the proposed
autonomous chaotic Toda jerk oscillators were illus-
trated and numerical simulations were carried out to
verify the analytical study. This work reveals that the
proposed autonomous Toda jerk oscillator can generate
self-excited attractors when its parameterα <1 because
its only equilibrium point is unstable for α <1. Since its
only equilibrium point is stable for α >1, the investiga-
tion of hidden attractors in the proposed autonomous
Toda jerk oscillator should be further done in future
works.
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