
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: 0005-1144 (Print) 1848-3380 (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

Artificial neural network model for arrival time
computation in gate level circuits

S. R. Ramesh & R. Jayaparvathy

To cite this article: S. R. Ramesh & R. Jayaparvathy (2019) Artificial neural network
model for arrival time computation in gate level circuits, Automatika, 60:3, 360-367, DOI:
10.1080/00051144.2019.1631568

To link to this article: https://doi.org/10.1080/00051144.2019.1631568

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 28 Jul 2019.

Submit your article to this journal

Article views: 384

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2019.1631568
https://doi.org/10.1080/00051144.2019.1631568
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1631568
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1631568
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1631568&domain=pdf&date_stamp=2019-07-28
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1631568&domain=pdf&date_stamp=2019-07-28

AUTOMATIKA
2019, VOL. 60, NO. 3, 360–367
https://doi.org/10.1080/00051144.2019.1631568

REGULAR PAPER

Artificial neural network model for arrival time computation in gate level
circuits

S. R. Ramesh a and R. Jayaparvathyb

aDepartment of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore, India; bDepartment of Electronics
and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India

ABSTRACT
Advances in the VLSI process technology lead to variations in the process parameters. These pro-
cess variations severely affect the delay computation of a digital circuit. Under such variations,
the various delays, i.e. net delay, gate delay, etc., are no longer deterministic. They are random in
nature and are assumed to be probabilistic. They keep changing, based on factors such as pro-
cess, voltage, temperature, and a fewothers. This calls for efficient tools to perform timing checks
on a design. This work presents a technique to compute the arrival time of a digital circuit. The
arrival time (AT) is computed using two different timing engines, namely, static timing analysis
(STA) and statistical static timing analysis (SSTA). This work also aims to eliminate number of false
paths. It uses a fast and efficient filteringmethod by utilizing ATPG stuck-at faults and path delay
faults. ISCAS-89 benchmark circuits are used for implementation. The results obtained using the
probabilistic approach aremore accurate than the conventional STA. It has been verified with an
Artificial Neural Network (ANN)model. The arrival time calculatedusing SSTA shows7% improve-
ment over that of STA. The absolute error is reduced twofold in the case of the ANN model for
SSTA.

ARTICLE HISTORY
Received 7 January 2019
Accepted 31 May 2019

KEYWORDS
Static timing analysis;
statistical static timing
analysis; arrival time; false
paths; artificial neural
network

1. Introduction

Semiconductor devices play a very important role in
today’s world. Without them, advancements in digi-
tal integrated circuits would be impossible. Following
technological advancements, it has been possible to
mount tens of thousands of semiconductor devices on
a small platform. At the same time, the semiconduc-
tor process technology shrinks in size. The intercon-
nects that connect various portions of the circuitry have
become a reason for reduction of circuit performance in
these devices. This is due to the increasing dependency
of the devices on the environmental conditions. A few
factors may be identified by the designers at the time
of design, whereas the prediction of others is very dif-
ficult if the design is not complete. Some of them vary
during the operation and others are not known for years
and are out of the designer’s control. The challenge is to
manufacture ICs that also function without much trou-
ble in extreme cases. For any digital circuit, knowledge
of the delay of the circuit and other timing constraints
such as the setup time, hold time, etc., are very impor-
tant. Hence timing analysis plays a crucial role in VLSI
chip design. This process helps to analyse whether a
chip designmeets the timing constraints or not. Timing
analysis mainly focuses on speed and accuracy.

Clock and sequential components are the basis for
any timing analysis [1]. For an integrated circuit to
function properly, it must meet the time constraints set
by the user. Constraints such as setup time and hold
time must be verified for every flip-flop in the design.
Checking the constraints of the circuit ensures that data
which are launched from one flip-flop is captured by
another flip-flop without any delays or errors. For dig-
ital circuits to be functionally correct, they must run
at a certain predefined rate, sequence and specification.
Violation of these criteria will affect the system timing
and result in errors. Thus, timing analysis is the first
operation performed to debug a system and identify the
cause of errors.

There are two engines for timing analysis, namely,
the static timing analysis (STA) engine and the sta-
tistical static timing analysis (SSTA) engine. STA is
a method that validates the timing of a circuit with-
out using an input test vector, and the whole circuit
need not be simulated. It is implemented such that it
is input-independent and finds the extreme or worst-
case delay of the circuit by considering all possible
input combinations. The delay computation and tim-
ing metrics can be obtained by circuit simulation. It
is a very time-consuming process and the results are

CONTACT S. R. Ramesh sr_ramesh@cb.amrita.edu Department of Electronics and Communication Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore, India

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1631568&domain=pdf&date_stamp=2019-08-13
http://orcid.org/0000-0003-4961-0208
mailto:sr_ramesh@cb.amrita.edu
http://creativecommons.org/licenses/by/4.0/

AUTOMATIKA 361

based on theoretical assumptions. There is always a
trade-off between speed and accuracy in STA. Techno-
logical advances in the nanometre regime lead to many
parametric variations. Control of the process parame-
ters is very important and increasingly difficult. Pro-
cess parameters are random in nature. To account for
these process parameters, SSTA is preferred. The objec-
tive of SSTA is to improve the accuracy without much
trade-offs in speed, by considering most of the process
variables.

The rest of the paper is organized as follows: Section
2 deals with the background and Section 3 highlights
the proposed method. Section 4 depicts the implemen-
tation and Section 5 presents the results. Section 6
draws a conclusion.

2. Background and terminologies

The basic terms used in timing analysis are defined as
follows:

• A timing graph is a directed acyclic graph (DAG) rep-
resenting a circuit. A circuit is converted into a graph
with vertices(nodes) and edges. In timing graphs,
the gates of the circuit are represented by vertices,
and the interconnects or wires between the gates are
represented by edges.

A timing graph G is a graph with a set of vertices V
and set of edges E. It is represented asG = {V, E}where
V ={v1,v2,v3, . . . ,vk}and E={e1,e2,e3, . . . ,en}.

Here, each edge e which belongs to E is simply an
ordered pair of vertices e = (vi,vj).

• Arrival time(AT) at an edge/node in a circuit is
the maximum delay for any primary input to the
edge/node. It can be also defined as the time that is
required for information to travel through the data
path.

• Required time (RT) at an edge/node in a circuit is the
maximum possible delay for any primary output to
the edge/node. It can also be stated as the time taken
by the clock signal to traverse through the clock path.

STA is deterministic, as it considers all the variables
such as process, temperature, voltage, PVT,etc., to be
fixed. Hence, the results are more pessimistic. To intro-
duce variations into timing analysis, the gate delays and
interconnect delays are assumed to be probabilistic in
nature. This improves the timing behaviour of circuits
[2]. SSTA has two major approaches, namely, path-
based SSTA and block-based SSTA. In the path-based
timing approach, the gate delays and the wire delays on
the specified paths are added together. Identification of
the required path is very important in this technique.
There is a high probability that the paths which are rel-
evant in timing analysis may not be selected as the path

Figure 1. Circuit and Timing graph.

of interest. A circuit and its timing graph are shown in
Figure 1. It has one inverter and three 2-input NAND
gates. A timing graph is denoted as G= (V,E) where V
denotes the vertex and E denotes the edge. The gates are
represented as g0, g1, g2 and g3. Each gate denotes a ver-
tex in the timing graph. Similarly, the edges in the graph
are the wires in the circuit. In addition, there are source
and sink nodes. All the primary inputs to the graph are
connected to the source node and the primary outputs
to the sink node. Graph traversal is performed from the
source node to the sink node via all possible paths in the
graph.

Path selection plays a vital role in path-based SSTA.
Here, the timing is performed for selected critical paths
only. As the selection of a subset of paths is time-
consuming, for large circuits the computational com-
plexity increases with the circuit size. Therefore, path-
based SSTA does not give satisfactory results.

To overcome the possible errors due to the path-
based approach, a block-based approach has been pro-
posed. By traversing forward and backward in a circuit,
the block-based SSTA creates the arrival time and the
required time for each of the nodes in the circuit graph.
In comparison with path-based SSTA, there is com-
pleteness and the path selection is avoided. The main
area of concern for block-based SSTA is when statistical
maximum operation correlations are to be considered.
In block-based SSTA, progressive computation takes
place. The timing analysis is performed in the forward
or backward direction, block by block for each gate
of the timing graph, without considering the path his-
tory. Hence, the computational complexity in case of
the block-based SSTA changes linearly with an increase
in circuit size.

362 S. R. RAMESH AND R. JAYAPARVATHY

If the probabilistic distributions of the gate and the
wire delays are known, the statistical timing behaviour
of the target circuits can be improved [2]. False paths
represent one of the challenges in SSTA. The issues
due to false paths are handled using the path-based
approach [3]. In [4], a statistical approach is pro-
posed in which the gate and wire delays are not worst-
case examples in linear time. Instead, they are mod-
elled using stochastic values. In [5], statistical delay
modelling with gate sizing is proposed. In [6], node
delay dependency and its timing analysis are discussed.
A probabilistic retiming method is proposed in [7]
wherein the circuits are treated as timing graphs and
each vertex denotes a combinational element of the cir-
cuit with probabilistic characteristics. In [8], the gate
delays and arrival time aremodelled as discrete random
variables. A block-based timing with false path analysis
is implemented in [9]. The authors in [10] propose an
exact solution that can compute the lower and upper
bounds of the delay. A path-based statistical timing
approach is proposed in [11]. Here, every path is mod-
elled by the sum of individual gate delays in the path
and each gate delay is modelled as a random variable.
Then, a linear statistical model for the gate delay is cre-
ated by taking into account small deviations on either
side of the nominal value, and the modelled gate delays
are then added together to obtain the path delay. The
gate delay and the arrival times aremodelled as random
variables in [12], where a block-based approach ismen-
tioned in which the gate delays are modelled as PDFs
and the arrival times are modelled as cumulative dis-
tribution functions (CDFs). Thus, this is efficient and
simple for both the SUM and MAX operations.

Developing an appropriate statistical model for the
gate delays is the key task in SSTA. To compute the
arrival time, the SUM and MAX operators must be
used. The delay PDFs are assumed to be probabilis-
tic with normal distributions. When they are directly
added(SUM), an error is introduced. Therefore, instead
of the statistical SUM, a statistical convolution integral
is used. Consider gate delays denoted by delay PDFs f 1
and f 2 that follownormal distributions. Assumem1 and
m2 denote the mean values and s1 and s2 are the sigma
values of the delay PDFs. For a cascaded gate connec-
tion, the output delay PDF is given by the convolution
integral of f 1 and f 2. This also has a normal distri-
bution for the output, with µ = m1 +m2 as the mean
and σ = √

(s12 +s22). TheMAXoperation in statistical
static timing analysis is used to compute the delay at the
output of a multiple-input gate. The maximum delay of
all the primary outputs is obtained and is considered as
the required arrival time in SSTA.

The method in [13] provides slack at each node and
hence addresses the severity of the timing problem.
Several ways to increase the circuit performance and
the usage of various delay models are considered in
[14]. Various statistical static timing methods and their

degrees of focus on accuracy and speed are reported in
[15]. A path can also be termed false if the transitions
at the input cannot be propagated to the output along
the path [16]. STA-reported false and true critical path
delay values may or may not be true [17]. Up to 30% of
paths in the circuit may be reported as false paths [18].
Therefore, it is predicted that static timing analysis-
reported critical paths may be false. This method also
neglects simultaneous input transitions. The main rea-
son is that static timing analysis is built on a single input
transition (SIT) hypothesis [19].

A. Artificial Neural Network

The most inherent computational model of the
human brain is ANN. Its application varies over a
wide range from prediction of stock market to pat-
tern recognition. It can use multilayer perceptron and
number of hidden layers to solve problems of any com-
plexity. ANNs exhibit parallel architecture [20]. Hence
they can be implemented in hardware and software.
The size of neural network and its weight adaptation
scheme are the major bottlenecks to be decided before
implementation.

B. False paths

In the actual functionality of a design, certain paths
may not be real. Those paths can be turned off while
performing STA, by setting them as false paths. These
paths are neglected while STA is carried out. False paths
can exist from one clock domain to another, from the
clock pin of a sequential element to the input of another
element, through a pin of a cell ormultiple cells and also
via other combinations. When such a path is associated
with a pin/port, all paths that go through that particular
pin/port are ignoredwhile performing timing checks. If
false paths are not identified, a large design space is con-
sumed. Therefore, the focus on real paths is misleading,
to a large extent. The analysis time also increases with
a large increase in false paths in circuits. Constraints
are fed to the tool to set the false paths. A simple false
path is shown in Figure 2. The path starting from reg-
ister B and ending at register C can never be sensitized.
This happens when MUX1 selects the output of regis-
ter B and the combinational logic output is deselected
at MUX2.

Path criticality: a critical path can also be regarded
as a path which violates the timing constraints of the
design. The criticality of a path is the probability of
manufacturing a chip in which the path of interest is
critical [15,21]. The process of augmenting an exist-
ing combinational tool to identify the false paths in
sequential circuits is dealt with in [22].

Critical path: the critical path is the maximum path
in the circuit which violates the timing constraints.

AUTOMATIKA 363

Figure 2. False path in circuit.

Efficient techniques were reported in [23] to iden-
tify more false paths using ATPG. STA considers the
delay of each gate and logic cell in the propagating path
and does not consider the behaviour or functionality
of the design [23]. Not all paths will get a chance to be
activated in the real circuit. These inactivated paths are
referred to as false paths. If any false path is considered
as a working critical path, the results are conservative,
and the performance of the circuit is degraded. Various
techniques associated with slack, false paths and timing
issues and constraints are detailed in [24]. ANN based
approach is dealt in [25].

3. Proposedmethod

The primary intention of this work is twofold, focused
on refinement in timing analysis and elimination
of false paths[26]. The pessimistic nature of STA is
explored, and the causes are highlighted. The study first
aims to calculate the arrival time of circuits using STA.
In addition to this, an SSTA engine is also developed
for arrival-time calculation. The computation times for
STA and SSTA are also noted. Further elimination of
false paths is carried out.

The major contributions of this work are summa-
rized as follows.

(i) Development of STA engine for arrival-time cal-
culation

(ii) Expansion of STA methodology to SSTA formu-
lation for arrival time calculation

(iii) Computation-time calculation in both timing
engines

(iv) ANN-based arrival time computation model.
(v) False path elimination in circuits using the ATPG

filtering technique.

STA cannot handle process variations, which rep-
resents a major drawback. To overcome this, the con-
cept of SSTA is introduced, which represents a major
advantage in VLSI. These techniques work on various
design corners and the outputs at each stage are mod-
elled with respect to probabilistic distributions. SSTA is
not pessimistic in nature, as it takes into account pro-
cess and temperature variations. The SSTA arrival-time
computation follows the procedure shown in Figure 3.
Benchmark files of the circuits are read using C code,
and the timing graph is generated using the concept of
linked lists. The delay library must be extracted from
the SDF file and the information is linked to the timing
graph. The graph must be levelized with the primary
inputs at the first level and the primary outputs at the
last level. After levelization, the PDFs of the delay val-
ues at each edge in the timing graph are calculated.
ANN-based arrival time computation model is utilized
to verify the correctness of two-timing engines. Leven-
berg–Marquardt algorithm is used in this work for the
ANN approach.

4. Implementation

The arrival-time computation of the ISCAS-89 bench-
mark circuits using static timing analysis (STA) and
statistical static timing analysis (SSTA)were performed.
STA for circuits is described using the flow diagram
shown in Figure 3 and the SSTA flow is illustrated in
Figure 4. The Verilog file of the circuit must be given
to the design compiler. This generates a netlist file for
the circuit and a delay file in standard delay format
(SDF). The netlist is a description of the connectivity
of an electronic circuit. The SDF file contains the delay
information for the gates and interconnects.

These files generate the timing report, along with
other details like the number of paths, the start point

364 S. R. RAMESH AND R. JAYAPARVATHY

Figure 3. STA flow.

Figure 4. SSTA flow.

and end point of each path and the slack of each path.
This is achieved using an STA tool. The tool identifies
each path in the circuit and computes the arrival time
of every path with the help of fixed information on gate
delays. The overall AT is the maximum of the ATs of all
path groups.

In the delay library extracted, three delay values,
i.e. minimum, typical and maximum values are given.
These values are thenmodelled as normal distributions
with a mean and standard deviation at each gate. They
are appended to the nodes of the timing graph. The
graph is traversed level by level using graph traversal
algorithms such as the breadth-first search (BFS) and
simultaneously performing statistical operations such
as the statistical maximum and convolution integral on
each edge and fan-out of the gates of the timing graph.
Circuit levelization is generally performed to ensure
that the components in the circuit are arranged in an
orderly fashion. It is like one component precedes a
second component. Hence the evaluation can be car-
ried out in an orderly fashion. In the proposed work
levelization is used to perform faster simulations.

Finally, the delay is propagated via graph traversal
and the total arrival time is computed at the last level by

Figure 5. Types of ANN layers.

adding the values fromprevious levels. Thus, the overall
arrival time of the circuit is obtained.

The parameters used to model the ANN are the
number of inputs, number of outputs, the gate count,
the number of nets, the dynamic power, the circuit
levels and the gate count in the critical path. The out-
put of the network is a function of input. It is affected
by the weights and transfer function.80% of the sam-
ples are used for training and 20% of the samples are
used for testing. The various types of layers used in an
ANN are depicted in Figure 5. Any neural network will
have the following layers: input, hidden and output. The
number of hidden layers depends on the type of appli-
cation. This approach considered one hidden layer and
20 hidden neurons.

The extracted critical paths are converted to Tetra-
MAX [27] readable critical paths. In TetraMAX [27],
stuck-at faults are added to all the critical paths to check
the functionality of each path. If any path is identified as
non-functional, it is detected and set as a false path con-
straint in PrimeTime [28]. This process of detecting and
eliminating false paths is continued until all false paths
are eliminated from the circuit. The methodology for
false path elimination is illustrated in Figure 6.

Since STA cannot solve the false path problem, a
common approach is the use of dynamic timing analy-
sis (DTA). This consumes great deal of time and effort.
The optimized gate-level netlist is obtained from the
Synopsys Design compiler [29–31]. The netlist thus
obtained is imported to the design-for-test (DFT) com-
piler [32,33]. Scan chain is inserted at this stage and the
netlist is extracted for further requirements. ANN and
delay based SSTA are reported in [34,35].

5. Results

ANN has the capability of determining the nonlinear
relation between the input and the output. Hence it is
easier to estimate the output predicted using both tim-
ing engines. Table 1 shows the results for levelization of
the timing graph. The primary inputs, primary outputs
and levels are identified based on the node properties.

Table 2 shows the arrival times for STA and SSTA.
It is evident from Table 2 that the arrival times for

SSTA are lower than for STA. To achieve effective func-
tioning of the circuit, the clock may have to be slowed
down in many cases.

AUTOMATIKA 365

Figure 6. False path elimination method.

Table 1. ISCAS-89 benchmark circuits – primary inputs, pri-
mary outputs and levels.

Benchmarks Primary inputs Primary outputs Levels

S400 3 6 7
S820 18 19 9
S832 18 19 9
S1196 14 14 15
S1238 14 14 8
S1423 17 5 9
S1488 8 19 12
S5378 35 49 21
S9234 19 22 29
S13207 31 121 37
S15850 14 87 44
S35932 35 320 15

Consider the circuit S1488. The arrival time using
STA was 799 ps and that using SSTA was 772.13ps.
On average, the arrival times estimated using SSTA
showed a 7% improvement over the STA values. Thus,
the pessimistic nature of STA is proved.

Table 3 shows the computation time for STA and
SSTA. The computation time for SSTA is greater than
for STA in most cases. The experiments were carried
out on a 3.30 GHz Intel Core i5-2500 processor.

It is depicted from Figure 7 that the arrival times
computed using SSTA engine with ANN provides less
absolute error than STA. Hence it is proven that SSTA

Table 2. Arrival time for STA and SSTA.

Benchmarks STA (ps) SSTA (ps)

S400 198 190.2
S820 322 310.4
S832 376 344.2
S1196 616 579.4
S1238 657 633.1
S1423 702 675.2
S1488 799 772.13
S5378 947 940.78
S9234 1106 1093.87
S13207 1379 1361.05
S15850 1685 1498.24
S35932 501 307.49

Table 3. Computation time for STA and SSTA.

Benchmarks STA(s) SSTA(s)

S400 0.000+ 0.000+
S820 0.000+ 0.000+
S832 0.001 0.001
S1196 0.010 0.020
S1238 0.010 0.020
S1423 0.010 0.010
S1488 0.010 0.020
S5378 0.270 0.280
S9234 0.870 0.940
S13207 1.730 1.850
S15850 2.530 2.680
S35932 8.730 10.02

results are valid and matches closely with the actual
model.

366 S. R. RAMESH AND R. JAYAPARVATHY

Figure 7. Arrival Time with and without ANN.

Table 4. Number of critical paths before andafter filtering tech-
nique.

Design

Total
critical

paths (FFs)

Total false
critical paths
identified (FFs)

STA critical
pathdelay

(ns)

True
Synthesizable
critical path
delay (ns)

S400 21 10 1.15 1.12
S820 16 0 2.90 2.90
S832 32 0 1.89 1.89
S1196 18 3 2.03 1.96
S1238 18 4 1.77 1.74
S1423 74 50 5.22 4.87
S1488 6 2 1.66 1.60
S5378 179 13 1.59 1.55
S9234 211 15 2.07 2.03
S13207 638 52 2.85 2.79
S15850 534 105 4.36 4.25
S35932 1,728 28 13.39 13.20

Table 5. STA true critical path delays with STA false critical path
delays.

Design
STA true critical path

delay (ns)
STA critical path delay

(ns)

S400 1.14 1.15
S820 2.90 2.90
S832 1.89 1.89
S1196 2.02 2.03
S1238 1.76 1.77
S1423 5.22 5.24
S1488 1.66 1.66
S5378 2.05 2.07
S9234 2.63 2.68
S13207 2.54 2.85
S15850 4.35 4.36
S35932 13.39 13.39

Table 4 shows the total critical paths and the total
false critical paths. STA-reported critical paths with
path delays and the true synthesizable critical path with
path delay after filtering of false paths are also reported.
In S832 and S820, no false path is reported; hence, the
STA critical path is the true critical path. Table 5 shows
true critical path delays and false critical path delays.

6. Conclusion

In this paper, several ways to perform an efficient tim-
ing analysis were explored and the arrival times for
ISCAS-89 benchmark circuits were obtained. The STA
and SSTA arrival times are calculated and compared.
It is seen that the values of SSTA are lower than the
corresponding STA values. STA and SSTA arrival times
are compared with the ANN model. It is proved that
the ANN model outperforms the SSTA computation
and produces less absolute error. Static timing anal-
ysis reports the critical paths and false paths which
are not accurate, and the reported critical paths may
or may not be synthesizable. In addition, static tim-
ing analysis cannot identify the number of false critical
paths in the circuit. Dynamic simulation is the solution
for false path identification. The proposed methodol-
ogy identifies the number of false paths in the circuit
through ATPG, and false paths are eliminated through
set false-path constraints.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

S. R. Ramesh http://orcid.org/0000-0003-4961-0208

References

[1] Devadas S, Jyu H, Keutzer K, et al. Statistical tim-
ing analysis of combinational circuits. Proceedings of
IEEE International Conference on Computer Design,
October 1992. p. 38–43.

[2] Jyu H, Malik S. Statistical timing optimization of com-
binational circuit. Proceedings of IEEE International
Conference on Computer Design, October 1993. p.
77–80.

http://orcid.org/0000-0003-4961-0208

AUTOMATIKA 367

[3] Brashear RB, Menezes N, Chanhee O, et al. Predicting
circuit performance using circuit level statistical tim-
ing analysis. Proceedings of European Design and Test
Conference, March 1994. p. 332–337.

[4] Berkelaar M. Statistical delay calculation: a linear time
method. Proceedings of International Workshop on
Timing Analysis TAU. p. 1585–1588.

[5] Jacobs E, Berkelaar M. Gate sizing using a statistical
delay model. Proceedings of European Design and Test
Conference, March 2000. p. 283–290.

[6] Lin R, Wu M. A new statistical approach to timing
analysis of VLSl circuits. Proceedings of International
Conference on VLSl Design, January 1998. p. 507–513.

[7] Tongsima S, Chantrapomchai C, Sha EHM, et al. Opti-
mizing circuits with confidence probability using prob-
abilistic retiming. Proceedings of International Sympo-
sium on Circuits and Systems, June 1998. p. 270–273.

[8] Liou JJ, Cheng KT, Kundu S, et al. A fast statistical
timing analysis by probabilistic event propagation. Pro-
ceedings of ACMDesign Automation Conference, June
2001. p. 661–666.

[9] Liou JJ, Krstic A, Wang LC, et al. False path aware
statistical timing analysis and efficient path selection
for delay testing and timing validation. Proceedings of
ACM Design Automation Conference, August 2002. p.
566–569.

[10] Agarwal A, Zolotov V, Blaauw D, et al. Statistical timing
analysis using bounds. Proceedings of Design, Automa-
tion and Test in Europe, March 2003. p. 348–353.

[11] OrshanskyM, Keutzer K. A general probabilistic frame-
work forworst-case timing analysis. Proceedings of
ACM Design Automation Conference, June 2002. p.
556–561.

[12] Devgan A, Kashyap C. Block based timing analysis with
uncertainty. Proceedings of ACM Design Automation
Conference, November 2003. p. 607–614.

[13] Hitchcock RB. Timing verification and the timing anal-
ysis program. Proceedings of Design Automation Con-
ference, February 2006. p. 594–603.

[14] Jouppi NP. Timing analysis for nMOS VLSI. Proceed-
ings of Design Automation Conference, February 2006.
p. 411–418.

[15] Ramesh SR, Jayaparvathy R. Improved statistical static
timing analysis using refactored timing graphs. J CTN.
November 2016;13(11):8879–8884.

[16] Jongyoon J, Kim T. Variation-aware false path analy-
sis based on statistical dynamic timing analysis. IEEE
Trans Comput Aided Des Integr Circuits Sys. October
2012;31(11):1684–1697.

[17] Wang SJ, Tzeng TH, Li KSM. Fast and accurate sta-
tisticalstatic timing analysis. Proceedings of Interna-
tional Symposium on Circuits and Systems, July 2014.
p. 2555–2558.

[18] Jun X, Li X. Improve accuracy of delay element by fil-
tering false path for low power desychronized circuits.
Proceedings of International Symposium on Circuits
and Systems, July 2011. p. 845–848.

[19] Tsai S, Huang CY. A false-path aware formal static
timing analyzer considering simultaneous input transi-
tions. Proceedings of Design Automation Conference,
August 2009. p. 25–30.

[20] Mohankumar N, Bhuvan B, Nirmala Devi M, et al.
A modified genetic algorithm for evolution of neural
network in designing an evolutionary neuro-hardware.
Proceedings of International conference on genetic and
evolutionary methods, July 2008. p. 108–111.

[21] CrouchAL, Potter JC. Invited-A box of dots: using scan-
based path delay test for timing verification. Proceed-
ings of Design Automation Conference, August 2016. p.
1–6.

[22] Bell JL, Sakallah K, Whittemore J. False path analysis in
sequential circuits. In 8th International Workshop on
Power and Timing Modeling, Optimization and Simu-
lation, August 2007. p. 1–10.

[23] Zeng J, Abadir M, Abraham J. False timing path identi-
fication using ATPG techniques and delay-based infor-
mation. Proceedings of Design Automation Confer-
ence, June 2002. p. 562–565.

[24] Parnerkar SV. Timing false path identification using
ATPG techniques [MSDissertation]. University ofWis-
consin.

[25] Nair BB, Kumar PN, Prasad SR, et al. Forecasting short
term stock prices using sentiment analysis and arti-
ficial neural networks. J Chem Pharmac Sci. March
2016;9(1):533–536.

[26] Bhasker J, Chadha R. Static timing analysis for nanome-
ter designs: a practical approach. Springer Science Busi-
ness Media; 2009.

[27] Synopsys Inc. (2014). HDL compiler for verilog user
guide version J – 2014.09, September 2014.

[28] Synopsys Inc. (2015). PrimeTime user guide version K
–2015.12, December.

[29] Synopsys Inc. (2016). IC compiler implementation user
guide version L – 2016.03, March 2016.

[30] Synopsys Inc. (2016). Design compiler user guide ver-
sion L – 2016.03, March 2016.

[31] Synopsys Inc. (2016). TetraMAX ATPG user guide ver-
sion L –2016.03-SP1, April 2016.

[32] Synopsys Inc. (2016). DFT compiler, DFTMAX, and
DFTMAX ultrauser guide version L –2016.03, March
2016.

[33] Synopsys Inc. (2015). StarRC user guide and command
reference version K –2015.12, December 2015.

[34] Das BP, Amrutur B, Jamadagni HS, et al. Volt-
age and temperature-aware SSTA using neural net-
work delay model. IEEE Trans Semicond Manuf. Nov.
2011;24(4):533–544.

[35] Freeley J, Mishagli D, Brazil T, et al. Statistical sim-
ulations of delay propagation in large scale circuits
using graph traversal and kernel function decomposi-
tion. 2018 15th International Conference on Synthesis,
Modeling, Analysis and SimulationMethods andAppli-
cations to Circuit Design (SMACD), Prague, 2018. p.
213–216.

	1. Introduction
	2. Background and terminologies
	3. Proposed method
	4. Implementation
	5. Results
	6. Conclusion
	Disclosure statement
	ORCID
	References

