
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: 0005-1144 (Print) 1848-3380 (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

The nonlinear limit control of EDSQOs on finite
dimensional simplex

Rawad Abdulghafor, Shahrum Shah Abdullah, Sherzod Turaev & Raini
Hassan

To cite this article: Rawad Abdulghafor, Shahrum Shah Abdullah, Sherzod Turaev & Raini Hassan
(2019) The nonlinear limit control of EDSQOs on finite dimensional simplex, Automatika, 60:4,
404-412, DOI: 10.1080/00051144.2019.1632063

To link to this article:  https://doi.org/10.1080/00051144.2019.1632063

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 28 Jul 2019.

Submit your article to this journal 

Article views: 161

View related articles 

View Crossmark data

Citing articles: 3 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2019.1632063
https://doi.org/10.1080/00051144.2019.1632063
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1632063
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1632063
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1632063&domain=pdf&date_stamp=2019-07-28
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1632063&domain=pdf&date_stamp=2019-07-28
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2019.1632063#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2019.1632063#tabModule


AUTOMATIKA
2019, VOL. 60, NO. 4, 404–412
https://doi.org/10.1080/00051144.2019.1632063

REGULAR PAPER

The nonlinear limit control of EDSQOs on finite dimensional simplex

Rawad Abdulghafor a, Shahrum Shah Abdullahb, Sherzod Turaev c and Raini Hassana

aFaculty of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur, Malaysia;
bMalaysia-Japan International Institute of Technology, Universiti Teknologi Malaysiapus, Kuala Lumpur, Malaysia; cFaculty of Engineering
and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina

ABSTRACT
Consensus problems inmulti agent systems (MAS) are theoretical aspect convergence of doubly
stochastic quadratic operators. This work has presented the dynamic classifications of extreme
doubly stochastic quadratic operators (EDSQOs) on finite-dimensional simplex (FDS) based on
the limit behaviour of the trajectories. The limit behaviour of the trajectories of EDSQOs, on FDS is
either in state of convergence, or fixed or periodic. This paper aimed at examining the behaviour
of these states. Thepapermodelled the states andproves theoretically the characteristics of each
state. The results indicate that convergence operators converge to the centre

( 1
m

)
, and EDSQOs

point are fixedwith twoormorepointswhereas periodic states exhibit sinusoidal behaviour. This
work has contributed in understanding the limit of EDSQOs of the exterior initial points as fixed
and periodic points developed spread attribute toward a fixed point.
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1. Introduction

Most research applications in biological implementa-
tions and physics use nonlinear mathematical models
[1]. Crucial to this is feedback process, that is intended
to reach an optimal result. One of the most impor-
tant and complex systems of these applications is the
MAS [2]. However, one of the central problems inMAS
generated by feedback process is called consensus prob-
lem [3,4]. The nonlinear model of EDSQOs lies within
the study of convergence of limit behaviour suitable for
solving consensus problem in MAS [5–11]. EDSQOs
refers to quadratic stochastic operators (QSOs) [12].
The history of QSOs can be traced back to Bern-
shtein [13]. In [14], an application of QSOs in popula-
tion genetics has been modelled. QSQs are defined on
dimensional simplex [15,16] where the simplex is a set
of points. The higher dimension is more complicated
to study and still an open problem for two-dimensional
simplex [17,18]. Lyubich [19] has studiedQSOs on one-
dimensional simplex, where it was proven that it has a
finite set for theω − limit from any initial point. Vallan-
der [20] has investigated results related to some of the
cases associated to QSOs on two-dimensional simplex.
These results have been extended on finite-dimensional
simplex by Ganikhodzhaev in [21].

A theoretical publications of stability of QSOs have
been studied in [22] and an incidence problem for
the class in QSOs have been analysed in [23] for the
steady topology. According to [24], four dimensional

simplex has considered the set of the extreme of
Volterra quadratic stochastic operators class. Similarly,
a dynamic model has been defined using the class of
QSOs on the dimensional simplex [25]. In another way,
a weak convergence has been resulted from the itera-
tions of kernel class of QSOs [26]. In [27], a conditional
cubic stochastic operator has been introduced where
it contains a unique fixed point. Besides, It has driven
a cubic stochastic operators class for the genetic pop-
ulations [28]. In addition, [29] has investigated a new
subclass of QSOs on a finite-dimensional simplex. The
trajectory behaviour of several classes ofQSOs has been
addressed in [30].

QSOs are developed through a majorization tech-
nique [31,32], where the majorization concept [33] of
vectors has gained a reputation of becoming a beneficial
method to classify QSOs into sub-classes. The QSOs
are called DSQOs if the condition Vx ≺ x is satisfied
(see the notations in the next section), where “≺′′ is the
notation of themajorization concept related to ordering
of the respective vector or set elements [32,34,35]. Dou-
bly stochastic quadratic operators (DSQOs) is defined
in terms of the majorization concept, which was intro-
duced in [19,20]. The ordering of the set follows the
comparison of the coordinates’ partial sums after a non-
increasing rearrangement [36,37]. The class of DSQOs
is very huge, therefor the study of limit behaviour is
very difficult [23]. This work examines the extreme of
DSQOs using the majorization concept. The definition
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of EDSQOs is derived from that of the DSQO’s set
points in space. These sets form a polyhedron that
contains vertices known as extreme points. The limit
behaviour of some EDSQOs has been studied in [38].
Thus, the limit behaviour of EDSQOs is characterized
on 2DS,where the EDSQOs are defined usingmajoriza-
tion techniques [25]. Up to the permutation of the com-
ponents of EDSQOs on 2DS, 37 extreme points exist.
Moreover, up to the permutation of the set points of
each EDSQO on 2DS, 222 extreme points [12,32,35,37]
exist as well. Therefore, the purpose of the present work
is to classify EDSQOs on FDS based on the study of
limit behaviour of trajectories.

2. Methodology

In this section, we present some definitions ofmajoriza-
tion theory and a doubly stochastic operator, which are
needed in our study.

Definition 2.1: The nonlinear discrete dynamic sys-
tems of QSOs are defined on the simplex [14,15,21]. In
this case, A(m − 1)− dimensional simplex is defined as

Sm−1 = {x = (x1, x2, . . . , xm) ∈ Rm : xi ≥ 0,

∀i = 1,m,
m∑
i=1

xi = 1}. (2.1)

Definition 2.2: The set intSm−1 = {x ∈ Sm−1 : xi ≥ 0}
is called the interior of the simplex. The points ek =
(0, 0, . . . , 1︸︷︷︸

k

, . . . , 0), (k = 1,m) are the vertices of

the simplex, and the scalar vector
( 1
m ,

1
m , . . . ,

)
is the

centre of the simplex.

Definition 2.3: A quadratic stochastic operator (QSO)
V : Sm−1 → Sm−1 is defined as [15]:

(Vx)k =
m∑
i=1

pij,k xixj, (2.2)

where coefficients pij,k satisfy the following conditions
[15,32]:

pij,k = pji,k ≥ 0,
m∑
k=1

pij,k = 1, (2.3)

The QSOs are related to population evolution. We
consider a population consisting of m species. Let
x0 = (x01, x

0
2, . . . , x

0
m) be the probability distribution of

species in the initial generations, and Pij,k be the prob-
ability that individuals in the ith and jth species inter-
breed to produce an individual k. This probability is
denoted asPij,k (and referred to as “the heredity coeffi-
cient”) and

∑m
k=1 pij,k = 1 for all i, j, that is, xi and xj

are the fractions of species i and j in the population.

In this case, parent pairs i and j arise from a fixed state
x = (x1, x2, . . . , xm) ∈ Rm with probability xixj [15].

If we denotePij,k byAk, 1 ≤ i, j ≤ m, and 1 ≤ k ≤ m,
the operator can then be written equivalently in matrix
form as follows:

V = (A1|A2| . . . |Am).

In this instance, matrices Ai- are non-negative and
symmetric.

Definition 2.4: For any x0i = (x01, x
0
2, . . . , x

0
m), we

define x↓ = (x[1], x[2], . . . , x[m]) where x↓ = (x[1] ≥
x[2] ≥ . . . ≥ x[m]) – non-increasing rearrangement of
x. Recall that for two elements x, y of the simplex Sm−1,
the element x is majorized by y.Wewrite x ≺ y or x 
 y
if the following holds:

k∑
i=1

x[i] ≤
k∑

i=1
y[i] , (2.4)

for any k = 1,m. This definition is called a weak
majorization [33], and the definition of majorization
requires

∑k
i=1 x[i] ≤∑k

i=1 y[i]. However, we consider points only from the
simplex, so we may drop this condition.

Definition 2.5: Matrix P = (pij)i,j=1,m is called doubly
stochastic (sometimes bistochastic) if

pij ≥ 0, for all i, j = 1,m,

m∑
i=1

pj = 1, and
m∑
j=1

pi = 1, for all i, j = 1,m. (2.5)

Definition 2.6: The stochastic operator V : Sm−1 →
Sm−1V : Sm−1 → Sm−1 is called doubly stochastic [15],
if

Vx ≺ x for all x ∈ Sm−1 (2.6)

In the DSQOs, element x ∈ Sm−1 is the rearrangement
of non-increasing x↓ = (x[1], . . . , x[m]) ∈ Sm−1, where
x[1] ≥ . . . ≥ x[m].

If we have two elements x, y ∈ Sm−1, and if

k∑
i=1

x[i] ≤
k∑

i=1
y[i], k = 1, . . . , m. (2.7)

Then, we can say that x is majorized by y, and write
x ≺ y.

It was defined in [33] that x ≺ y if the corresponding
doubly stochastic matrix P is x = Py.

Hence, ifP is a doubly stochasticmatrix, thenPx ≺ x
for any element x ∈ Sm−1.

The operator is therefore called a DSQO because the
operator V(x) has a doubly stochastic matrix P, which
satisfies the definition of majorization [33].
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The works in [15] and [32] proved that the opera-
tor V : Sm−1 → Sm−1 is a DSQO if the coefficient Pij,k
in QSO satisfies the condition V(x) ≺ x. We call the
conditions DSQOs a set of U1 [32]

U1 =
⎧⎨
⎩A = (aij) : aij = aji ≥ 0,

×
∑
i,j∈α

aij ≤ |α|,
∑
i,j∈I

aij = m

⎫⎬
⎭ . (2.8)

where the sum of sub-block of size m by m is ≤
m,

∑
i,j=1 aij,k ≤ |α| for α ⊂ {1, 2, . . . ,m}.

Definition 2.7: LetU1 be a set of theDSQOs. It is a fact
that the set of DSQO form a polyhedron, meaning that
each DSQO is considered as a point in some dimen-
sional space. A polyhedron has vertices that are defined
as EDSQOs. These vertices are defined by adding two
extra conditions to the set of U1 existence. Therefore,
the extra conditions for EDSQOs are called a set of
ExtrU1 and are given as follows,

The V : Sm−1 → Sm−1 belongs to ExtrU1 [15], [15]
if the following conditions hold

Pii,k = 0 or 1; (a)

Pij,k = 0,
1
2

or 1, for i �= j. (b)

Therefore, the evolution operator of EDSQOs has m ∗
m edges with coefficients equal to1.

Definition 2.8: Let V be DSQO andx0 ∈ Sm−1. The
sequence {x0,V(x0),V2(x0), . . . ,Vn(x0)} is called the
trajectory of the DSQO starting atx0, whereV2(x0) =
V(V(x0)). Usually, the initial state is defined by
V(x0) = x0 and the set of limit points of the trajec-
tory is denoted by ω(x0), which are the ω- limit set
of the trajectory. The set of points x0 is considered to
converge with (2.2), if Vp(x0) converges to the centre
C = ( 1

m ,
1
m ,

1
m

)
of the simplex Sm−1 as n → ∞.

Definition 2.9: The point x0 is considered as having
an undirected interconnection only if it hasm intercon-
nections, and at least one interconnection is with other
points. It can also be referred to as a linear point, where
it has linear function. The linear function means that
it is characterized by an equation which has one of the
points x0i repeating in all its terms.

Definition 2.10: The point x0 is considered to have a
directed interconnection only if it has m interconnec-
tions, and all interconnections are between itself and
others. It can also be called nonlinear point, where it
does not contain a linear function. In turn, the non-
linear function is characterized by an equation with no
repetitions of the points x0 in its terms.

Definition 2.11: Points x0i converges if the there exists
a positive integer p for the limit behaviour, such
thatVp(x0) = x0Vp(x0) = x0, andVi(x0) = x0. For all
i = 1, p − 1, if p = 1Vi(x0) �= xo∀i = 1, p − 1.p = 1,,
then the point is said to be fixed.

Definition 2.12: Point x0i is fixed if a positive inte-
ger p exists, such that Vp(x0i ) = x0i V

p(x0) = x0, and
Vi(x0) = x0i . For all i = 1, p − 1, if p = 1, we say that
the point is fixed.

Definition 2.13: Point x0i is p-periodic if there is posi-
tive integer p, such thatVp(x0i ) = x0i V

p(x0) = x0, and
Vi(x0) = x0 andVi(x0) �= x0∀i = 1, p − 1.Weusually
say the point is periodic if the period is larger than one.

Definition 2.14: let the set of points x0i = (x01, x
0
2, . . . ,

x0m) be on the boundary of the simplex, then the bound-
ary points are referred to as exterior points.

Definition 2.15: let the set of points x0i = (x01, x
0
2, . . . ,

x0m) be inside of the simplex, then these points are
referred to as interior points.

Definition 2.16: let the set of points x0i = (x01, x
0
2, . . . ,

x0m) be on the vertices of the simplex, where one of x0i
has value equal to onewhile the others are equal to zero,
then the set of points are referred to as extreme exterior
points (see definition 2.2).

The DSQOs evaluate the next generation starting
from the initial state x0 of the probability distribu-
tion. They then continue to improve the probabil-
ity distribution of the first generation, x(1) = V(x0),
followed by the second generation iteratively, x(2) =
V(x(1)) = V(V(x(0))) = V(2)(x(0)), and so on. There-
fore, the iterative notation defining the EDSQOs is
given by V(t+1)(x0i ), where t is the number iterations
(generations).

3. Results and discussion

In this section, we study the dynamic classification of
limit behaviour of EDSQOs.

Theorem 3.1: Let V be EDSQO defined on Sm−1

and the initial values x0i = (x01, x
0
2, . . . , x

0
m) ∈ Rm : xi ≥

0,∀i = 1,m,
∑m

i=1 xi = 1} are extreme exterior points,
then the lim

t→∞V(t+1)(x0i ) never converges, for all x0i ∈
Sm−1.

Proof: Assuming that V(t+1)(x0i ) is EDSQO on Sm−1

and the initial values given by x0i = (x01, x
0
2, . . . , x

0
m) ∈

Rm : xi ≥ 0,∀i = 1,m,
∑m

i=1 xi = 1} are extreme exte-
rior points, then by definition (2.16) we have1 ≤ j ≤
m, if x0j = 1 then for all 1 ≤ k ≤ m, k �= j, x0k = 0. �

It is obvious from its definition that, each V(t+1)(x0i )
on Sm−1 has m point functions as V(t+1)(x0i ) =
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(V(t)(x01),V
(t)(x02), . . . ,V

(t)(x0m)) and each point func-
tion consists of the summation of m products. Each
of the product terms in turn, constitute of either the
same point (xi · xi) or different points (xi · xj with i �= j)
and each of the points take the values of either zero or
one (xi, xj = 0, 1) where i ≤ i, j ≤ m. Thus, V(t+1)(x0i )
has a total of m2 product terms in all the summations,
where there arem products of the form xixi, k ≤ i ≤ m,
and (m2 − m) products of the form xixj, i ≤ i �= j ≤ m,
(with reference to Equation (2.8) (a) and (b)).

Therefore, the point function which has the prod-
uct of xjxj converges to one (provided xj = 1), while
the others converge to zero as they consist a multiple
of zero (xixk with xi = 0 or xk = 0). Hence, the limit of
any EDSQOs on Sm−1 of any extreme exterior points
converges to extreme exterior points (taking values of
either one or zero) which are either fixed or periodic
points.

Definition A: xti is the (common) factor of function
point (V(t+1)(xti)) if

V(t+1)(xti) = xti .(x
t
1 + xt2 + . . . + xtm) ∈ Rm : xi ≥ 0,

∀i = 1,m,
m∑
i=1

xi = 1, t : 0 → ∞}

where should be (xt1 + xt2 + . . . + xtm) = 1.

Definition C: MAX(x0i ) is the maximum initial value
and MIN(x0i ) is the minimum initial value of x0i =
(x01, x

0
2, . . . , x

0
m) ∈ Rm : xi ≥ 0,∀i = 1,m,

∑m
i=1 xi = 1.

The difference between MAX(x0i ) and MIN(x0i ) is
d(x0i ).We say thatV is the EDSQOanddefined on Sm−1

converges if d(xti) = 0, where t : 0 → ∞.

Theorem 3.2: Let V be EDSQO defined on Sm−1 and
x0i = (x01, x

0
2, . . . , x

0
m) ∈ Rm : xi ≥ 0,∀i = 1,m,

∑m
i=1

xi = 1 are initial values. If x0i is the (common) factor of a
function point V(t+1)(x0i ) and is fixed, then the operator
V does not converge.

Proof: Assuming that V is EDSQO and defined on
Sm−1 with set points of V(t+1)(x0i ) (see theorem 3.4), and
x0i = (x01, x

0
2, . . . , x

0
m) ∈ Rm : xi ≥ 0,∀i = 1,m,

∑m
i=1

xi = 1 be initial values.
If

V(t+1)(x0i ) = x0i .(x
0
1 + x02 + . . . + x0m), and

i = 1,m,
m∑
j=1

xj = 1 (3.1)

and

(x01 + x02 + . . . + x0m) = 1, (3.2)

Then it follows naturally that,

V(t+1)(x0i ) = x0i , (3.3)

That is, V(t+1)(x0i ) is fixed, and the operator does not
converge.

Theorem 3.3: Let V be EDSQO defined on Sm−1 and
x0i = (x01, x

0
2, . . . , x

0
m) ∈ Rm : xi ≥ 0,∀i = 1,m,∑m

i=1 xi = 1 be initial values. If x0i is the (common) fac-
tor of a function point V(t+1)(x0j ) and x

0
j is the (common)

factor of function point V(t+1)(x0i ), then these points are
periodic and the operator V does not converge.

Proof: Assuming that V is EDSQO and defined
on Sm−1 with set points of V(t+1)(x0i ), and x0i =
(x01, x

0
2, . . . , x

0
m) ∈ Rm : xi ≥ 0,∀i = 1,m,

∑m
i=1 xi = 1

be initial values.
If

V(t+1)(x0i ) = x0j .(x
0
i + . . . + x0m), and

i = 1,m,
m∑
i=1

xi = 1, (3.4)

and

V(t+1)(x0j ) = x0i .(x
0
j + . . . + x0m), and

j = 1,m,
m∑
j=1

xj = 1, (3.5)

then, starting from t = 0,

V(t+1)(xti) = xtj · (xti + . . . + xtm) = xtj ,

V(t+1)(xtj) = xti · (xtj + . . . + xtm) = xti . (3.6)

After the first iteration as shown, the resulting point is a
different point. Now, continuing with the next iteration
(t = 1) then the

V(t+1)(xti) = xtj . (xti + . . . + xtm) = xti ,

V(t+1)(xtj) = xti . (xti + . . . + xtm) = xtj . (3.7)

Thus, in every stepV(t+1)(x0i ) periodically repeats, and
the operator V does not converge. �

Theorem 3.4: Let V be EDSQO and defined on Sm−1

and the initial values x0i = (x01, x
0
2, . . . , x

0
m) ∈ Rm : xi ≥

0,∀i = 1,m,
∑m

i=1 xi = 1 be interior points, where (0 <

x0i < 1). If the function point V(t+1)(x0i ) does not have
factor (common), then the lim

t→∞V(t+1)(x0i ) converges to

the centre
( 1
m

)
.

Proof: Assuming that V is EDSQO and defined on
Sm−1 with the initial values x0i = (x01, x

0
2, . . . , x

0
m) ∈

Rm : xi ≥ 0,∀i = 1,m,
∑m

i=1 xi = 1 as interior points,
where (0 < x0i < 1). �

If

V(t+1)(x0i ) �= x0i .(x
0
i + . . . + x0m),

i = 1,m,
m∑
i=1

xi = 1, (3.8)

then by Theorem 3.1 V(t+1)(x0i ) on Sm−1 has m
point functions V(t+1)(x0i ) = (V(t)(x01),V

(t)(x02), . . . ,
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V(t)(x0m)) and by definition (C) we have the following
three possible cases of products of values:

MAX(x0i )∗MIN(x0i ) or MAX(x0i )∗MAX(x0i ) or

MIN(x0i )∗MIN(x0i ) (3.9)

It follows that, with lim
t→∞V(t+1)(x0i ) and based on the

distribution defined by EDSQO then the max and min
points behave in the following manner

MAX(x0i ) � MAX(x1i ) � MAX(x2i ) � . . .

MIN(x0i ) � MIN(x1i ) � MIN(x2i ) � . . . (3.10)

In turn, MAX(x0i ) decreases gradually while
MIN(x0i ) increases gradually with each successive iter-
ation and eventually reaching a common point of con-
vergence as

MAX(x0i ) = MIN(x0i ) (3.11)

which means that
MAX(x0i ) and MIN(x0i ) are bounded by the same

point of convergence, and

d(xti) = MAX(xti) − MIN(xti) = 0 (3.12)

Finally, since the function point V(t+1)(x0i ) has m
summations of products of two points xixj and the
sums’ coefficients of each V(t+1)(x0i ) equal to1/m, then
MAX(x0i ) and MIN(x0i ) are bounded by

( 1
m

)
.

Consequently, the V(t+1)(x0i ) can be expressed in
terms of a common factor of

( 1
m

)
and the x0i as follows

V(t+1)
(
1
m

)
= 1

m
.(x01 + x02 + . . . + x0m) for all

× V(t+1)(x0i ) and i = 1,m,
m∑
i=1

xi = 1

(3.13)

Then, the operator V of EDSQO on Sm−1 converges
to the centre

( 1
m

)
.

4. Simulation

In this section, we present the software simulation by
Matlab for all operators of EDSQOs on Sm−1.

Let us to consider some examples of the EDSQOs on
2DS,3DS, 4DS:

(1) Some EDSQOs on 2DS (V3.1,V3.2,V3.3):

V3.1.F

⎧⎪⎨
⎪⎩
V(x1) = x21 + x1x2 + x1x3,
V(x2) = x23 + x1x2 + x2x3,
V(x3) = x22 + x1x3 + x2x3,

V3.2.P

⎧⎪⎨
⎪⎩
V(x1) = x21 + x1x2 + x1x3,
V(x2) = x23 + x1x3 + x2x3,
V(x3) = x22 + x1x2 + x2x3,

V3.3.C

⎧⎪⎨
⎪⎩
V(x1) = x1x2 + x1x3 + x2x3,
V(x2) = x21 + x22 + x23,
V(x3) = x1x2 + x1x3 + x2x3,

(2) Some EDSQOs on 3DS (V4.1, V4.2, V4.3):

V4.1.F

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V(x1) = x21 + x2x4 + x1x3 + x1x4,
V(x2) = x22 + x1x2 + x2x3 + x2x4,
V(x3) = x23 + x1x3 + x2x3 + x3x4,
V(x4) = x24 + x1x4 + x1x2 + x3x4,

V4.2.P

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V(x1) = x24 + x1x4 + x2x4 + x3x4,
V(x2) = x23 + x1x3 + x2x3 + x3x4,
V(x3) = x22 + x1x2 + x2x3 + x2x4,
V(x4) = x21 + x1x2 + x1x3 + x1x4,

V4.3.C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V(x1) = x1x2 + x2x3 + x2x4 + x1 x4,
V(x2) = x21 + x22 + x23 + x24,
V(x3) = x1x3 + x1x3 + x1x4 + x3x4,
V(x4) = x1x2 + x2x3 + x2x4 + x3x4,

(3) Some EDSQOs on 4DS (V5.1, V5.2, V5.3):

V5.1.F =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V(x1) = x21 + x1x2 + x1x3 + x1x4 + x1x5,
V(x2) = x22 + x1x2 + x2x3 + x2x4 + x2x5,
V(x3) = x23 + x1x3 + x2x3 + x3x4 + x3x5,
V(x4) = x24 + x1x4 + x2x4 + x3x4 + x4x5,
V(x5) = x25 + x1x5 + x2x5 + x3x5 + x4x5,

V5.2.P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V(x1) = x24 + x1x4 + x2x4 + x3x4 + x4x5,
V(x2) = x23 + x1x3 + x2x3 + x3x4 + x3x5,
V(x3) = x22 + x1x2 + x2x3 + x2x4 + x2x5,
V(x4) = x21 + x1x2 + x1x3 + x1x4 + x1x5,
V(x5) = x25 + x1x5 + x2x5 + x3x5 + x4x5,

V5.3.C =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V(x1) = x1x3 + x1x4 + x1x5 + x2x5 + x3x5,
V(x2) = x1x2 + x2x3 + x2x4 + x3x4 + x4x5,
V(x3) = x21 + x22 + x23 + x24 + x25,
V(x4) = x1x2 + x2x3 + x2x4 + x3x4 + x4x5,
V(x5) = x1x3 + x1x4 + x1x5 + x2x5 + x3x5,

In the following section, we present the simulation of
the limit behaviour of the trajectories for each EDSQO
of (V3.1,V3.2,V3.3,V4.1,V4.2,V4.3,V5.1,V5.2,V5.3).
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4.1. Limit behaviour of the initial extreme exterior
values

The initial extreme exterior values on 2DS of (V3.1,V3.2,
V3.3) are:

x01 = 0, x02 = 0, x03 = 1.

The initial extreme exterior values on 3DS of
(V4.1,V4.2,V4.3) are:

x01 = 1, x02 = 0, x03 = 0, x04 = 0.

The initial extreme exterior values on 4DS of
(V5.1,V5.2,V5.3) are:

x01 = 0, x02 = 0, x03 = 0, x04 = 1, x05 = 0.

It has been obtained in the simulation as depicted
in Figure 1 that the limit behaviour of trajectories
for EDSQOs of V3.1.F ,V3.1.P, V3.1.C on 2DS of the
initial extreme exterior values (0, 0, 1), EDSQOs of
V4.1.F ,V4.1.P and V4.1.C on 3DS of the initial extreme
exterior values (1, 0, 0, 0) and EDSQOs of V5.1.F ,V5.1.P
and V5.1.C on 4DS of the initial extreme exterior values

(0, 0, 0, 1, 0) are fixed or periodic points. In fact, it con-
firms the theorem 3.1 that the limit of any EDSQOs on
FDS of any extreme exterior points of initial values does
not converge, it has either fixed or periodic points.

4.2. Limit behaviour of fixed points

It is depicted in Figure 2 that the limit behaviour of
EDSQOs of V3.1.F on 2DS,V4.1.F on 3DS and V5.1.F on
4DS. It is shown that the operator of V3.1.F has one
point of V(x1) as linear function which has a common
factor of the same point as in Equation (3.1) and the
limit behaviour of this point is a fixed point. In addi-
tion, the operator of V4.1.F has two points of V(x2)
and V(x3) as linear functions and both having a com-
mon factor (as in Equation (3.1)) of their respective
points and the limit behaviour of these points is fixed
points. Moreover, the operator of V5.1.F has five points
of V(x1),V(x2),V(x3),V(x4) and V(x5) that are linear
functions and having a common factor (as in Equation
(3.1)) of the respective points and the limit behaviour
of these points is fixed points. Surely, that is what has

Figure 1. Limit behaviour of the trajectories for each EDSQO of V3.1.F, V3.1.P, V3.1.C, V4.1.P, V4.1.F, V4.1.C, V5.1.F, V5.1.P and V5.1.C
of the initial extreme exterior values.
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Figure 2. Limit behaviour of fixed points for EDSQOs of V3.1.F, V4.1.F and V5.1.F on 2DS, 3DS and 4DS, respectively.

Figure 3. Limit behaviour of periodic points for EDSQOs V3.2.F, V4.2.F and V5.2.F on 2DS, 3DS and 4DS, respectively.

been demonstrated and proved in theorem 3.2 and if
operator of EDSQOs on FDS has a point, which has a
common factor as in Equation (3.1), then the limit of
such points is fixed, consequently the operator does not
converge.

4.3. Limit behaviour of periodic points

With reference to the fixed point in the theorem 3.2,
the finding is that if there are two points or that can be
expressed in terms of each other (as in Equation (3.6))
in the operator of EDSQOs, then these points are peri-
odic as seen in Figure 3 inV(x2)withV(x3) of operator
V3.1.P, aswell asV(x2)withV(x3) andV(x1)withV(x4)
of operatorsV4.1.P andV5.1.P respectively. This is proven
in theorem 3.3.

4.4. Limit behaviour of convergence points

Finally, we can investigate either the EDSQO on FDS
is convergent to the centre

( 1
m

)
point (as in Equation

(3.8)) or that it contains no points which can be factored
in terms of one another (see in Figure 4) in operators of
V3.1.C, V4.1.C and V5.1.C. It is estimated that, the con-
vergence for EDSQOs can be reached given that none
of the initial values are equal to one. It is clear that the
convergence of any EDSQOs is towards the centre

( 1
m

)
as portrayed in Figure 4 that, the operators of V3.1.C
on 2DS converge to

( 1
3
)
, while those of V3.1.C on 3DS

converge to
( 1
4
)
and of V3.1.C on 4DS converge to

( 1
5
)
.

In essence, this is what demonstrated and proven in
theorem 3.4.

We note that in Figures 1–4 the x-axis indicates ini-
tial values and y-axis indicates the number of iterations
executed to reach the convergence. Moreover, I repre-
sents the number of iterations and t is the time spent on
calculations of the operator.

5. Conclusion and future work

This work has studied the dynamic classifications of
EDSQOs on FDS and investigated the limit behaviour

Figure 4. Limit behaviour of convergence points for EDSQOs V3.3.F, V4.3.F and V5.3.F on 2DS, 3DS and 4DS, respectively.
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of trajectories of EDSQOs. It is obtained that the limit of
EDSQOs converges to the central point if the operator
satisfies the condition; it has no point with a com-
mon factor amongst its terms and it does not consist
of two or more points that can be expressed in terms
of one another. Empirically, the work has proven in
theorem 3.1 that the EDSQO never converge from the
extreme exterior initial points (where it must range
from 0 to 1 and not exactly equal to one), it has fixed
or periodic points. However, it has also been proven in
theorem 3.2 that the operator of EDSQOs has a fixed
point if this point has a (common) factor of its func-
tional point. Meanwhile, it has been proven as well in
theorem 3.3 that, if two points or more have a (com-
mon) factor amongst each other, then these points are
periodic. In turn, it has been proved in theorem 3.4
that the EDSQOs on FDS is convergent to the cen-
tre

( 1
m

)
if it has no fixed or periodic points and the

initial values are not extremes. From this study, the
EDSQOs have been classified on FDS to three classes:
(i) fixed, (ii) periodic and (iii) convergence. Finally, the
results of this study have been simulated by MatLab
software and presented with the help of appropriate fig-
ures depicting the specific classes. The class of EDSQOs
is very large on FDS. Therefore, the presented simu-
lation has been considered for EDSQOs on 2DS, 3DS
and 4DS, but the results are in turn generalized for FDS
as it is proven in theorems 3.1, 3.2, 3.3 and 3.4. This
work demonstrates that it is possible to achieve conver-
gence in nonlinear-complexity protocol for consensus
problem in MAS.
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