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Adaptive optimal slip ratio estimator for effective braking on a non-uniform
condition road
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Electrical Engineering Department. Shahed University, Tehran, Iran

ABSTRACT
In this paper, an adaptive algorithm is developed which senses the road condition change and
estimates a (time-varying) optimal braking slip ratio. This is conducted by two on-line simul-
taneously operating tire-road friction-curve slope calculators: one based on the accelerometer
output and the other based on the wheel speed. The required vehicle speed is estimated using a
robust sliding-mode observer. Enforcement of the online optimal braking reference is left to an
adaptive sliding mode controller to cope with the system strong nonlinearity, time dependency
and the speed and friction-coefficient estimation errors. The algorithm is applied to a half model
car and the braking performance is examined. The results indicate that the proposed algorithm
substantially reduces the stopping time and distance. The performance of the algorithm is ver-
ified using different vehicle initial speeds and especially non-uniform road condition where 8%
improvement versus the nonadaptive optimal slip ratio algorithm is recorded.
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Nomenclatures

v The vehicle speed
m The vehicle mass
σ The rolling resistance coefficient
σω The tire viscous resistance coefficient
g The gravity acceleration
J The tire rotational inertia
R The tire radius
μf (r) The front (rear) tire-road friction

coefficient
ωf (r) The front (rear) tire angular velocity
df The aerodynamic drag force coeffi-

cient
Fzf(r) The front (rear) wheel normal force
Tbf(r) The front (rear) braking torque
h The height of the centre of gravity
Lf The distance between the centre of

gravity and the front axle
Lr The distance between the centre of

gravity and the rear axle
L The distance between the front and the

rear axle.
α The vehicle actual acceleration.
v0 The maximum braking initial speed
λf (r) The front (rear) tire slip ratio.
λo The optimal slip ratio
ci(i = 1, 2, 3) The road condition parameters
γ 1, γ 2 The relative upper bound of v and μ

estimates.
D & H The observer gain matrixes.

1. Introduction

Antilock braking system (ABS) ensures safe stopping
by regulating the brake torques to provide maximum
wheel traction force. This is conducted by estimating
the optimal slip ratio, and enforcing it by a control tech-
nique. Thus, 3 algorithms are involved in anABS: speed
estimation, tire-road friction estimation, and control
method.

The vehicle velocity cannot bemeasured directly due
to the cost and technical issues. As a result, it may be
estimated by an observer such as sliding mode [1–3],
fusion Kalman/UFIR [4], and deadbeat dissipative FIR
filtering [5].

Numerous parameters are involved in tire-road fric-
tion coefficients that are classified as vehicle parameters:
speed, camber angle, and wheel load; tire parameters:
material, tire type, tread depth, and inflation pres-
sure; road lubricant parameters: water, snow, ice, oil,
depth, and temperature; and road parameters: road
type, micro-geometry, macro-geometry, and drainage
capacity [6]. Generally speaking, the tire-road friction
estimation methods are categorized under caused and
effect-based approaches [7]. Cause-based approaches
use special sensors like optical camera, infrared ther-
mometers, temperature’ sensors and so on to detect
road condition (water, snow, ice, oil, etc.) to be used
later for friction estimation. In these methods, tire
states (new or worn, winter tire or summer tire) or tire
pressure are not taken into account. Alternatively, the
effect-based approaches are at least classified into three
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types: acoustic, tire-tread deformation, and slip-based
approaches [6].

In the slip- based approaches, the vehicle is com-
manded to follow the optimal slip ratio. The optimal
slip ratio reflects the maximum tire-road friction coef-
ficient, which directly manifests the road conditions.
In [8], the recursive least-squares parameter identifi-
cation method has been employed for tire-road fric-
tion coefficient estimation. The method uses a linear
tire model and may become inaccurate when the slip
ratio enters its nonlinear range. Estimation of the tire-
road friction coefficient based on a combined APF-
IEKF and iteration algorithm has been discussed in
[9]. The tire-road friction parameter estimation using
the extended Kalman filter is the subject of study in
[1]. In [10] the tire forces are estimated by the dis-
crete Kalman filter, and subsequently, the road friction
coefficient is estimated by the recursive least square
algorithm.

Control of uncertain systems requires a robust con-
trol technique such as fractional order PID [11], H∞
[12,13] or sliding mode controllers [14–16]. Backstep-
ping integral sliding mode controller is the subject of
study in [17]. Adaptive SMC for control of ABS torque
to secure optimal slip ratio following is presented in
[1]. Employing backstepping control for ABS is the sub-
ject of study in [18]. Quasi-sliding mode Control along
with the orthogonal endocrine Neural Network estima-
tor for ABS control has been detailed in [19]. Using
a multiple surface sliding controller for ABS has been
dug out in [20]. In [21], a robust predictive control for
ABS based on Radial Basis Function Neural Network
has been proposed.

Regarding the above-mentioned developments in
the ABS design where a constant offline computed opti-
mal slip ratio reference is followed, in this paper, a
road dependent online time-varying optimal slip ratio
tracking scheme is adopted. The road condition depen-
dentmaximumbrake traction force search is conducted
using two measures, one based on the vehicle acceler-
ation and another based on the wheel rotation speed.
Besides the employed speed observer is designed in a
way to overcome the wheel tachometer noise and the
vehicle accelerometer offset. The braking discipline is
enforced by an adaptive slidingmode controller to han-
dle the system dynamic uncertainty and the estimators’
errors. As it is expected, the proposed ABS reduces
substantially the braking stop time and the stopping
distance due to the employment of the adaptive slip
ratio estimator. This outstanding performance is ver-
ified by simulations considering various uniform and
non-uniform road conditions and the vehicle initial
speeds.

The paper is organized as follows: firstly, the system
dynamic and the SMO speed estimation algorithm are
detailed in Section 2. Online estimation of the optimal
slip ratio is discussed in section 3. Section 4 covers the

adaptive slidingmode control and lastly, the conclusion
comes in Section 6.

2. Half Vehicle braking systemmodel

The half vehicle geometry that is used for the braking
system study has been shown in Figure 1. The dynamic
model of this system, based onNewton’s law ofmotion,
is expressed by [1],

mv̇ = −μf Fzf − μrFzr − σmgv − df v2

Jω̇f = Rμf Fzf + RσFzf v − σωωf − Tbf

Jω̇r = RμrFzr + RσFzrv − σωωr − Tbr (1)

By taking into account the front and rear tire normal
forces,

Fzf = m(gLr − hv̇)
Lf + Lr

= m(gLr − ha)
L

Fzr = m(gLf + ha)
L

(2)

Equation (1) is reformulated as below,

v̇ = −g(μf L′
r + μrL′

f ) − σ gv − df /mv2

1 − h′(μf − μr)
= a

ω̇f = J−1(mgRσL′
rv − σωωf − Tbf − ff )

ω̇r = J−1(mgRσL′
f v − σωωr − Tbr + fr) (3)

where

ff = mR
[gμf (h′μr + L′

r + σvh′v)
h′(μf − μr) − 1

+ h′σva
]

fr = mR

[
gμr(h′μf + L′

f + σvh′v)

h′(μf − μr) − 1
+ h′σva

]

L′
f =

L′
f

L
, L′

r = Lr
L
, h′ = h

L
(4)

Now, the state space representation of (3) is expressed
by the following equation,

ẋ = Ax + Bu + fn
y = Cx

ẋ = 1
J

⎡
⎣ 0 0 0
mgRσL′

r −σω 0
mgRσL′

f 0 −σω

⎤
⎦ x

Figure 1. The vehicle single-track geometric parameters.
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+ 1
J

⎡
⎣0 0 0
0 1 0
0 0 1

⎤
⎦

⎡
⎣ 0
Tbf
Tbr

⎤
⎦ + 1

j

⎡
⎣ a

−ff
fr

⎤
⎦

y =
[
0 1 0
0 0 1

]
x (5)

where x = [v, ωf , ωr]T, y = [ωf , ωr], and α are the
state variable, the measured output, and the vehicle
actual acceleration, respectively.

2.1. The vehicle velocity observer

For the computation of the optimal slip ratio, the vehicle
speed is required. It may be measured or estimated. For
the estimation of the vehicle speed, the following sliding
mode observer using (5) is formed [22],

ˆ̇x = Ax̂ + Bu + D.C.e + H.sgn(Ce)

y − ŷ = Ce = C(x − x̂) (6)

where (A, C) must be observable andD andH are both
3 by 2 observer gain matrixes. Using (5) and (6), the
state estimation error is obtained as given below,

ė = (A − DC)e + fn − H.sgn(Ce) (7)

To design a stable observer, it is analyzed using
V = eTe/2 Lyapunov function as pursued in below,

V̇ = −e1(h11 sgn(e2) + h12 sgn(e3) − a)

+
(
mgRσL′

r

J
− d11

)
e1e2

+
(mgRσL′

f

J
− d12

)
e1e3 −

(
h21 − h22 − |ff |

J

)
|e2|

−
(
h32 − h31 − |fr|

J

)
|e3| − d22 + d31

2
(e2 + e3)2

−
(

σ

J
+ d21 − d22 + d31

2

)
e22

−
(

σ

J
+ d32 − d22 + d31

2

)
e23 (8)

Considering (8), the observer asymptotic stability is
met if the following conditions are observed,

d11 = mgRσL′
r

J
d12 =

mgRσL′
f

J
d22 + d31 = β ≥ 0

h21 >
|ff |
J
h32 >

|fr|
J
h12 = α.sgn(e3)

d21 = d32 >
β

2
(9)

where the rest of the elements of C and D matrices
are zero. d11, d22, and h12 are computed using the sys-
tem available parameters and variables. d11, d31, d21,
and d32 are calculated by taking a relatively large value
for β , which improves the estimation speed. h21 and

h32 are determined using (4) based on the known sys-
tem parameters and the design assumptions for the
maximum braking initial speed, v0, and its subsequent
deceleration, max(|α|). Since the braking system oper-
ates in a closed loop form; both λr and λf are forced to
follow a single λo, therefore, it is reasonable to assume
an almost equal friction coefficient for the front and
rear wheels. Thus, while the exact values for ff and fr
(9) are not available, those can be estimated using ˙̂x (1)
and the estimated speed v̂ becomes,

μ̂ = μf � μr = −ˆ̇x(1)
g

− σ v̂ − β v̂2 β = df
gm

(10)

The observability condition of the SMO is impaired
in case of small values of the rolling resistance coeffi-
cient, σ , where the observer estimation performance is
degraded. By choosing big h21, h32, the SMOgets robust
to the systemparameter variations. In the case of partial
known fn, the known part is employed in (9).

3. On-line estimation of the optimal slip ratio

The tire-road friction is a function of the tire slip ratio
and the road conditions as it is shown in Figure 2. By the
increase in the slip ratio, the friction coefficient arises
sharply until it touches its peak and then falls slowly.
Thus, there is a maximum friction coefficient for each
road condition; therefore, the optimal slip ratio, which
reflects this peak is a function of the road condition.

One of the models for the tire-road friction coef-
ficient is the Burckhardt tire model [23] which is
expressed by the following equation,

μ(λ) = c1[1 − exp(−c2λ)] − c3λ (11)

where ci(i = 1, 2, 3) reflect the road conditions. The
data for some typical road conditions have been given
in Table 1.

Figure 2. The variation of the friction coefficient, µ against the
slip ratio, λ on different road conditions [1].
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Table 1. Constants for different road conditions [24].

Road surface c1 c2 c3

Dry asphalt 1.28 23.99 0.52
Wet asphalt 0.857 33.82 0.34
Snow 0.194 94.12 0.0646
Ice 0.05 306 0

3.1. Tire-road friction peak detection

The braking process is divided into three phases, pre-
braking, braking inception, and optimal braking. In the
pre braking interval where no brake and or accelera-
tion forces are applied, λ is almost zero and the model
parameters σ and d can be estimated using the available
acceleration, α, and the estimated speed v̂ = Rωf . This
is conducted by utilizing the least squares algorithm,
which is applied to the following linear regression
model extracted from (1),

v̇ = −[σ d/m]
[
v̂
v̂2

]
= a (12)

In order to estimate the peak of the tire-road friction,
during the braking inception phase, a step λr is applied
to the ABS through a time constant with a value beyond
the friction coefficient peak for any road condition,
namely λi = 0.4. Then μ is monitored using (10) by the
peak detector block, shown in Figure 3. As soon as it
reaches its peak, the block switches the slip ratio to the
captured newly optimal level and the control proceeds.

The operation in each phase has been portrayed
in Figure 4. The initial reference and the computed
optimal slip ratio have been shown. By following the
optimal reference, the traction force rolls back again to
its maximum value. Obviously, the detected level is a
function of the road condition.

Subsequently, for the algorithm to cope with the
change in the road condition during braking, an on-line
recursive optimal slip ratio procedure is incorporated as
given below,

λo(k) = λo(k − 1) + 0.01.sign(�μ)

�μ = μ̂(k − 1) − μ̂(k − 2) (13)

where µ is given by (10). Since in the steady state, the
closed-loop control system forces λ̇ to zero; it prevents
the computation of μ̇ = �µ, the peak search direction.
Fortunately, the friction curve (11) is unimodal and
the sign if �µ is sufficient for the friction curve slope
determination as it has been emplaced in (13).

Figure 3. The ABS control system.

Figure 4. The braking timing.

While the above scenario may fail in a real appli-
cation due to road nonuniformities and accelerometer
error, the slope is double checked using equations based
on the wheel rotation speed to accompany the slope
detector given in (13). Friction curve slope detection
using wheel speed rotation has already been experi-
mentally tested in [25]. Detection of the friction curve
slope is pursued, here, differently from [25], where the
wheel rotation speed of the rear and front wheels (1)
are added together to discard the direct effect of the
vehicle acceleration. Alternatively, the following second
equation for μ is developed,

Rmgμω = Jω̇ − Rσmgv + σωω + Tb ⇒
sign(�μ) = sign(�(Jω̇ − Rσmgv + σωω + Tb))

(14)

where the underlined, ω and Tb variables are the sum-
mation of the corresponding rear and front wheel vari-
ables.

4. ABS adaptive slidingmode control

Should the optimal slip ratio λo is available, the vehicle
ABS performance is maintained where the ABS con-
trol loop accurately sticks to the given λo by adjusting
the braking torques. However, due to the strong non-
linear, time variant and uncertain nature of the braking
process, robust control methods such as sliding mode
control is requisite for the successful conduction of the
task.

To implement SMC for the front wheel, based on
the front tire slip ratio tracking error, the following
standard sliding-mode surface is defined,

ef = λf − λfo ⇒ sf = ef + k1f
∫ t

0
ef (τ )dτ (15)



AUTOMATIKA 417

where k1f is the front tire sliding-mode positive con-
stant factor to be appropriately assigned. It affects the
transient response of the control system. By making
the derivative of the sliding surface zero, the following
relation is attained,

ṡf = λ̇f − λ̇fo + k1f ef = 0 ⇒ λ̇f = λ̇fo − k1f ef (16)

By utilizing (3), the change in the slip ratio is
obtained in compact form as below,

λ̇f = gf + bf Tbf (17)

where

gf = ωf Ra
v2

+ ff − mgRσLrv
L + σωωf R
Jv

bf = R
Jv

(18)

Substituting (17) in (16) gives,

ṡf = gf + bf Tbf − λ̇fo + k1f ef (19)

Assuming the nominal system, the tracking error con-
verges to zero using the following continuous com-
mand,

Tbf = −b−1
f (gf − λ̇fo + k1f ef ) (20)

However, for the exact system, the control objective
may no longer be satisfied and an additional switching
control is required to take care of the uncertainty dam-
aging effect. Thus, Equation (20) is replaced with the
following equation,

Tbf = −b̂−1
f (ĝf − λ̇fo + k1f ef + k2f tan−1(sf )) (21)

where b̂ has been used due to the employment of the
estimated velocity.

To analyze the closed loop ABS stability, s2f /2 Lya-
punov function is investigated. It is straightforward and
procedural [1] to reach a result for the switching gain
k2f that enforces the asymptotic stability. The adaptive
gain is concluded as [1],

k2f = γ1(2 + γ1)ωf R.a
(1 − γ1)

2v̂2
+ RAf

J
+ R

J

∣∣∣∣∣ f̂fv̂
∣∣∣∣∣

+ γ1

(1 − γ1)

σωωf R + RTbf

Jv̂
(22)

where

Af = mgR
1 + 2γ2hμ̂

(
hσ 2 + (1 + γ2)μ̂

(
hσ

+ (1 + γ2)μ̂h + Lr + hσ)

(1 − γ1)v̂

))
(23)

γ 1 and γ 2 are the relative upper bound of the esti-
mated speed and µ’s, respectively.

Similarly, the same can be repeated for the rear wheel
that renders the following results [1],

k2r = k2(f→r)

Ar = mgR
1 + 2γ2hμ̂

(
hσ 2 + (1 + γ2)μ̂

(
hσ

+ (1 + γ2)μ̂h − Lf + hσ)

(1 − γ1)v̂

))
(24)

5. Simulations

In order to validate the performance of the designed
ABS system, several tests are conducted. The vehicle
specifications have been depicted in Table 2. The simu-
lations are performed using SIMULINK.

In order to check the controller performance alone
in tracking the issued slip ratio command, a first test
is conducted. The speed is assumed measured and the
road condition is uniform dry asphalt introduced by
c1 = 1.28, c2 = 23.99, and c3 = 0.52 parameters. The
step λi = 0.4 is applied to the designed ABS. The sys-
tem behaviour is shown in Figure 5.

The braking lasts for 1.807s corresponding to
18.92m stopping distance. As the figure indicates, in
some instances the vehicle experiences a higher fric-
tion coefficient than the other times. It is desirable
that the peak of the traction force is employed during
the entire optimal braking phase (phase 3). The (refer-
ence) slip ratio tracking performance of the controller
is visualized from the rear and front wheels slip ratio

Table 2. Tyre and vehicle parameters [1].

Pars Values Pars Values

v0 20m/s h 0.5m
m 2045 kg Lf 1.488m
R 0.3m Lr 1.712m
J 1.5 kgm2 σ 1
L 3.2m df 0.45

σω 0.005

Figure 5. The ABS controller performance in tracking the
issued arbitrary slip ratio command.
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Figure 6. The ABS performance using µ peak detector and the
optimal slip ratio reference.

variable curves, where zero steady-state error and good
transient response have been registered in Figure 5.

To show, how assigning optimal level for the slip
ratio improves the stopping performance; the μ peak-
detector algorithm is put into operation. Again, the
vehicle speed is assumed measured and uniform dry
asphalt road condition is preserved.During this test, the
braking time and the stopping distance are 1.674 s and
17.61m, respectively. There is around a 1.3m reduc-
tion in the braking distance. The results have been
depicted in Figure 6. Thus, around 7% shorter stop-
ping distance is obtained when the optimal slip ratio is
impelled.

As it is mentioned earlier, often vehicles are not
equipped with a direct speed sensor; rather the speed
is estimated based on the vehicle acceleration and the
wheel rotational speed. The variance of the ω sensors
noise is assigned 0.1 and the accelerator sensor offset
is set 0.3. The estimator parameters are set as given in
(9) and d21 = d32 = 100. The performance of SMO
in the estimation of the vehicle speed under various
speed initial conditions has been portrayed in Figure 7.
The speed estimation absolute error is almost less than
0.5m/s constant. As a result, the relative error at speeds
above 5m/s is below 10% and at the end of the stopping
stage at 2.5m/s speed, it may reach 20%. Thus, it looks
sufficient to consider 20% tolerance (γ 1 = 0.2) for the
estimated speed.

The tolerance in the estimation of v affects the µ esti-
mation expressed by (10). From analyzing (10) with the
parameters given in Table 2, it is realized that 20% toler-
ance in the velocity has less than 5% (γ 2 = 0.05) effect
on the estimation of µ. Thus, γ 1 = 0.2 and γ 2 = 0.05
uncertainty bound are emplaced in the ASMC com-
mand (22) to deliver a robust behaviour. Testing the
designed ABS performance using the estimated speed

Figure 7. The performance of the speed estimator under vari-
ous initial braking speed.

Figure 8. The performance of the ABS adaptive sliding mode
control using v̂.

has been shown in Figure 8. The traction force peak
detector marks the peak and the SMC forces the rear
and the front wheel slip ratio to pursue the derived

Figure 9. The rear and front wheels braking torques.
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optimal slip ratio. In this test, the stopping time
of 1.687 s and the stopping distance of 17.87m are
recorded.

While the controller manages the braking based on
the estimate of the vehicle speed, still the steady state
tracking error is zero, indicating excellent SMC robust-
ness in performance. The transient behaviour of the
controller has also been shown in Figure 8, where

Figure 10. The vehicle speed and its estimation over a non-
uniform condition road.

Figure 11. Effective braking on a nonuniform road condition;
the varying optimal reference slip ratio reference (λ) and the
maximum attainable tire-road friction coefficient (µ).

appropriate reference following has been recorded. The
corresponding braking force curves have been depicted
in Figure 9 where not much disturbing switching is
observed. Despite uniform road condition, different
brake force for the rear and the front wheel has been
applied due to the different wheel normal forces.

The ABS performance on a wet asphalt road with
the c1 = 0.857, c2 = 33.82, and c3 = 0.34 parameters
delivers 2.548 s stopping time corresponding to the
25.9m stopping distance. Comparing with the dry
asphalt test, 0.861 s higher braking time and 8.03m
larger stopping distance is obtained.

5.1. Effective braking over a non-uniform
condition road

In order to investigate the effectiveness of the proposed
ABS strategy on a non-uniform road condition, it is
assumed that the braking is started on the dry asphalt
at t = 0 sec and at time t = 1 s the road condition turns
to the wet asphalt. Figure 10 shows how this affects the
speed estimation process. In spite of the changes in the
road condition, an acceptable estimation of the speed is
obtained and the actual and the estimated velocities are
almost laid on each other.

The braking time of 2 s and the stopping distance of
19.28m is achieved if no online update of the optimal
breaking is performed. However, with the conduction
of the online road condition monitoring the response
changes and the stopping time drops to 1.974 s and
the stopping distance reduces to around 18.93m. The
slope detector algorithm enjoys the association of the
following two slope detector equations; to prevent the
generation of any wrong or noisy slip ratio reference,

sign(�μ) = sign(�(−a − 0.05v̂ − 0.3 ∗ 10−4v̂2))

sign(�μ) = sign(�(1.2ω̇ − 30v̂ + ω + Tb)) (25)

where the top equation is based on the change in the
acceleration and the second one relys on the rotational
wheel speed. The system response has been depicted in
Figure 11 where the traction force coefficient, optimal
slip ratio reference and the actual front and rear wheel
slip ratios are exhibited. The change in the slip ratio
toward its optimal value at t = 1 sec has been zoomed
to better illustrate the controller performance. Utiliz-
ing the optimal ABS delivers (2−1.974 = 0.026 s) drop

Table 3. Summary of several conducted tests.

Speed value Slip ratio (λ) value Braking performance

Asphalt condition Measured Estimated Fixed (= 0.4) Optimal Adaptive optimal Time (s) Distance (m)

Dry * – * – – 1.807 18.92
Dry * – – * – 1.674 17.61
Dry – * – * – 1.687 17.87
Wet – * – * – 2.548 25.9
DWPa [1] – * – * – 2 19.28
DWPa – * – * 1.974 18.93
aDry & Wet patches.
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in the braking interval and (19.28−18.93 = 0.35m)
reduction in the stopping distance in this test.

Thismeans that using the proposed adaptive optimal
slip ratio estimator has reduced the barking distance by
around 8%, which makes it a promising strategy to be
embedded in the new anti-lock braking systems. Such
an algorithm could serve greatly in preventing financial
costs and human casualties. The summary of the con-
ducted tests has been presented in Table 3. The dry, wet
and dry/wet asphalt conditions for the road, the mea-
sured and the estimated values for the speed, and the
fixed, optimal and adaptive optimal values for the slip
ratio cases are provided for comparison of the results.
The last two rows of the table compare the result of the
algorithm in [1] with the currently proposed algorithm.

6. Conclusion

The antilock braking system is under great scrutiny,
as vehicle safety is highly desired. The centre core of
the proposed ABS system is an adaptive optimal slip
ratio tracker, which examines changes in the road con-
dition in the braking phase. The algorithm detects the
friction curve peak using a fusion of the output of
two algorithms; one based on the vehicle acceleration
and another based on the wheel rotation speed. The
required vehicle speed estimation is managed by an
adaptive sliding mode observer, which is capable of
suppressing the measurement noise and sensor offset.
Enforcement of the control objective is also conducted
using a robust adaptive sliding mode controller to con-
tain the system dynamic uncertainty and disturbances.
As a result, an ABS is formed that delivers efficient
braking by reducing the braking time and stopping dis-
tance. The online tire-road coefficient estimator makes
the method right for the optimum and effective brak-
ing on a non-uniform road condition; where 8% in the
stopping distance reduction is obtained using adaptive
road condition dependent optimal λo versus constant
optimal λo. The findings are verified through extensive
simulations, which confirm the promising potential of
the method.
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