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ABSTRACT
In this paper, a new gradient-based iterative algorithm is proposed to solve the coupled Lya-
punov matrix equations associated with continuous-time Markovian jump linear systems. A
necessary and sufficient condition is established for the proposed gradient-based iterative
algorithm to be convergent. In addition, the optimal value of the tunable parameter achiev-
ing the fastest convergence rate of the proposed algorithm is given explicitly. Finally, some
numerical simulations are given to validate the obtained theoretical results.
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1. Introduction

Continuous-time Markovian jump linear systems have
been widely used to describe some practical plants.
Stability is fundamental for the investigation of any
control systems. For the stability analysis of the Marko-
vian jump linear systems, the coupled Lyapunovmatrix
equation is an important tool. In the past decades,
the coupled continuous Lyapunov matrix equations are
broadly used in stability analysis for continuous-time
Markovian jump linear systems. In [1], the existence
of the unique positive definite solution of coupled Lya-
punov matrix equations was used to check the moment
stability of Markovian jump linear systems. In [2], the
authors shown that the Markovian jump linear system
is stochastically stable if and only if the associated cou-
pled Lyapunov matrix equation has a unique positive
definite solution. The solution of the coupled Lyapunov
matrix equations was used in [3] to check the stochastic
stability of the nonhomogeneous Markovian jump sys-
tem. In [4], the coupled Lyapunov equations have been
applied to the stabilization of stochastic linear systems.

According to the above descriptions, it is known that
the coupled Lyapunov matrix equation has an impor-
tance role in the stability analysis of the Markovian
jump linear system.Thus, finding solutions for this kind
of matrix equations has attracted much attention over
the past decade. The exact solution of coupled con-
tinuous Lyapunov matrix equations was obtained in
[5] by using the Kronecker product and matrix inver-
sion. However, the computational difficulties of the
traditional compute method will arise because exces-
sive computer memory is required for computation of

high-dimensional matrices. Due to this, the iterative
approaches are widely used to solve coupled matrix
equations in recently years and some effective iterative
algorithms have been developed. For example, some
gradient-based iterative algorithms were presented in
[6,7] to solve the general coupled matrix equations,
including the continuous coupled Lyapunov matrix
equations. The reduced-rank gradient-based algorithm
was developed in [8] for solving coupled Sylvester
matrix equations. By using the property of symmet-
ric positive definite matrix, a gradient-based itera-
tive algorithm was presented in [9] for a type of
coupled matrix equations. As a matter of fact, the
above-mentioned gradient-based algorithms in [8,9]
can also be extended to solve the coupled Lyapunov
matrix equations. In addition, some explicit iterative
algorithms are proposed to solve the coupled Lya-
punov matrix equation. In [10], the conjugate direction
method was given for solving the coupled Lyapunov
matrix equations. In [11], a classical Smith iterative
algorithmwas constructed by using the fixed point iter-
ative approach. A simple iterative technique was intro-
duced in [12] to solve the coupled Lyapunov matrix
equation. Recently, some new gradient-based iterative
algorithms were presented for solving some kinds of
matrix equations [13,14]. These algorithms also can
be extended to solve the coupled Lyapunov matrix
equations.

Besides, an implicit iterative algorithm was firstly
proposed in [15] by taking the special structure of the
coupled continuous-time Lyapunov matrix equations
into consideration. In this algorithm, some standard
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continuous Lyapunov matrix equations need to be
solved at each iteration step. Based on the idea in
[15], two modified implicit iterative algorithms were
developed in [16,17] for solving coupled continuous
Lyapunov matrix equations. Recently, a new implicit
iterative algorithm was constructed in [18] for solving
the coupled Lyapunov matrix equation by using suc-
cessive over relaxation. More results for the solution of
thematrix equations can be found in [19–22]. However,
some standard continuous Lyapunov matrix equations
need to be solved in the aforementioned implicit iter-
ative algorithms. In addition, a main disadvantage of
the exist gradient-based iterative algorithms is that the
convergence rates of these algorithms are slow. Inspired
by the above analysis, in this paper, we aim to develop
a new gradient-based iterative algorithm, which does
not need to solve the standard Lyapunov equation and
has faster convergence rate than the existing iterative
algorithms.

In this paper, the gradient-based iterative technique
is investigated for solving the continuous coupled Lya-
punov matrix equations. First, a novel and simple
gradient-based iterative algorithm is constructed and
analysed. It is proven that the proposed gradient-based
iterative algorithm converges to the unique solution
of the coupled Lyapunov matrix equations if and only
if the tunable parameter satisfies a certain inequality.
Moreover, an optimal tunable value that achieves the
fastest convergence rate of the algorithm is obtained.
Finally, the correctiveness of the convergence results are
verified by some simulation results.

Notation: Throughout this paper, the notation ⊗
represents the Kronecker product of two matrices. I
represents an identity matrix of appropriate dimen-
sions. For a real matrixA, we useAT, ‖A‖2, ‖A‖F, λ(A),
λmin(A), λmax(A), and ρ(A) to denote the transpose,
the 2-norm, the F-norm, the eigenvalues, the maxi-
mal eigenvalue, the minimal eigenvalue and the spec-
tral radius of matrix A, respectively. For two integers
m and l with m ≤ l, I[m, l] denotes the set {m,m +
1, . . . , l}. For two square matrices E and A, let us
define λ(E,A) = {s| det(sE − A) = 0}. For any matrix
X = [x1 x2 · · · xn] ∈ R

m×n, the stretching function is
defined as vec(·) = [xT1 x

T
2 · · · xTn ].

2. Preliminaries

Consider the following continuous-time Markovian
jump linear system

dx (t) = Ar(t)x (t) dt, (1)

where x(t) ∈ R
n is the system state, and r(t) is a

continuous-time discrete-state Markovian process tak-
ing values in a finite set S ∈ I[1,N]. For the Markovian
jump linear system (1), the system matrices of N sub-
systems areAi ∈ R

n×n, i ∈ I[1,N]. The stationary tran-
sition probabilities of the Markovian process r(t) are

given by

Prob
(
r (t + h) = j|r (t) = i

)
=
{

πijh + o (h) , i �= j,
1 + πiih + o (h) , i = j,

(2)

where h > 0, limh→0 o(h)/h = 0 and πij (j �= i) is the
transition rate from mode i at time t to mode j at time
t+h. All the transition rates πij, i, j ∈ I[1,N], can be
collected into a transition rate matrix

� =

⎡
⎢⎢⎢⎣

π11 π12 · · · π1N
π21 π22 · · · π2N

· · · · · · . . . · · ·
πN1 πN2 · · · πNN

⎤
⎥⎥⎥⎦ ,

which has the following property

πij ≥ 0, i �= j,

πij < 0, i = j,
N∑
j=1

πij = 0.

Let the initial condition for the system (1)–(2) be
x(0) = x0 and r(0) = r0, the definition of asymptoti-
cally mean square stability for the system (1)–(2) can
be stated as follows:

Definition 2.1 ([3]): The continuous-time Markovian
jump linear system (1)–(2) is asymptotically mean
square stable if for any x0 ∈ R

n, there holds

lim
t→∞E{‖x (t)‖2} = 0,

where E the denotes mathematical expectation.

It is well known that the preceding mean square sta-
bility of the continuous-time Markovian jump linear
system (1)–(2) is closely related to the following con-
tinuous coupled Lyapunov matrix equations (CLMEs)

AT
i Xi + XiAi +

N∑
j=1

πijXj + Qi = 0, i ∈ I[1,N], (3)

whereQi ∈ R
n×n, i ∈ I[1,N], are arbitrarily given pos-

itive definite matrices, and Xi, i ∈ I[1,N], are the
unknown matrices to be determined. Regarding the
mean square stability of the system (1)–(2), the follow-
ing results are introduced.

Lemma 2.1 ([3]): The continuous-time Markovian
jump linear system (1)–(2) is mean square stable if and
only if the continuous CLMEs (3) have a unique solution
X = (X1,X2, . . . ,XN) with Xi > 0, i ∈ I[1,N], for any
givenQ = (Q1,Q2, . . . ,QN) with Qi > 0, i ∈ I[1,N].



512 W. KUN ET AL.

Due to the significance of the continuous CLMEs
in the stability analysis of the Markovian jump linear
system, many researchers pay attention to the solution
of the continuous CLMEs (3). In next section, we will
investigate the iterative technique for solving the con-
tinuous CLMEs (3). Before give the main results, we
first present some classical iterative algorithms.

Algorithm 2.1 ([16]):

(Ai + (πii/2) I)T Xi (k + 1)

+ Xi (k + 1) (Ai + (πii/2) I)

= −
i−1∑
j=1

πijXj (k + 1)

−
N∑

j=i+1
πijXj (k) − Qi, i ∈ I[1,N]. (4)

Algorithm 2.2 ([17]):

[Ai + (πii/2) I − (ωi/2) I]T Xi (k + 1)

+ Xi (k + 1) [Ai + (πii/2) I − (ωi/2) I]

= −
i−1∑
j=1

πij

( sij∑
t=0

γijtXj (k + 1 − t)

)

− ωi

( sij∑
t=0

γijtXj (k − t)

)

−
N∑

j=i+1
πij

( sij∑
t=0

γijtXj (k − t)

)
− Qi, i ∈ I[1,N],

(5)

where γijt , t ∈ I[0, sij], i, j ∈ I[1,N], and ωi, i ∈ I[1,N],
are some tunable parameters, which satisfy some given
conditions.

In this paper, k denotes the iterative step of the
iterative algorithms.

Remark 2.1: For Algorithms 2.1 and 2.2, at each iter-
ation step, one needs to solve N standard continuous
Lyapunov matrix equations in the following form,

ATX + XA = −Q.

Due to this, some additional operations are required
when using Algorithms 2.1 and 2.2 for solving the con-
tinuous CLMEs (3). Thus, they are implicit iterative
algorithms.

In addition, the gradient-based iterative algorithms
proposed in [7,8] can also be used to solve the continu-
ous CLMEs (3). These results are stated as follows:

Algorithm 2.3 ([7]):

Xi (k + 1) = Xi (k)

− μ

(
AT
i Ti (X) + Ti (X)Ai +

N∑
i=1

πijTi (X)

)
, (6)

with

Ti (X) = AT
i Xi (k) + Xi (k)Ai

+
N∑
j=1

πijXj (k) + Qi, i ∈ I[1,N]. (7)

Algorithm 2.4 ([8]):

Yi (k + 1) = Yi(k) − μ

⎛
⎝AT

i Xi(Y(k)) + Xi(Y(k))Ai

+
N∑
j=1

πijXj(Y(k)) + Qi

⎞
⎠ , i ∈ I[1,N],

(8)

where

Xj(Y(k)) = AT
j Yj(k) + Yj(k)Aj

+
N∑
i=1

πijYi(k), j ∈ I[1,N].

Remark 2.2: It is easily noted that the gradient-based
iterative Algorithms 2.3 and 2.4 involve intermediate
variables Ti(k) and Yi(k) at each iterative step. Thus,
the computational cost of these two gradient-based
iterative algorithms are high.

In this section, two explicit iterative algorithms and
two implicit iterative algorithms for solving the con-
tinuous CLMEs (3) have been reviewed. In order to
improve the convergence rate, a new gradient-based
iterative algorithm to solve the continuous CLMEs (3)
will be proposed in the next section.

3. A new gradient-based iterative algorithm

The basic idea of the gradient-based iterative method is
to search for an optimal matrix X = (X1,X2, . . . ,XN)

such that a given objective function is minimized. In
this case, some simplified objective functions can be
given as follows:

Ji (X) = 1
2

∥∥∥∥∥∥AT
i Xi + XiAi +

N∑
j=1

πijXj + Qi

∥∥∥∥∥∥
2

F

,

i ∈ I[1,N]. (9)

To construct the gradient-based iterative algorithm, we
should first calculate the gradient of Ji(X), i ∈ I[1,N],
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with respect to Xi, i ∈ I[1,N]. In fact, the gradient of
Ji(X), i ∈ I[1,N], with respect to Xi, i ∈ I[1,N], can be
derived easily as below:

∂Ji (X)

∂Xi
= AT

i Ti + TiAi + πiiTi, (10)

where Ti, i ∈ I[1,N], are given by

Ti = AT
i Xi + XiAi +

N∑
j=1

πijXj + Qi. (11)

Now, based on (10) a new gradient-based iterative
algorithm can be constructed to search the solution of
the continuous CLMEs (3).

Algorithm 3.1:

Xi (k + 1)

= Xi (k) − μ
(
AT
i Ti (X) + Ti (X)Ai + πiiTi (X)

)
,

i ∈ I[1,N], (12)

where Ti (X) , i ∈ I[1,N], are defined in (7).

Remark 3.1: In comparison with the existing Algo-
rithms 2.1 and 2.2, the proposed Algorithm 3.1 is
explicit and it does not need to solve the standard
Lyapunov matrix equations by applying the Matlab
function ’lyap’. Thus, the computational cost of the
Algorithm 3.1 should be less than the implicit iterative
Algorithms 2.1 and 2.2.

Remark 3.2: In comparison with the existing Algo-
rithms 2.3 and 2.4, it can be observed that the term

N∑
i=1,i�=j

πijTi(X) is not included in the Algorithm 3.1 at

each iterative step. In this case, the computational com-
plexity of this gradient-based algorithm will be much
lower than the existing iterative algorithms. Therefore,
the proposed Algorithm 3.1 would have faster conver-
gence rate than the Algorithms 2.3 and 2.4 as evidenced
in the simulations.

In the following, we will give some convergence
results of the Algorithm 3.1. To this end, we first intro-
duce the following useful lemma, which has an impor-
tant role in the derivation of the main results.

Lemma 3.1 ([23]): If A ∈ R
m×n,B ∈ R

p×q, and X ∈
R
n×p, then we have

vec (AXB) =
(
BT ⊗ A

)
vec (X) .

In addition, it is denoted that

	 =

⎡
⎢⎢⎢⎢⎢⎣


2
1 π12
1 · · ·

π21
2 
2
2 π23
2

· · · · · · . . .
πN−1,1
N−1 · · · · · ·

πN1
N · · · · · ·

,

· · · π1N
1
· · · π2N
2
· · · · · ·


2
N−1 πN−1,N
N−1

πN,N−1
N 
2
N

⎤
⎥⎥⎥⎥⎦ , (13)

where


i = I ⊗ (Ai + (πii/2) I)T

+ (Ai + (πii/2) I)T ⊗ I, i ∈ I[1,N], (14)

and let

λ (	) = {
c1 + d1i,c2 + d2i, . . . ,cn2N + dn2N i

}
, (15)

where ci, di ∈ R, i ∈ I[1, n2N]. On the basis of above
notations (13) and (15), a necessary and sufficient con-
dition for the convergence of the proposedAlgorithm3.1
can be given in the following theorem.

Theorem 3.1: Assume that the continuous CLMEs (3)
has a unique solution X = (X1,X2, . . . ,XN).
If

ci > 0,∀i ∈ I[1, n2N], (16)

then, the sequence X (k) = (X1(k),X2(k), . . . ,XN(k))
obtained by the Algorithm 3.1 with arbitrary initial con-
dition converges to the unique solution of CLMEs (3)
if and only if

0 < μ <
2ci

c2i +d2i
,∀i ∈ I[1, n2N]; (17)

If

ci < 0,∀i ∈ I[1, n2N], (18)

then, the sequence X (k) = (X1(k),X2(k), . . . ,XN(k))
obtained by the Algorithm 3.1 with arbitrary initial con-
dition converges to the unique solution of CLMEs (3) if
and only if

2ci
c2i +d2i

< μ < 0,∀i ∈ I[1, n2N]. (19)

If neither the condition (16) nor the condition (18) is
satisfied, then the Algorithm 3.1 is divergent.



514 W. KUN ET AL.

Proof: Define the iterative error matrix

X̃i (k) = Xi (k) − Xi, i ∈ I[1,N]. (20)

Substituting

Qi = −AT
i Xi − XiAi −

N∑
j=1

πijXj, i ∈ I[1,N], (21)

into the Algorithm 3.1 and adding −Xi, i ∈ I[1,N], on
both sides of (12), yields

X̃i (k + 1) = X̃i (k) − μ
[
(Ai + (πii/2) I)T Ti

(
X̃
)

+Ti
(
X̃
)
(Ai + (πii/2) I)

]
, i ∈ I[1,N],

(22)

with

Ti
(
X̃
) = (Ai + (πii/2) I)T X̃i (k)

+ X̃i (k) (Ai + (πii/2) I)

+
N∑

j=1,j�=i

πijX̃j (k) , i ∈ I[1,N],

where X̃i(k), i ∈ I[1,N], are defined in (20). Next,
by performing vectorization operation and using
Lemma 3.1, the obtained expressions (22) can be equiv-
alently written as

vec(X̃i (k + 1)) = vec(X̃i (k))

− μ
[
(I ⊗ (Ai + (πii/2) I)T)vec(Ti(X̃))

+((Ai + (πii/2) I)T ⊗ I)vec(Ti(X̃))
]
,

i ∈ I[1,N],

with

vec(Ti(X̃)) = (I ⊗ (Ai + (πii/2) I)T)vec(X̃i (k))

+ ((Ai + (πii/2) I)T ⊗ I)vec(X̃i (k))

+
N∑

j=1,j�=i

πijvec(X̃j (k)), i ∈ I[1,N],

Further, by using the notation (14), it can be obtained
from the above equations that

vec(X̃i (k + 1)) = vec(X̃i (k))

− μ
[

ivec(Ti(X̃))

]
, i ∈ I[1,N],

with

vec(Ti(X̃)) = 
ivec(X̃i (k))

+
N∑

j=1,j�=i

πijvec(X̃j (k)), i ∈ I[1,N],

where 
i, i ∈ I[1,N], are defined in (14). From the
above equations, one can obtain

vec
(
X̃i (k + 1)

) = vec
(
X̃i (k)

) − μ

⎡
⎣
2

i vec
(
X̃i (k)

)

+
i

N∑
j=1,j�=i

πijvec
(
X̃j (k)

)⎤⎦ .

Then, the above relations can be compactly written as

η̃ (k + 1) = (I − μ	) η̃ (k) , (23)

where 	 is defined in (13) and

η̃ (k) =
[[
vec

(
X̃1 (k)

)]T [
vec

(
X̃2 (k)

)]T · · ·
[
vec

(
X̃N (k)

)]T]T . (24)

This relation implies that limk→∞ X̃i(k) = 0, i ∈ I[1,N],
for arbitrary initial conditions if and only if I − μ	

is Schur stable. Further, it is well known that I − μ	

is Schur stable if and only if the eigenvalues of matrix
I − μ	 satisfy

|1 − μ (ci + dii)| < 1, i ∈ I[1, n2N].

From this relation, it can be obtained that

μ2 (c2i + d2i
) − 2μci < 0, i ∈ I[1, n2N]. (25)

Obviously, the convergence condition (17) of the
Algorithm (12) can be obtained by the relation (25).
The proof of this theorem is thus completed. �

Remark 3.3: In Theorem 3.1, the convergence results
of the Algorithm 3.1 are given under the constrain
conditions (16) and (18). In future, we will investi-
gate to remove these conditions by applying some other
techniques.

Corollary 3.1: Assume that all the eigenvalues λi(	) ∈
R, i ∈ I[1, n2N], and

λ1 (	) > λ2 (	) > · · · > λn2N (	) . (26)

If

λi (	) > 0,∀i ∈ I[1, n2N],

then, the sequence X (k) = (X1(k),X2(k), . . . ,XN(k))
obtained by the Algorithm 3.1 with arbitrary initial con-
dition converges to the unique solution of CLMEs (3) if
and only if

0 < μ <
2

λ1 (	)
.

If

λi (	) < 0,∀i ∈ I[1, n2N],

then, the sequence X (k) = (X1(k),X2(k), . . . ,XN(k))
obtained by the Algorithm 3.1 with arbitrary initial con-
dition converges to the unique solution of CLMEs (3)
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if and only if
2

λn2N (	)
< μ < 0.

Remark 3.4: In Corollary 3.1, the convergence condi-
tions of the proposed Algorithm 3.1 are provided for
two special cases: all the eigenvalues of thematrix	 are
greater than zero and all the eigenvalues of the matrix
	 are less than zero. For the case where the matrix 	

have both positive and negative eigenvalues, it is diffi-
cult to obtain an explicit expression of the convergence
conditions in the current paper. This is our future work.

Theorem 3.2: Assume that the continuous CLMEs
(3) has a unique solution X = (X1,X2, . . . ,XN). With
	 defined in (13) and any initial condition X (0) =
(X1(0),X2(0), . . . ,XN(0)), the following relation holds

‖X (k + 1) − X ‖F ≤ (ρ (I − μ	))k ‖X (0) − X ‖F .
(27)

Moreover, if all the eigenvaluesλi(	) ∈ R, i ∈ I[1, n2N],
then the convergence rate of the Algorithm 3.1 is maxi-
mized when

μ = μopt = 2
λmax (	) + λmin (	)

.

Proof: It is known that the relation ‖A‖F = ‖vec(A)‖2
holds for any matrix A, hence it follows from (23) that

‖X (k + 1) − X ‖F = ‖η̃ (k + 1)‖2
= ‖(I − μ	) η̃ (k)‖2
≤ ‖(I − μ	)‖2 ‖η̃ (k)‖2
= ρ (I − μ	) ‖η̃ (k)‖2
≤ (ρ (I − μ	))k ‖η̃ (0)‖2
= (ρ (I − μ	))k ‖X (0) − X ‖F .

From the above relation, we conclude that the rela-
tion (27) holds.

It can be seen from the relation (27) that ρ(I −
μ	) can be used to measure the convergence rate of
the Algorithm 3.1. Moreover, the relation (27) shows
that the smaller ρ(I − μ	) is, the faster the proposed
Algorithm 3.1 will converge. In other words, the con-
vergence rate of the Algorithm 3.1 is maximized if
ρ(I − μ	) is minimized. According to the above anal-
ysis, the iteration in (12) is convergent if and only if the
eigenvalues ofmatrix I − μ	 satisfy |1 − μλi(	)| < 1.
In this case, we can further assume that the relation (26)
holds. For a given μ, the optimal convergence factor
μopt should satisfy the following equation

minmax {|1 − μλ1 (	)| , |1 − μλ2 (	)| , . . . ,∣∣1 − μλn2N (	)
∣∣}

= minmax
{|1 − μλ1 (	)| , ∣∣1 − μλn2N (	)

∣∣} ,
whichmeans that |1 − μλ1(	)| = |1 − μλn2N(	)| has
a non-trivial solution. From the above analysis, the

optimal choice of μ can be given by

μopt = 2
λ1 (	) + λn2N (	)

= 2
λmax (	) + λmin (	)

.

Thus, the proof of this corollary is completed. �

4. Illustrative examples

In this section, we give two examples to illustrate the
effectiveness of the iterative Algorithms 2.1–3.1 and
validate some theoretical results on the optimal con-
vergence. For fair comparison of different iterative algo-
rithms, we define the iterative error versus the iteration
step k as log δ(k), where

δ (k) =

√√√√√ N∑
i=1

∥∥∥∥∥∥AT
i Xi (k) + Xi (k)Ai + Qi +

N∑
j=1

πijXj (k)

∥∥∥∥∥∥
2

F

.

Example 4.1: Consider the continuous CLMEs in the
form of (3) with the following system matrices

A1 =
⎡
⎣ −1.3232 −1.1582 1.0290

−0.12292 −2.0737 0.2234
−0.6075 1.1656 −3.1031

⎤
⎦ ,

A2 =
⎡
⎣−2.479 1.3537 −0.5717
0.8246 −1.8727 0.4868
1.0958 −0.9525 −0.6483

⎤
⎦ ,

A3 =
⎡
⎣−2.7604 0.5164 −0.0381

0.5067 −2.6064 0.399
0.528 −0.2465 −2.1332

⎤
⎦ ,

and transition rate matrix

� =
⎡
⎣−3 2 1
1.5 −2 0.5
0.75 0.75 −1.5

⎤
⎦ .

It can be seen that the number of the subsystems is
N=3, and the dimension of the above system is n=3.
This example was once used in [15]. Assume that the
positive definite matrices Qi, i ∈ I[1,N], are all chosen
as identity matrices. By [15], the initial values of the
iterative algorithms can be given by

X1 (0) =
⎡
⎣1 0 0.5
0 0 1.2
2 −3 0.8

⎤
⎦ ,

X2 (0) =
⎡
⎣−1 0.5 0.7

1 0 0.9
0 2.1 −1

⎤
⎦ ,

X3 (0) =
⎡
⎣ 0.8 −0.5 1.6
0.15 2.3 −0.7
0.3 −2.1 1.5

⎤
⎦ . (28)

Next, several simulations are given to show different
advantages of the proposed Algorithm 3.1.
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Figure 1. The convergence performance of the proposed
Algorithm 3.1 with different tuning parameters.

Simulation 1: In this simulation, we will verify
some convergence results of the developed gradient-
based iterative Algorithm 3.1 for initial conditions (28).
First, we use the Algorithm 3.1 to solve the contin-
uous CLMEs (3) for different tuning parameters μ.
According to Theorem 3.1, the iterative Algorithm 3.1
converges if and only if the tunable parameter satisfies
0 < μ < 0.0239. When the Algorithm 3.1 is applied,
by using the method in Theorem 3.2, the best tuning
parameter is given by μ = μopt = 0.0210. The iter-
ative error log10 δ(k) against k with different tuning
parameters are shown in Figure 1.

From Figure 1, it can be seen that the Algorithm 3.1
is convergent when the tunable parameter belongs
to 0 < μ < 0.0239. In addition, the optimal tuning
parameter leads to the fastest convergence rate.

Simulation 2: In this simulation, we will com-
pare the convergence performance of the proposed

gradient-based iterative Algorithm 3.1 with some exist-
ing iterative Algorithms 2.1, 2.2, 2.3 and 2.4 in terms of
computational time. By applying the method in [7], we
choose the step size μ = μopt = 0.0214 such that the
Algorithm 2.3 with initial conditions (28) has the max-
imal convergence rate. For theAlgorithm2.4, the fastest
convergence rate can be obtained when the step size is
chosen as μ = μopt = 0.0161. By using the method in
Theorem 3.2, it can be derived that the Algorithm 3.1
has the best convergence performance if μ = μopt =
0.0210. By using different iterative algorithms to solve
the continuous CLMEs (3), thus we obtain the com-
putational time and the iterative errors for different
algorithms as shown in Table 1 for precision δ(k) ≥
10−15.

From Table 1, one can see that the Algorithm 3.1
takes less computational time than the previous iter-
ative Algorithms 2.1, 2.2, 2.3 and 2.4. In addition,
the iteration errors log10 δ(k) versus k for Algo-
rithms 2.3, 2.4 and 3.1 are shown in Figure 2.

It can be seen from Figure 2 that the proposed
Algorithm 3.1 is more effective and converge much
faster than the previous gradient-based iterative Algo-
rithms2.3 and 2.4. The total iterative numbers of the
Algorithms2.3, 2.4 and 3.1 with a same cutoff error
10−14 are 300, 260 and 120, respectively. Thus, the con-
vergence rate of the proposed Algorithm 3.1 is much
faster than the existing Algorithms 2.3 and 2.4.

Example 4.2: In this paper, we show that effective-
ness of the proposed gradient-based Algorithm for the
continuous CLMEs (3) with high-dimensional system
matrices. Consider the following continuous CLMEs in
the form of (3) with N=2. The system matrices are as
follows:

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.3313 −3.1173 −3.7911 −3.4597 −4.2978 −3.5612 −3.1514 −4.4412 −4.9275 −3.1113
−3.1173 −6.0572 −4.2081 −6.0757 −6.9933 −5.8278 −3.8478 −6.0925 −6.3057 −5.4731
−3.7911 −4.2081 −5.6183 −4.3528 −4.5035 −4.9983 −4.1194 −5.3772 −5.4906 −4.8210
−3.4597 −6.0757 −4.3528 −7.7505 −8.3844 −5.4953 −4.2787 −5.7269 −6.5043 −6.1859
−4.2978 −6.9933 −4.5035 −8.3844 −10.2603 −5.7841 −4.4345 −7.4483 −8.0805 −6.6060
−3.5612 −5.8278 −4.9983 −5.4953 −5.7841 −8.2986 −5.5146 −6.4328 −7.0797 −5.1943
−3.1514 −3.8478 −4.1194 −4.2787 −4.4345 −5.5146 −4.4088 −5.0494 −5.5947 −4.0898
−4.4412 −6.0925 −5.3772 −5.7269 −7.4483 −6.4328 −5.0494 −9.0362 −8.2483 −6.5311
−4.9275 −6.3057 −5.4906 −6.5043 −8.0805 −7.0797 −5.5947 −8.2483 −9.6603 −6.2078
−3.1113 −5.4731 −4.8210 −6.1859 −6.6060 −5.1943 −4.0898 −6.5311 −6.2078 −7.3382

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.6400 −4.6558 −5.8251 −4.8026 −6.6079 −4.8687 −4.4065 −6.5460 −8.1805 −3.8238
−4.6558 −6.9513 −5.4297 −6.8532 −8.2161 −7.0980 −4.6756 −6.3913 −8.3178 −4.8481
−5.8251 −5.4297 −7.2981 −5.1086 −6.3680 −5.7261 −4.9133 −7.3166 −8.2418 −5.0372
−4.8026 −6.8532 −5.1086 −9.2468 −10.2573 −6.4203 −5.0568 −5.6261 −8.4116 −5.9118
−6.6079 −8.2161 −6.3680 −10.2573 −12.8308 −7.2576 −5.7195 −8.1378 −10.9120 −6.5402
−4.8687 −7.0980 −5.7261 −6.4203 −7.2576 −10.1240 −6.5006 −7.0499 −9.5459 −4.7922
−4.4065 −4.6756 −4.9133 −5.0568 −5.7195 −6.5006 −5.2548 −5.9297 −7.7278 −4.1116
−6.5460 −6.3913 −7.3166 −5.6261 −8.1378 −7.0499 −5.9297 −10.2524 −10.2895 −5.7193
−8.1805 −8.3178 −8.2418 −8.4116 −10.9120 −9.5459 −7.7278 −10.2895 −14.6022 −6.6714
−3.8238 −4.8481 −5.0372 −5.9118 −6.5402 −4.7922 −4.1116 −5.7193 −6.6714 −6.0503

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Table 1. Comparison of the convergence performance for different iterative algorithms.

Iterative algorithms 1 2 3 4 5

Computational time 0.031658 s 0.030869 s 0.001228 s 0.002507 s 0.000103 s

Figure 2. The convergence performance of the different
gradient-based iterative algorithms.

and transition rate matrix is

� =
[−0.3 0.3
0.5 −0.5

]
.

In this example, the dimension of the above system
is n=9 and the positive definite matrices Qi, i = 1, 2
are both chosen as identity matrices. Next, the con-
vergence performance of the different algorithms with
the zero initial conditions. For this example, by apply-
ing the method in [7], we choose the step size μ =
μopt = 0.0082 such that the Algorithm 2.3 with initial
conditions (28) has the maximal convergence rate. For
the Algorithm2.4, the fastest convergence rate can be
obtained when the step size is chosen as μ = μopt =
0.0051. By using the method in Theorem 3.2, it can be
derived that the Algorithm 3.1 has the best convergence
performance if μ = μopt = 0.0069.

First, the converge curves for Algorithms 2.3–3.1 are
given in Figure 3.

For the continuousCLMEs (3)with high-dimensional
system matrices, it can be seen from Figure 3 that the
proposed gradient-based Algorithm 3.1 with zero ini-
tial conditions has faster convergence rate than the
previous Algorithms 2.3–2.4 if the tuning parameter is
appropriately chosen.

For this example with high-dimensional system
matrices, we next compare the proposed Algorithm 3.1
with the existing Algorithms 2.1–2.4 in terms of
the computational time. By using different iterative
algorithms to solve the coupled Lyapunov matrix
Equation (3) with zero initial conditions, the compu-
tational time with the cutoff iterative errors δ = 10−14

in the following table.
From Table 2, it can be seen that if the parameter μ

is properly chosen, then the proposed gradient-based

Figure 3. The convergence performance of the different
gradient-based iterative algorithms with high-dimensional
systemmatrices.

Table 2. Comparison of the convergence performance of the
Algorithms 2.1–3.1 with high-dimensional systemmatrices.

Iterative
algorithms

1 2 3 4 5

Computational
time

0.110253 s 0.008419 s 0.003658 s 0.003019 s 0.002395 s

iterative Algorithm 3.1 takes less computational time
than the existing Algorithms 2.1–2.4. From these
results, it can be concluded that the proposed
Algorithm 3.1 has much computational cost than the
existing Algorithms 2.1–2.4 even if the coupled Lya-
punov matrix Equation (3) has high-dimensional sys-
tem matrices.

5. Conclusions

In this paper, a gradient-based iterative algorithm is
given for solving the continuous CLMEs (3) which
arises in the continuous-time Markovian jump lin-
ear systems.The structure of this new gradient-based
iterative algorithm is much simpler than the existing
gradient-based iterative algorithms. It has been proved
that the sequence generated by the proposed algorithm
converge to the unique positive definite solution of the
continuous CLMEs (3) with faster convergence rates
in comparison with existing algorithms. Moreover, the
optimal tunable parameter achieving the fastest conver-
gence rate is explicitly provided.

In future, it is expected that the ideas and methods
can be further used to solve the other matrix equa-
tions such as coupled Riccati matrix equations, discrete
coupled Lyapunov equations, etc.
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