Taylor & Francis
Taylor & Francis Group

Automatika

Journal for Control, Measurement, Electronics, Computing and
Communications

[eo] _imdla

ey ISSN: 0005-1144 (Print) 1848-3380 (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

Implementation of security module to protect
programme theft in microcontroller-based
applications

P. Muthu Subramanian & A. Rajeswari

To cite this article: P. Muthu Subramanian & A. Rajeswari (2019) Implementation of security
module to protect programme theft in microcontroller-based applications, Automatika, 60:5,
526-534, DOI: 10.1080/00051144.2019.1578916

To link to this article: https://doi.org/10.1080/00051144.2019.1578916

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

ﬂ Published online: 13 Jun 2019.

(&
Submit your article to this journal &

||I| Article views: 592

A
& View related articles &'

PN

@ View Crossmark data ('

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=taut20

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2019.1578916
https://doi.org/10.1080/00051144.2019.1578916
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1578916
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1578916
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1578916&domain=pdf&date_stamp=2019-06-13
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1578916&domain=pdf&date_stamp=2019-06-13

AUTOMATIKA
2019, VOL. 60, NO. 5, 526-534
https://doi.org/10.1080/00051144.2019.1578916

IVI N Taylor & Francis
N Taylor & Francis Group

8 OPEN ACCESS W) Check for updates

Implementation of security module to protect programme theft in

microcontroller-based applications

P. Muthu Subramanian © and A. Rajeswari

Department of Electronics and Communication Engineering, Coimbatore Institute of Technology, Coimbatore, India

ABSTRACT

Source code plagiarism has become a serious threat for the development of small scale embed-
ded industries and also the violations of intellectual property right are a threat for the devel-
opment of hardware system. There are many software solutions for comparing source codes,
but they are often not realistic in the present scenario. Digital watermarking scheme is one of
the possible solutions for this problem. A novel watermarking technique is employed so that
it can be easily and reliably detected by special techniques. In this paper, verification methods
are presented to detect software plagiarism in the embedded application software without the
implemented source code. All the approaches use side-channel information obtained during the
execution of the suspicious code. The primary method is passive, i.e. no previous modification of
the original code is required. It determines that the Hamming weights of the executed instruc-
tions of the suspicious device are used and uses string matching algorithms for comparisons with
a reference implementation. The other method inserts additional code fragments as a water-
mark that can be identified in the power consumption of the executed source code. Proposed
approaches are robust against code-transformation attacks.

ARTICLE HISTORY
Received 19 November 2018
Accepted 13 January 2019

KEYWORDS
Microcontrollers; security;
embedded systems

1. Introduction

Software plagiarism and piracy is a serious problem
which is estimated to cost the small scale industry bil-
lions of dollars per year. Software piracy for desktop
computers is a serious problem that gained attention in
the past. However, the companies working with embed-
ded systems are also facing serious problems regarding
software plagiarism and software piracy. If a designer
suspects his code has been used in an embedded device,
it is difficult to determine whether the code belongs
to the user or the designer. The designer has to check
the code in the suspected device and compare with
the original code to detect the plagiarism. However,
programme memory protection mechanism prevents
unauthorized access to the programme memory used
in today’s microcontrollers. So the protection mech-
anism has to be defeated first to check the software
plagiarism [1]. This makes testing of embedded devices
from the perspective of software plagiarism very diffi-
cult, especially if it needs to be done in an automated
way. The serious threat in this regard is that the IP cores
with illegal copies can lead to huge monetary loss in.
The negative impact of product piracy is a threat that
needs to be taken seriously. It not only affects the man-
ufacturers and consumers of the original equipment
but also leads to damage in economy. Embedded Sys-
tems are the modern systems which play a vital role

in the development of many consumer goods. Unless
preventive technological protection is provided, sophis-
ticated technologies permit attacks to be made on hard-
ware and software in embedded systems. The attacks
range from targeted modification to complete reverse
engineering and product piracy. In the proposed sys-
tem, the ways in which attacks can occur as well as the
protection measures that are considered to fight prod-
uct piracy through technological means are investi-
gated. A new watermarking technique is proposed that
employs side channels as the building block which can
be easily and reliably detected by methods adapted from
side-channel analysis [2]. The hardware measure is to
embed a unique signal into a side-channel of the device
that serves as a watermark. This makes the designers
to check integrated circuits of their watermarked cores
in the Integrated Chip. The watermark is hidden under
the noise floor of the side-channel and is thus hidden
from third parties. Furthermore, the proposed schemes
are implemented with very few gates and are thus even
harder to detect and remove. The proposed watermarks
are realized in a programmable fashion to leak a digi-
tal signature. We proposed multiple levels of protection
measure to this serious threat. The proposed technique
requires source code rewriting and addition of hex
codes in the language conversions. Real Time Software
system uses a variety of methods to secure the code.

CONTACT P.Muthu Subramanian @ pmuthusubramanian1@gmail.com
© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1578916&domain=pdf&date_stamp=2019-11-06
http://orcid.org/0000-0003-0885-6623
mailto:pmuthusubramanian1@gmail.com
http://creativecommons.org/licenses/by/4.0/

Most of these methods require certain modifications
in the source code and may not be efficient to have a
comprehensive variety of attacks. Hardware detection is
one of the efficient methods compared to the aforemen-
tioned software method. But still hardware methods
also have disadvantages such as the designer needs to
modify the hardware of the processor, which is usu-
ally not easy. Obfuscation techniques convert the pro-
gramme from its original form into a new form which
is not easily understood without changing the func-
tion of programme. Here, the objective is to confuse the
attacker and this increase the difficulty of reverse engi-
neering. The disadvantage of obfuscation techniques is
the lack of theoretical foundation, so it cannot assess the
effectiveness of measures quantitatively.

2. Related work

Programming plagrisim sign is presently related to the
Hamming weight strings. The plan can be abridged
in three stepping tools: First, the execution stream of
the first programming is mapped to a string of Ham-
ming weights. This is acknowledged either by measur-
ing and assessing the power utilization of the execu-
tion as expressed above or by re-enacting the execution
stream and figuring the Hamming weights from the
opcodes. The branch guidelines require more than one
clock cycle and thus, amid the execution more than
one opcode is prefetched from the programme mem-
ory. The second step is to record a power hint of the
suspicious gadget to get additionally a string of Ham-
ming weights, meant as “t” . A coordinated duplicate
of the string will be recognized in the third step by
looking at the two strings s and t. A balanced duplicate
is an admired supposition of programming copyright
infringement and is subsequently simple to distinguish.
The populace check of a bit string is frequently required
in cryptography and other applications. A DPA is based
on the algorithm and its power consumed by a pro-
cessor. In order to detect the watermark, power traces
for different values are to be verified. Combining var-
ious functions with the input values and the water-
marked key, the user can verify and compute the cor-
rect assumption. Computation of the watermark and its
energy trace is based on the clock cycle. Traces should
be synchronized properly to avoid unwanted noise in
the side-channel analysis [3].

Conversion of characters for encryption is incom-
patible. Encryption is measured with a block of 16
C/128 bits. Characters undergo transpositions and a
substitution technique is used with a multidimensional
array. One-time sub-key will be generated for the block
which produces transitional result of the related length.
The encryption iterations are done with the combina-
tion of a previous text block and a plain text with 8 C/64
bits which gives 192 bits and this will be the present
block of text which produces a new 24-character text

AUTOMATIKA (&) 527

block. The same technique is applied till it gives a block
of 256 bits and this bits are XORed with previous 256
bits other than the first block if the plain text is more
than 32 bits [4]. The same 256 bits are XORed with
last 256 bits other than the first block if there are more
than 32 characters [5]. In both techniques if the attacker
knows the internal state combinations, it is easy to
reveal the watermark and the instructions used.

3. Security architecture

System architecture is proposed with two different lev-
els of authentication. The first level specifies the changes
in the assembly language code with watermarks and
provides the robustness. The second level specifies the
importance of the power consumption in the affected
code to proof of ownership. Figure 1 shows the primary
level of protection to detect software theft with minor
changes to the assembly-level code. The side-channel
software watermark consists of few instructions that are
inserted in the assembly-level code. These instructions
provide changes in machine cycle and power consump-
tion of the processor and the pilfering can be detected
by a trusted verifier with methods very similar to classic
side-channel attacks.

Encrypted water-marked code in the processor will
increase the usage of machine cycle when compared
with the non- watermarked code. Machine cycle is
based on the clock periods and frequency of the proces-
sor which will give a reasonable time analysis between
the water-marked code and the normal code. Energy
saving is not the goal of the proposed system, the
increase of machine cycle will vary the energy con-
sumption level and power parameters of the processor,
but the authentication of the system will be maintained
throughout the analysis.

Figure 2 shows the flow of security and these water-
marks provide robustness at the higher level against
code-transformation attacks while introducing only a

Customer Software
(source
1 file)
Tiansformatiqn File
Cust id, name Software
(assembly)

>
: »° ‘(\'b‘\{’
Create customer id Kt

: ; L
transformation with / S
cust_id embedded

Newly water
marked
assembly

(file —

New instance
of software
application

Figure 1. System architecture-watermarked code.

528 . P. MUTHU SUBRAMANIAN AND A. RAJESWARI
l Begin

[

Software Executable

Result T

Customer >

Disassemble
Transformation- Software
pattern Assembly
matching schemes file
retrieval
) cust_id
Cust_id or name

Figure 2. Flow of providing security-disassemble system.

small overhead in terms of performance and code size.
The previous method can be used by a verifier to detect
software plagiarism and to detect whether his code is
present in an embedded system or not, but it is not
possible to prove towards a third party that the code
belongs to the verifier. The original software watermark
only transmits bit of information-either the watermark
is present or absent-but it does not provide any infor-
mation about the owner of the watermark.

3.1. Proposed technique

In the proposed cipher technique the character of plain
text is encrypted with the secret key using a multipli-
cation technique. The secret key should not be either
0 or 1(when the key is 0, the letter becomes 0; when
the key is 1, the letter of plain text remains unchanged
and becomes 1). Here the decryption is done by invers-
ing the secret key word and multiply with chiper text
character to obtain the plain text character. The choice
of odd numbers and even numbers is based on the
traditional encryption and decryption approach for
authentication and various selection of numbers for
Encryption keys such as 3,5,7,9,11 are the best authen-
ticated keys and inverse values of the encryption keys
are 9,21,15,3,19. These keys give distinctive character
by the given equation.

((Character * Secret_Key) mod 26). (1)

In the next approach, Rail fence cipher technique
[6] is used in which the plain text character is written
downwards diagonally as per the allotted rail (rail can
be 3 or 4) as shown in Figure 3 once it is reached as per
the rail number limitation again the rail starts to move

Figure 3. Rail fence encryption.

upwards diagonally here the message given is TOMOR-
ROW I WILL ATTACK and after the encryption with
rail = 4 the encrypted message becomes TOLKOR-
WLACMRIITAOWT.

The proposed algorithm implies both encryption
and decryption in the context of using substitution and
transportation ciphers and the algorithm states three
different steps for the authentication. The proposed
algorithm uses the series of substitution and transporta-
tion ciphers for the process of encryption and decryp-
tion. Algorithm states three different authentication
steps (Figure 4).

Step 1: Substitution
Step 2: Transposition
Step 3: Substitution

To have a better understanding of the algorithm, plain
text “ATTACK AT TEXT” is considered eliminating
the spaces of the plain text ‘ATTACKATTEXT”. Now
this text goes through the encryption process with dif-
ferent levels of authentication. Authentication of the
processor is the primary stream concentrating on the
hexadecimal changes and analysing the power. Substi-
tution and transposition is one of the best methods for
analysing the hexadecimal values and its conversion,
moving to any modern algorithm will provide the same
objective of producing the hexadecimal conversion out
of which power is measured for the changes.

3.2. Encryption

Step I: In this step, each plain text character is multiplied
by the secret keyword depending on the position of the
text.

Plain Text A T T A C K
Position 0 1 2 3 4 5
Even 0Odd Even 0Odd Even Odd
Plain Text A T T E X T
Position 6 7 8 9 10 11

Even 0Odd Even 0Odd Even Odd

The plain text character is multiplied by either 5 or
11 depending on its position (even or odd) i.e. an even
character is multiplied by 5 and an odd character is
multiplied with 11. Integral values of all the alphabets
are treated as A assigned to 0, B assigned to 1 and Z is
assigned to 25. The equ.2 is applied on every character
of the plain text to obtain the intermediate Cipher text
(C.T.): If position of character is even. In order to iden-
tify the intermediate cipher every character of the plain
text is applied with the formula given below.

Position of the character is even

Intermediate C.T. = [[plain text character integral

value * 5] + 1] mod 26 (2)

AUTOMATIKA (&) 529

A| B| C| D| E[F| G| H| 1| J| K| LIM|N| O] P| Q| R] S| T| U] VIW| X] Y| Z
0/]0[0]0O[{0]|0]O[0]O[0]|0]O[0]O]O[O[O]O[O]O[O[O]O[0]O|O]|O
11O 1]2|3[4]5]|6|7|8[9([10]11|12{13]|14(15[16|17|18]19|20|21|22{23|24|25
21012]4|6]8(10|12{14(16{18]20|22|24|0 |2 (4|6 |8 |10(12(14|16(18|20]|22(24
310(3]|6(9|12|15(18|21(24| 1|4 |7 |10|13(16{19|22(25|2 |5 (8 |11(14|17]|20(23
410]|4)8(12(16]20[24|2 | 6 |10(14|18|22| 0|4 | 8 |12]|16{20(24| 2 | 6 (10]|14{18]22
5|10(5]10{15]20|25(4 |9 (14]19|24| 3 | 8 |13(18|23| 2 | 7 |12(17(22| 1 | 6 |11|16(21
6|10(6]12(18]24| 4 (10|16(22] 2| 8 (14]|20| 0 | 6 [12]|18(24| 4 (10(16|22|2 | 8 |14(20
710(7|1421|12|9 (16/23|4 [11|18(25|6 |13(20| 1 | 8 (15|22| 3 (10{17(24| 5 |12(19
8108 (16[24| 6 (14]|22]| 4 [12|20] 2 (10(18[0 | 8 |16(24| 6 |14[22]| 4 [12{20| 2 |10|18
9(0]|9|18(1(10{19|2 (11|20(3 |12(21|4 |13(22| 5 [14(23| 6 |15(24| 7 |16|25| 8 |17
10{ 0 {10|20| 4 |14|24| 8 (18] 2 |12|22] 6 16| 0 [10|20| 4 |14|24| 8 [18]| 2 |12|22| 6 |16
11| 0 (11]22| 7 |18] 3 |14(25{10(21| 6 (17| 2 [13|24]| 9 |20| 5 (16| 1 (12(23| 8 |19| 4 |15
121 0 |12]24]10{22] 8 [20| 6 (18| 4 [16| 2 |14| 0 {12(24]10|22{ 8 [20] 6 18| 4 |16|2 |14
13{0|13{ 0 |13{ 0 [13] 0 (13| 0 |13[0 |13{ 0 (13| 0|13{0 |13 0 |13]0 (13| 0 (13| 0|13
1410|142 |16[4 (18] 6 [20| 8 |22(10|24(12| 0 |14 2 (16| 4 [18] 6 |20 8 |22{10|24|12
15| 0|15 4 (19| 8 (23|12| 1 (16| 5 |20(9 |24(13| 2 (17| 6 |21|10(25|14| 3 18| 7 |22|11
16/ 0|16 6 [22|12| 2 [18| 8 [24|14| 4 [20(10] 0 [16] 6 |22|12| 2 |18] 8 |24|14| 4 [20[10
17| 0 (17| 8 [25|16| 7 [24(15| 6 |23|14| 5 |22|13| 4 |21|12| 3 |20({11| 2 |19({10| 1 (18| 9
18 0 |18]10] 2 [20]12{ 4 [22|14| 6 |24|16| 8 | 0 |18|10] 2 |20(12| 4 [22|14| 6 |24|16| 8
19(0 (19(12] 5 |24(17(10| 3 |22|15| 8 | 1 [20|13| 6 |25|18|11| 4 [23]|16| 9 | 2 |21{14| 7
20| 0120(14| 8|2 (22|16]|10| 4 |24{18(12| 6 | O (20|14 8 | 2 |22|16]|10| 4 |24{18|12| 6
21(02116(11| 6 (1 |22|117|12(7 | 2 [23(18|13| 8 | 3 [24(19|14| 9 | 4 |25|20(15]|10(5
22| 0]22(18(14]|10[6 | 2 |24|20|16{12| 8 [4 [O [22]|18[14(10| 6 | 2 |24|20|16(12| 8 | 4
23| 0|23|20(17(14(11| 8 | 5| 2 |25|22|19(16|13|10| 7 | 4 | 1 |24|21|18|15|]12(|9 |6 |3
24) 0]24(22(20|18(16|14|12{10| 8 | 6 [4 [2 | O [24]|22(20(18]|16|14|12|10| 8 6|4 | 2
25]| 0 [25]24(23|22]21|20]19(18[17]16/15]14(13|12(11{10/9 |8 |7 |6 5|4 |3]2]|1

Figure 4. Substitution cipher encoding with different keys.

Position of the character is odd

Intermediate C.T. = [[plain text character integral

value x 11] + 1] mod 26

(3)

Applying the formula in the “ATTACK AT TEXT”

given below

Plain text: A
Even
0

A
Even
0

T
Odd
19

T
Odd
19

T
Even
19

T
Even
19

A
Odd
0

E
0dd
4

C
Even
2

X
Even
23

K
Odd
10

T
Odd
19

Table 1 shows the intermediate encrypted cipher text
BCSBLHBCSTMC after the formula encoding.

STEP II: In this step, transpose of cipher text is taken
in order to make the encryption more authenticated.

Here the encrypted cipher text is processed with
rail = 3 such that the character is written diagonally

for 3 steps (rows) i.e. Figure 5. shows the transpose of

BCSBLHBCSTMC.

Figure 5. shows the encrypted message BBBT-
CLCMSHSC which is the transpose of BCSBLHBC-
STMC

STEP III: Final stage of the algorithm; here the char-
acter is substituted with special symbols which provides
more authentication hence it becomes more secured.
ASCII values are assigned to each and every charac-
ter. Table 2 shows ASCII values and assigned alphabets.
This substitution makes the text more authenticated
and unreadable.

Table 1. Formation of intermediate encrypted cipher text.

Intermediate

Plain text Formula Resulting numbers Cipher text
A ((0*5) + 1)mod26 1 B
T ((19*11) + 1)mod26 2 C
T ((19*5) + 1)mod26 18 S
A ((0*11) + 1)mod26 1 B
C ((2*5) + 1)mod26 11 L
K ((10*11) + 1)mod26 7 H
A ((0*5) + 1)mod26 1 B
T ((19*11) + 1)mod26 2 C
T ((19*5) 4+ 1)mod26 18 S
E ((4*11) + 1)mod26 19 T
X ((23*5) + 1)mod26 12 M
T ((19*11) + 1)mod26 2 @

530 P. MUTHU SUBRAMANIAN AND A. RAJESWARI

B\B \\B\T
C\L \C\M
S 4H €S ¥ C

Figure 5. Transpose encryption.

Hence the proposed algorithm encrypts a message
and inserts those inside the assembly language pro-
gramme, since these symbols cannot be added directly
to the assembly-level language, the encrypted cipher
text is converted into hexadecimal values which is
shown in the third row of Table 2 and this is added as a
watermark inside the assembly language code instead of
the normal keys using Java script and the same is tested
with TT MSP 432 processor. Based on the table the text
BBBTCLCMSHSC isencryptedinto “““ > #,#- = (=
and the same for better encryption is now converted
into 22,22,22,3E,23,2C,23,2D,3D,28,3D,23

3.3. Decryption

Decryption is the inverse processes of encryption; here
the course steps are performed in reverse order.

Step I: In this step, hexadecimal value is converted
into symbols and then symbols to encrypted text and
its character value are shown in Table.

Decrypted text of the encrypted hexadecimal value
22,22,22,3E,23,2C,23,2D,3D,28,3D,23 followed by the
symbols “ ““ > #,#- = (= #is BBBTCLCMSHSC

Step II: In this step, the intermediate decrypted text
obtained from Step I is rearranged into its original posi-
tion of the characters i.e. intermediate decrypted mes-
sage BBBTCLCMSHSC is rearranged into BCSBLHBC-
STMC which is written in rows and read diagonally.

Step III: The final step of decryption here the inter-
mediate encrypted text is converted into original plain
text by applying the equation.

Position of the character is even

Plain Text = [[encrypted character integral

value — 1]%21] mod 26 (4)

Here value 21 is the inverse of value 5

Position of the character is odd

Plain Text = [[encrypted character integral

value — 1]%19] mod 26 (5)

Here value 19 is the inverse of value 11

Table 3. The original plain text obtained out of an encrypted
message.

Intermediate Resulting

Cipher text Formula numbers Plain text
B ((1—=1)*21)mod26 0 A
C (2 —1)*19)mod26 19 T
S ((18 — 1) *21)mod26 19 T
B ((1—=1)*19)mod26 0 A
L (11 —=1)*21)mod26 11 C
H ((7—1)*19)mod26 10 K
B ((1—=1)*21)mod26 0 A
C ((2 —1)*19)mod26 19 T
S (18— 1) *21)mod26 19 T
T (19— 1) *19)mod26 4 E
M ((12—=1)*21)mod26 23 X
C ((2—1)*19)mod26 19 T

Table 3 shows the original plain text is obtained from
the above cipher text BCSBLHBCSTMC.

3.4. Power analysis

The second layer of security is provided by analysing
the power consumed by overall process and also by
the each instruction level. Nowadays, software consti-
tutes a major part of systems like embedded comput-
ing applications drives where power is a constraint,
and also has a significant contribution to the overall
power consumption. In order to analyse systematically
and assess this impact, it is important to start at the
most practical and fundamental level -the instruction
level. The instruction-level power models are derived
based on the power supply current measurement tech-
nique. Each instruction takes a specific number of
machine cycles to complete its operation. The num-
ber of machine cycles varies from one instruction to
another and the time taken for each instruction set
for execution is calculated and by using that overall
time elapsed is found. With the help of time elapsed
and operating frequency, power consumption of the
processor with encryption is measured.

4. Experimental results
4.1. Plagiarism detection

Figure 6 shows the first level of verification of software
plagiarism using the watermark added to the assembly-
level code. The initial step of this verification is that the
normal C code has been written in Turbo C++ and
the C code has been converted into assembly-level code
using GCC compiler and the steps to add the watermark

Table 2. Conversion of intermediate cipher text to symbols and hexadecimal values.

Alphabet A B C D E F
Symbol ! " # $ % &
HD 21 22 23 24 25 26
Alphabet N 0 P Q R S
Symbol . / : ; < =
HD 2E 2F 3A 3B 3C 3D

G H I J K L M
' () * + , -
27 28 29 2A 2B 2C 2D
T Vv w X Y z

> ? @ [\]
3E 3F 40 5B 5C 5D 5E

:\emhed>echo off

ating an assembly project.s
any key to continue . . .

FILE HAS 284 lin
i : Scheme2- Inserting Transformationii@

: 8cheme2- Inserting TransformationitB

: DummyTransformation #j

: KeyTransformation #1

: KeyTransformation #1

: KeyTransformation #2

: KeyTransformation #3

: DummyTransformation #m

: DummyTransformation #2

: KeyTransformation #3

: KeyTransformation 4

: DummyTransformation H6

: DummyTransformation #d

: DummyTransformation #1

: DummyTransformation Hg

: KeyTransformation #5

: KeyTransformation #6

: DummyTransformation Ha
rmation #6
formation #8

: KeyTransformation #7

[Press any key to continue . . .

Figure 6. Key information.

code into the assembly-level code have been imple-
mented using JavaScript. The watermark is inserted
inside the code at any random place by the compiler
and the watermark keyword can be chosen by the user.
Same configurations are compiled and tested with TIT
MSP boards. MSP432 is the processor with code com-
poser studio and inbuilt energy trace analysis, power
consumed by the code is analysed for further extraction
using the software tool. Power analysis is not restricted
to a TI-based processor. Power can be measured in all
the processors using hardware techniques.

Dummy key information can also be added into the
assembly-level code in order to confuse the code hacker
and the exact key information is known by the owner.
The dummy keys are inserted in the assembly-level
code at random places in between the exact key words
Figure 7. The watermark code does not affect the output
or function of the embedded system. The key func-
tions are included in the separate registers which will
not be included in the main programme. The output
of the suspicious code can be compared with the origi-
nal code using the string matching algorithms and the
plagiarism can be detected.

Figure 8 shows the substitution keys which are added
inside the code. The code is written in JavaScript
language for the substitution algorithm. In the pro-
posed system, plaintext “ENCRYPTION” is converted
into cipher text “% - # } | *] (~ -” using Substi-
tution Cipher Algorithm. Since these symbols cannot
be added directly to the assembly-level language, the
cipher text is then converted into hexadecimal values
using JavaScript language which can be added into the
assembly-level language as the watermark instead of the
normal keys which were implemented in the first stage
as shown in Figure 9.

The Hexadecimal values for the word ENCRYP-
TION are 25 2D 23 7D 60 5D 28 2E 2D. The addition

AUTOMATIKA (&) 531

—_main:

pushl %eb
mowv1 *esp, %ebp
<D 3944, %€bX
and | $-16, %esp
subl $464, %esp
call main
mowvl $0, 460(%esp)
moy 1 $1, 444 %esp)d
Xor $44, %ebX
real 428(%esp), %eax
mow]l %eax, 4(xesp)d
mowv1 SLCO, (%espg
call —scanf
XOr 304, %ebxX
Jmp L2
L1s
mowvl $0, 456(%esp)
mowv] 444 (kesp), Feax
mons] %eax, 448(%esp)
Xor $10, %ecX
Tmp | $1, 448(%espd
ine LS
mowl 448 (%esp), %eax
mowvl %eax, 4 (Gcesp)
moa] $Lcl, (%sesp
Xor 3$10, %ecX
S | —princf
Jmp La
LS8:
cmpl $2, 448(%espd)
jie L6

Xor $10, %ebxX

ol $3, 448(%esp)
jne EF

LG:
mowv 448(%esp), Heax
clrd

Xor_3$0, %ecx
sShrl $31, %edx
addl %edx, %eax
and] $1, %eax
subl %edx, %eax
moyw 1 *eax, %edx

g£or 307, %*%ebx
oVl 456 (%esp), %eax
mowv 1 %edx, 28(%esp,%eax,q4)
addl $1, 456(%esp
mow] 448 (xesp), F*eax
mow 1 %eax, %edx

Xor $32, %ecx

Figure 7. Keys in the assembly-level code.

i " Chembed\project.exe

Figure 8. Water mark-added code.

of encrypted hexadecimal values as watermark inside
the assembly-level code does not affect the output of the
programme as shown in Figure 10.

Figure 11 shows the encrypted hex value which is
obtained from the watermarked executable file using
the string matching algorithm which is designed in
Java.

4.2. Decryption

The next step is the decryption of the hexadecimal val-
ues which are inserted inside the assembly-level code.
Decryption is the reverse process of the encryption.

532 P. MUTHU SUBRAMANIAN AND A. RAJESWARI

xoxr $25,

main

movl $0,
movl §$1,

444 (%esp)

leal 428 (%esp), %eax
mevl %zax, 4(%ssp)
movl $LCO, (%esp)
call _scanf

xex $25, %ghx
Jmp L2

Ll8:
movl $0, 456(%ssp)
nevl. 444 (%gs3p). *eax
movl %eax, 448 (%esp)

448 (%e=p)
LS
xor $2D, %ecx

cmpl $1,
ine

movl 448 (%esp), %eax
mwovy *Teax, 4(%ssp)
movl S$LCl, (%esp)
call _printf
Jmp L4

L8:

Xor $2D, %ecx
cmpl $2, 448 (%esp)
je L6
cmpl $2, 448 (%eszp)
dge: LT

Figure 9. Hexadecimal values added as watermark.

[] Chembediwmexe.exe

Figure 10. Encrypted watermark-added code.

First, the obtained output hexadecimal values are con-
verted into the cipher text format as defined by the
user. Then the cipher text is converted into the normal
plain text using the script code written separately for the
decryption process as shown in Figure 12. This is more
robust for the code hacker to detect the watermark.

4, Disassenhlying executahle (unExe.exedto generates assembly file (umExe.asn)
vess any key to continue . . .

5. Reading the watermark from the diassembled file ".asn"
Schene 1 Results, Customer-id = @

Schene 1 Results, Customer-id = B0

Schene 1 Results, Customer-id = AAA

Scheme 1 Results, Customer-id = G881
Schene 1 Results, Customer-id = BAAL1
Schene 1 Results, Customer-id = AAAL12
Scheme 1 Results, Customer-id = ABAL123
Schene 1 Results, Customer-id = BAA11234
Scheme 1 Results, Customer-id = BAA112345
Scheme 1 Results, Customer-id = BAA1123456
Scheme 1 Results, Customer-id = BAA11234566

he vater marked hex value is : 252d237d7c6B5d2687e2d

Figure 11. Output of the hex obtained from executable file.

E
Vindow Help
5 ars
Plain Text [| B - @B
tPage X |[&f} File2Hex.jav
ce | Hist = -
Encrypted Text ‘%—#) 171 (~— | ;—‘ =237 Il E%H
A -
[S
Decrypted Text ‘encryption & 3
7 else if (actic
g <
‘ Encryption | ‘ Decryption ‘ o String x=te:
i 0 String y= .
l Clear J l Exit ‘ 3 Loix-equars
s Toranee €
ol [143 Joptionl

Figure 12. Decryption of cipher text.

4.3. Energy comparison

The difference between the original code and the
pirated code is found by comparing the energy
trace chart for the encrypted and unencrypted codes.
Figure 13 shows the energy consumption and power
consumption of the normal code and the pirated code.
The addition of watermark inside the code will lead
only to a small change in the power consumption. So,
the power varies in the range of mV based on the
defined clock frequency of the processor and its time

Rac Power [Energ)

EnergyTrace™ Profile (Relative Measurement)

D EnergyTrace™ Technology £2

Name Live
4 System
Time 10 sec
Energy 124.323 mJ
4 Power
Mean 12.5405 mW

Min 6.9214 mW
Max 18.2101 mW

4 Voltage

Mean 3.3000V
a Current

Mean 3.8002 mA

Min 2.0974 mA
Max 5.5182 mA
Battery Life CR2032: 2.2 day (est.)

Figure 13. Energy trace chart of the normal code.

tnergyTrace™ Profile (Relative Measurement)

AUTOMATIKA (&) 533

in nano seconds with instruction machine cycles. The

Name e energy trace is done for the code in which the water-
proraErr— mark is not added. The obtained power for the code is
Time 10 sec 12.5405 mW and the energy consumed is 124.323 m].
Energy 127.334 m) Figure 14 shows that for the watermark-added
o Powss code, the power consumed is 12.8973 mW and the
enny | 1o energy consumption is 127.334 mJ. From the compar-
oo Lo Lo ison of the above energy trace charts, it is possible
Max 20.7062 mW DoV 8y S, P
4 Voltage to find the difference between the pirated code and
Mean 3.3000V the watermark-added code. Here the energy differ-
a Current ence and the power difference is the key factor for
Mean 3.9083 mA proof.
M. | 20805 miy Figure 15 and Figure 16 show the power comparison
Max 6.2746 mA

Battery Life CR2032: 2.2 day (est.)

Figure 14. Energy trace for the watermark-added code.

between the water mark-added code and the unen-
crypted code using power vs time analysis graph in
Code Composer Studio energy trace analysis.

Fle Edt View Project Tock Run Scrigts Window Help

(mf

& | 8 EnergyTrace™ Technology | [P

o

wiEw @~ S @V

[| B CCskdt | CCSDebug

)
=]

Figure 15. Energy trace for original code-expanded.

file Edt View Pject Tooks Run Scripts Window Help

T i' . g SiDids i Quik eces 1| 88 | B Cestar %ccsneeug

5 R trergyTrace™ Techroiogy [

Figure 16. Energy trace for altered code-compressed.

534 P. MUTHU SUBRAMANIAN AND A. RAJESWARI

Table 4. Power analysis comparison of the watermarked code
and the original code.

Code Original Water mark Water mark
level code 1 code 1 code 2
SYSTEM
Time 10 sec 10 sec 10 sec
Energy 61.871mJ 62.117 mJ 66.415m)J
POWER
Mean 6.1864 mW 6.2113 mW 6.6827 mW
Min 6.0888 mW 6.0872 mW 5.9057 mW
Max 6.3687 mW 6.9478 mW 7.7105 mW
VOLTAGE
Mean 3.300V 3.300V 3300V
CURRENT
Mean 1.8747 mA 1.8822 mA 2.0250 mA
Min 1.8451 mA 1.8446 mA 1.7896 mA
Max 1.9299 mA 2.1054 mA 2.3365mA

Power analysis comparison between the original
code and the water-marked code is tested with Code
Composer Studio in TI MSP boards and the result con-
cludes that when there is a change in the code with
encryption standard, the original code is not affected
and there is a power variation. Table 4 shows the
detailed analysis of the code which is inside the pro-
cessor and this gives an authentication proof to the
developer.

5. Conclusion

Software theft is reduced using the proposed watermark
technique. An approach has been proposed in which
substitution and transposition cipher techniques are
determined. Conversion of special symbols makes the
analysis challenging. Substitution of cipher encoding
with different keys is done with upper case characters.
There is a possibility that the compiler can filter out the
watermark on compilation. Thus watermark survives
this optimization using substitution cipher algorithm

with hex file conversions and power analysis in our
technique. The obscurity in the resulting files made the
job of reverse engineering more challenging. In future,
substitution cipher encoding for different keys can be
extended for lower case alphabets and numeric val-
ues. The usage of digital signature proves the legitimate
ownership of the watermark.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

P Muthu Subramanian
0885-6623

http://orcid.org/0000-0003-

References

[1] Al-Wosabi AAA, Shukur Z. Software tampering detec-
tion in embedded systems.] Theor Appl Inf Technol.
June 2015;76(2):211-221.

[2] Agrawal D, Archambeault B, Rao J, et al. The EM side-
channel(s): attacks and methodologies. In Proceedings
Workshop on Cryptographic Hardware and Embedded
Systems 2002, Aug. 2002.

[3] Becker GT, Burleson W, Paar C. Side-channel water-
marks for embedded software. Proceedings IEEE 9th
Int. New Circuits and Systems Conf. (NEWCAS), pp.
478-481 Jun. 2011.

[4] Pal JK, Mandal JK, Gupta S. Composite transposition
substitution chaining based cipher technique. Proceed-
ings of 16th International Conference on Advanced
Computing and Communications, December 2008.

[5] Pal JK, Mandal JK. A novel block cipher technique
using binary field arithmetic based substitution (BCTB-
FABS). Second International conference on Computing,
Communication and Networking Technologies, 2010.

[6] https://www.geeksforgeeks.org/rail-fence-cipher-
encryption-decryption/

http://orcid.org/0000-0003-0885-6623
http://orcid.org/0000-0003-0885-6623
https://www.geeksforgeeks.org/rail-fence-cipher-encryption-decryption/

	1. Introduction
	2. Related work
	3. Security architecture
	3.1. Proposed technique
	3.2. Encryption
	3.3. Decryption
	3.4. Power analysis

	4. Experimental results
	4.1. Plagiarism detection
	4.2. Decryption
	4.3. Energy comparison

	5. Conclusion
	Disclosure statement
	ORCID
	References

